
CSC 408F/CSC2105F Lecture Notes

These lecture notes are provided for the personal use of

students taking CSC 408H/CSC 2105H in the Fall term

2004/2005 at the University of Toronto.

Copying for purposes other than this use and all forms of

distribution are expressly prohibited.

c David B. Wortman, 1999,2000,2001,2002,2003,2004

c Kersti Wain-Bantin, 2001

c Yijun Yu, 2004

0



Quality Matters
� Producing quality products has been identified as a key factor in the long term

success (i.e. profitability) of organizations.

� Quality doesn’t happen by chance.

Quality requires on ongoing commitment by all parties (management,

designers, developers).

� The commitment to quality includes the use of careful development

processes. Quality control must be embedded into the process. [The quality

movement in Japan. Process quality ...]

1



Managing Software Quality
� Define what quality means for large software systems

� Measure Quality of a complete or partial system.

� Devise actions to improve quality of the software

– Process improvements [Process Performance improvements � Product

Productivity improvements]

– Product improvements

� Monitor Quality during development

� Software Quality Assurance - a team devoted to encouraging and enforcing

quality standards.

2



Defining Software Quality
� Software quality is defined as

1. Conformance to explicitly stated functional [correctness] and non-functional

requirements [performance, security, maintanability, usability, etc.]

i.e. Build the software described in the system Requirements and Specifications

2. Conformance to explicitly documented development standards

i.e. Build the software the right way

3. Conformance to implicit characteristics that are expected of all professionally

developed software

i.e. Build software that meets the expectations of a reasonable person

in law this is called the principle of merchantability

� Assessing software quality is often based on subjective criteria.

As yet there is no generally accepted computable metric for software quality.

� Although it has proven difficult to quantify and measure, it is often easy to identify real

quality [qualitatively].

3



Quality Metrics

There have been some efforts to develop numerical metrics for software quality.

� Correctness

– Formal proof or program verification

– Unit test, Integration test, System test, Acceptance test

� Reliability

– Mean Time Between Failures

4



� Complexity

– Source size or compiled size.
� Lines of code (LOC)

� McCabe’s complexity:

�V ��� � E ��� 2

for a control flow graph G=(V, E).

� Halstead’s Software Science � Information Science

� N1� N2 � log � n1� n2 �

– OO Software Metrics

� Cohesion metrics in Packages, Classes, Methods

� Coupling metrics in Packages, Classes, Methods

5



� Performance

– Time, in relation to the input size
� CPU cycles, in relation to the input size

� Cache misses, in relation to the input size

� Network delay, system perf.

� Network throughput, system perf.

– Space, in relation to the input size

� Workload, in relation to the input size

� Network traffic, in relation to the input size

6



� Usability

– Operational usability

– Memorizing usability

– Manual completeness

� Security

– Types of vulnerabilities

– Number of vulnerabilities

– Encryption strength [MD5 story]

7



Quality Tradeoffs
References:

Y. Yu et al. ”Software refactorings guided by soft-goales”. 1st Refactorings

workshop, WCRE, 2003.

For the quality requirements modelling tool, see:

http://www.cs.toronto.edu/ yijun/OpenOME.html

[Question: FORTRAN stands for ... ? ]

Example. Matrix Multiplication

real*8 A(512,512),B(512,512),C(512,512)

do i = 1 , M

do j = 1, L

do k = 1, N

C(i,k) = C(i,k) + A(i,j) * B(j,k)

Quality goal: ”speedup the program 20 times without sacrificing the code

complexity 4 times”.

8



9



10



11



12



13



Measuring Quality Metrics
� Loop unrolling

real*8 A(512,512),B(512,512),C(512,512)

do i = 1 , M

do j = 1, L

do k = 1, N, 4

C(i,k) = C(i,k) + A(i,j) * B(j,k)

C(i,k+1) = C(i,k+1) + A(i,j) * B(j,k+1)

C(i,k+2) = C(i,k+2) + A(i,j) * B(j,k+2)

C(i,k+3) = C(i,k+3) + A(i,j) * B(j,k+3)

� Loop tiling

do i = 1, M, B1

do j = 1, L, B2

do k = 1, N, B3

do ib = i, min(i+B1, M)

do jb = j, min(j+B2, L)

do kb = k, min(k+B3, N)

C(ib,kb) = C(ib,kb)+A(ib,jb)*B(jb,kb)

14



� Loop interchanging

real*8 A(512,512),B(512,512),C(512,512)

do k = 1, N

do j = 1, L

do i = 1 , M

C(i,k) = C(i,k) + A(i,j) * B(j,k)

� Array padding and interchanging

real*8 A(515,515),B(515,515),C(515,515)

do k = 1, N

do j = 1, L

do i = 1 , M

C(i,k) = C(i,k) + A(i,j) * B(j,k)

� ... more transformations (equivalent programs)

15



Measuring Quality Metrics: measured metrics

R time CPI L1 L2 V len- vol-

(sec.) (106) (106) (G) gth ume

1 63.91 64.9 257.9 185.5 4 96 462

2 19.06 20.4 78.6 71.8 4 235 1164

3 4.92 3.36 307.8 1.7 7 185 964

4 1.54 1.33 129.1 47.8 4 96 462

5 5.45 6.30 265.6 12.5 4 96 462

6 1.11 1.23 123.9 44.8 4 96 462

7 3.30 4.28 324.1 2.1 7 312 1682

8 0.89 0.89 81.3 3.0 7 312 1682

...

16



Pareto curve and tradeoffs
� ... normalize: R � � 0 � 1 � .

17



Header restructuring project

18



Subjective Quality Factors
� There has been a lot of work on identifying subjective factors that contribute

to software quality.

� There is a lot of agreement on what factors are important.

� It is hard to define these factors precisely.

� McCall developed one of the more widely used taxonomy of software quality

attributes

– Quality Factors - high level quality attributes

– Quality Criteria - lower level attributes used to help measure quality factors.

[level � 3? Refer to the Non-Functional Requirements framework by U of Toronto]

� There is remaining difficulty in mapping what we can measure easily (or at all)

into what we want to know about software quality.

19



McCall’s Quality Factorsa

Product Operation Correctness Does it do what I want?

Reliability Does it do it accurately all of the time?

Efficiency Will it run on my hardware as well as it can?

Integrity Is it secure?

Usability Can I run it?

Product Revision Maintainability Can I fix it?

Testability Can I test it?

Flexibility Can I change it?

Product Transition Portability Will I be able to use it on another machine?

Reusability Will I be able to reuse some of the software?

Interoperability Will I be able to interface to another system?

avan Vliet Table 6.5

20



McCall’s Quality Criteriaa

Access audit Generality

Access control Hardware independence

Accuracy Instrumentation

Communication commonality Modularity

Completeness Operability

Communicativeness Self-documentation

Conciseness Simplicity

Consistency Software system independence

Data commonality Storage efficiency

Error tolerance Traceability

Execution efficiency Training

Expandability

avan Vliet Table 6.2

21



ISO 9126 Standard
� Another product oriented attempt to define software quality attributes.

A user view of software quality.

� See van Vliet Tables 6.8, 6.3 and 6.4 for a definition of ISO 9126 quality

characteristics.

� ISO 9126 doesn’t address software process issues.

22



ISO 9000
� A set of quality standards developed so that purchasers of goods can have

confidence that suppliers of these goods have produced something of

acceptable quality.

� ISO 9000 certification has become a widely required international standard.

Any supplier who is not ISO 9000 certified will find it difficult to sell their

goods.

� The ISO 9000-3 standard describes how to apply the general ISO 9000

standard to the software industry.a

� The ISO standard addresses design, development, production, installation

and maintenance issues.

� The emphasis in the ISO standard is on documentation of the process and

the managing of the process.

aSee link on course web page for a translation of ISO 9000-3 into English

23



ISO 9001 Componentsa

1. Management responsibility 11. Control of inspection, measuring, test equipment

2. Quality system 12. Inspection and test status

3. Contract review 13. Control of non-conforming product

4. Design control 14. Corrective and preventive action

5. Document and data control 15. Handling, storage, packaging, preservation, delivery

6. Purchasing 16. Control of Quality records

7. Control of customer-supplied 17. Internal Quality Audits

product

8. Product identification 18. Training

and traceability

9. Process control 19. Servicing

10. Inspection and testing 20. Statistical techniques

avan Vliet Figure 6.10, also see Appendix A

24



ISO 9000 Registration
� The effort required to obtain ISO 9000 registration varies directly with how

closely an organization’s process fits the ISO 9000 model.

� ISO 9000 registration is granted when an accredited inspection organization

certifies that the organization’s practices conform to the ISO standard.

Re-registration is required every 3 years and surveillance audits are

performed every 6 months.

� ISO registration can cost a lot of time, effort and money to achieve. It requires

continuing effort to stay registered.

25



A Cynic’s View of ISO 9000 Registration
� ISO 9000 Certification focuses on how well the processes are documented,

not on the quality of the process.

� Many companies do the minimum required to achieve ISO 9000 certification

for business reasons, but forget about it as soon as the ISO 9000 inspectors

have signed off.

� ISO 9000 forces companies to act in ways which make things worse for their

customers.

� ISO 9000 is based on the faulty premise that work is best controlled by

specifying and controlling procedures.

� Your product and the processes used to produce it can be absolutely terrible

but you can get ISO 9000 certification as long as the processes are well

documented.

26



The SEI’s Capability Maturity Model

The Capability Maturity Model for Software (CMM) is a five level model laying out

a generic path to process improvement for a software organization.

1. Initial – ad hoc

2. Repeatable – basic management. processes

3. Defined – management. and engineering processes documented,

standardized, integrated, and actually used.

4. Managed – measured and monitored and controlled using measurements.

5. Optimizing – Continuous process improvement is enabled by quantitative

feedback from the process and from piloting innovative ideas and

technologies.

See Watts Humphrey’s ”Managing the Software Process”, Addison-Wesley,

Reading, MA, 1989.

27



CMM Levels and Key Process Areasa

1. Initial level
� No formalized procedures, project plans, cost estimates.

� Tools not adequately integrated.

� Many problems overlooked/ignored.

� Maintenance very difficult

� Generally ad-hoc processes

2. Repeatable level

� Requirements management

� Software Project planning

� Software project tracking and oversight

� Software subcontract management

� Software quality assurance

� Software configuration management
avan Vliet Figure 6.13

28



3. Defined level

� Organization process focus
� Organization process definition

� Training Program

� Integration software management

� Software product engineering

� Intergroup coordination

� Peer reviews

4. Managed level

� Quantitative process management

� Software Quality management

5. Optimizing level

� Defect prevention

� Technology change management

� Process change management

29



People Capability Maturity Model

1. Initial

2. Repeatable
� Management takes responsibility for managing its people

� Staffing, Compensation, Training

� Performance Management

� Communication

� Work environment

3. Defined

� Competency based workforce practices

� Participatory culture

� Competency-based practices

� Career development

� Competency development

� Workforce planning

� Knowledge & skills analysis
30



4. Managed

� Effectiveness measured and managed
� High-performance teams developed

� Organizational performance alignment

� Organizational-competency management

� Team-based practices

� Team building

� Mentoring

5. Optimizing

� Continuous knowledge and skills improvement

� Continuous workforce innovation

� Coaching

� Personal competency development

31



Software Quality Assurance (SQA)
� SQA is a collection of activities during software development that focus on

increasing the quality of the software being produced

� SQA includes

– Analysis, design, coding and testing methods and tools

– Formal Technical reviews during software development

– A multi-tiered testing strategy

– Control of software documentation and the changes made to it

– Procedures to ensure compliance with software development standards

– Software measurement and reporting mechanisms

� SQA is often conducted by an independent group in the organization

Often this group has the final veto over the release of a software product

32



SQA Activities

1. Application of Technical Methods
� Tools to aid in the production of a high quality specification

i.e. specification checkers and verifiers

� Tools to aid in the production of high-quality designs

i.e. design browsers, checkers, cross-references, verifiers

� Tools to analyze source code for quality

2. Formal Technical Reviews

Group analysis of a specification or design to discover errors

3. Software Testing

4. Enforcement of standards

� Specification and design standards

� Implementation standards, e.g portability

� Documentation standards

� Testing standards

33



5. Control of Change

� Formal management of changes to the software and documentation
� Changes require formal request to approving authority

� Approving authority makes decision on which changes get implemented and when

� Programmers are not permitted to make unapproved changes to the software

� Opportunity to evaluate the impact and cost of changes before committing

resources

� Evaluate effect of proposed changes on software quality

6. Measurement

� Ongoing assessment of software quality

� Track quality changes as system evolves

� Warn management if software quality appears to be degrading

34



7. Record Keeping and Reporting

� Collect output and reports of SQA activities
� Disseminate reports to software managers

� Maintain archive of SQA reports

� Maintain log of software development activity (especially testing) to satisfy

legal requirements

� Maintain institutional memory of the software development effort

35



Reading Assignment

van Vliet Chapter 13

36


