CSC 408F/CSC2105F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC 408H/CSC 2105H in the Fall term
2004/2005 at the University of Toronto.

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

@David B. Wortman, 1999,2000,2001,2002,2003,2004
(©)Kersti Wain-Bantin, 2001

(©Yijun Yu, 2004

Phase A. Requirements Analysis
e Pick 4 to 5 partners to form a project team
e Describe the people in the team, allocation of tasks

e Pick one editor (VIM or Eclipse) to study, document the discussions why and
how you choose the editor

e Discover why we shall use Web Services to bridge hetergeneous editors
e Describe the architecture of the OmniEditor project

e Plan the project as an iterative process and proposes a test plan

Deliverables after Phase A by Oct. 7

e Documents?

— 30% marks: Requirements specification of the OmniEditor

— 20%: Understanding of legacy editor: identify reusable components

— 20%: Test plan of the project
— 10%: Project plan of the OmniEditor
— 10%: Risk analysis of the project
— 10%: Team organization of the project
® Project team
— Who are the team members and Who is the team leader
— Skills and Preferences
— Tasks and allocations

— Team meeting schedules

2No lower or upper bounds to the document length

Requirements for requirements specifications

Reference to John Mylopoulos’s CSC340S course:
http://www.cs.toronto.edu/~jm/340S/
e A list of functional (behavioral) requirements
— Goal of the requirement
— Inputs, Outputs

— Preconditions on Input, Postconditions on Output, Exceptions

e A list of non-functional (quality) requirements
— Softgoal of the quality attribute
— Metric of the attribute

— Satisfaction criteria

Goal-oriented requirements engineering (GORE)

Goal: the desired state, often described in terms of predicate
GORE: identify logical dependency relationships between requirements (goal).

e Abstraction/Refinements: asking Why and How
o Completeness (obstacle analysis): asking What-if?
e Contributions and Correlations: asking How much?
e Domain analysis: asking who, what and where?

Use natural languages, Req. Spec. do not include project requirements, designs
and quality assurance plans.

To edit the goal dependencies, try this tool for Windows:
http://www.cs.toronto.edu/~yijun/OpenOME.html

An example requirements goal model, see
http://www.cs.toronto.edu/~yijun/slides/yuO4re.ppt

Conceptual Modeling

ﬂ AND decomposition
““'OR decomposition

Col

Col | ect
tinetabl es

collects

By email

2004 John Mylopouios

/
Share k
timetabl e: * >
_umamc:/
col l ects
mm em

I ect

constraints

-

» o o

csC2507

& Schedul e
nmeeting

Cenerate

/ schedul e

Col | ect ot her -
\ constraints
\ /_ nteractively

Manual |y Automatical |y

! From
Initiator
only

By al|
means

Intentions and Agents - 6

4
AR
i 6 6
B R
Conceptual Modeling Cscz0r
o A
P A\
Usability 38
A /X T mm
- - / / T Wer
/ // ~Tai | orability
Erfor :
Avoi dance I nf or mati on
Shari ng Ease of
Lear ni ng
Alow Progr antrabi | ity
Change of
Setti ngs i
an
/+ +
Alow
Change of
Colours Allow |
Change of aow e User - Def i ned
State 9 Components Wi ting Tool
Language
2004 John Mylopouios Intentions and Agents ~ 9

Example of requirements specifications

e A functional requirement

Goal: query [stock price]

Inputs: stock quote [string]

Outputs: stock price [float]

Precondition: stock quote is not empty

Postcondition: stock price > Q if stock quote is found
stock price = —1 if stock quote is not found
e An alternative requirement

— Inputs: stock name [string]

— Precondition: stock name is not empty

— Postcondition: stock price > O if stock name is found and unique

e A non-functional requirement
— Softgoal: responsiveness [query]
— Metric: response time
— Satisfaction criteria: response time < 1 second
Goal Elicitation
e Why | need this requirement? To get return of investment.
e How is this requirement done? Use web service.

e How much can this requirement be achieved? 100%.

o Who, What, Where? A web service deployed in U of T CDF machine run by
the user.

stock price = —1 if stock name is not unique
stock price = —2 if stock name is not found
5 6
Testing Plan Understanding Legacy Editor

e How to test functional requirements
— Test cases
— Given input, expected output
— Given unexpected input, expected error handling

— Test Coverage

e How to test non-functional requirements
— How to measure the metrics directly?
— Qualitative vs. Quantitative measurements?

— How to measure the metrics indirectly? E.g., logical reasonings on the
goal dependencies

— How to guarantee the statistical significance? E.g., average, errors and
variations.

http://www.cs.toronto.edu/~yijun/csc408h/handouts/testing.pdf

e Describe its (non-)functionalities (features) related to your task;
e Understand its architecture (components and connections);
e [nstall and configure it to make sure you can use it;

e Compare similar systems and give a detailed selection criteria in terms of (1)

features and (2) reusability for your task.
Project plan, Risk control, Team organization

follows ...

Reading assignments Chapter 2, 3 and 8

Software Engineering Management

e Software development projects require active management and planning if
they are to be successful.

e Many software project failures can be attributed to inadequate or faulty project

planning and management.

e The managers of a software project must be aware of the larger context in

which the software will be used. van Vliet calls this information planning.

® A Project Plan is a detailed description of all the activities that will take place

during the project.

e The Project Plan is used for resource allocation, scheduling and to track
progress during the project.

Elements of a Software Project Plan

Introduction Context for the project including background, history, aims,

deliverables, key personnel, summary.

Process Model A description of the process model that will be used for the
project. May include activities, milestones, deadlines, identification of critical

paths.

Project Organization Relationship of the to the larger organization. Identification

of project personnel and how they are organized into teams.

Standards, Guidelines, Procedures ldentify software development standards

and guidelines to be used. Specify software development procedures.

Management Activities A description of what project management will be doing
during the project. Usually includes resource allocation, monitoring, status

reporting.

10

Risks Description of potential risks that might affect the success of the project.
Plans for dealing with these risks.

Staffing Plan for allocating personnel to the project including personnel schedule

and cost estimates

Methods and Techniques Description of the tools and techniques that will be
used during design, implementation and testing. For example, CASE design

tools, version control tool, testing tools.

Quality Assurance Description of the steps that will be taken to assure the
quality of the project software.

Work Packages A detailed list of the individual activities to be undertaking during
the project. May include personnel allocation, schedule and constraint

information.

11

Resources Plan for allocating computers and other physical resources required
during the project. Usually includes schedule and costs.

Budget & Schedule Detailed budget for the project including allocation of costs

to various activities. Detailed schedule for all of the project activities.

Change Management Plan for dealing with changes (e.g. change in

requirements) that may (will) occur during the project.

Delivery Plan for delivery of the software to the user. May include interim
deliveries of partial systems.

12

Software Engineering Processes

e A software engineering process is the collection of major activities that take
place during the lifetime of a software system.
Examples: Requirements, Design, Testing, Maintenance

e We study the software engineering process in order to

— understand how the software is being built

find ways to improve the quality of the software

— find ways to build the software more efficiently

reduce the overall life cycle costs of the software.

13

Some Software Engineering Processes

The Wild West Approach

Waterfall Model
e Prototyping

e Incremental Development

Rapid Application Development

Spiral Model

In practice an organization may use some combination of the processes listed
above.

14

Verification and Validation

e Throughout the development of a software system
— We want to be sure we are building a system that satisfies its requirements.
— We want to be sure that we are building a system that meets the users

requirements.

e \erification determines if the system being built satisfies its requirements,

are we building the system right?

e Validation determines if the system meets the user’s requirements.

are we building the right system?

e Validation and Verification (V & V) are used to make sure that the transition

from one step in the software process to the next one will be successful

e Proactive V & V is one good technique to help improve the quality of the
software.

15

Classical Waterfall Model

Requirements
V &V

Design
V &V

Implementation
V &V

Testing

V&V \

Maintenance
V &V

Why the Classic Waterfall Model is Unrealistic
Ignores feedback between phases
Ignores iteration between phases
Doesn't allow for overlapped/phased development
Unrealistic to expect perfect set of requirements at the start
User must wait a long time before a working version is available
Doesn’t accommodate uncertainty well

Pure Waterfall approach is uneconomic except for organizations where cost is
not an issue (e.g governments and public utilities)

But it does identify the major elements of the software creation process

17

Real Waterfall Model

Requirements

V &V

Maintenance
V &V

18

Prototyping

A process used when general requirements for the software are known but

precise details are unknown or unknowable
Used when there is great uncertainty in how to build the system
Allows experimentation with alternative user interfaces

Allows user to get a feel for the system before a large amount of money is
committed.

Often used for systems with a large or complicated User Interface

Allows user and software producer to reduce the risk inherent in a speculative

project

Prototyping is a tool for Requirements Engineering

19

Prototyping Process

e The key element of the prototyping process is that an initial version of the

system is built quickly and inexpensively.

e The prototype system is evaluated for suitability and utility.

e The evaluation of the prototype is used to modify and refine the requirements

for the system.

e The prototype process may be iterated several times until the user and

software producer are satisfied with the quality and completeness of the

system requirements.

20

Prototyping Process

- Requirements
Engineering
‘ Y
Design Design
Implementation Implementation
Testing Testing
Evaluation
Maintenance

21

Prototyping Techniques

e Construction of the prototype must be economical in terms of time and effort

or the process will be wasted.

® Implementation techniques

Use very high level application development languages.

— Initially at least omit hard/expensive features.

Initially use limited capacity data storage.

— Use software tools to simulate (fake) parts of the system.

Sacrifice speed, robustness and maintainability to achieve fast implementation.

e [nstrument the prototype if necessary to collect evaluation statistics, e.g.
system hot spots

22

Prototyping Styles

e Throwaway Prototyping
— After the system requirements have been finalized, discard the prototype.
— Design and implement the system from the requirements using best software
engineering techniques.
— Customer must be made to understand that the prototype is not intended to serve
as a production system.

— Cost of discarding a working prototype and the effort that went into its development
is often hard to bear.

e Evolutionary Prototyping

— Use the last prototype as the starting point for the design of the production system.

— Evolutionary prototyping must be planned for from the beginning.
Requires much more effort on software architecture, maintainability and quality
issues during prototype development.

— Need to ensure during prototype design and implementation that the cost of
converting the prototype to a production system will be less than the cost of
developing the production system from the requirements.

23

When to Use Prototyping

Systems where the user requirements are unclear, ambiguous or incomplete.

Prototyping helps clarify the requirements.

Systems with a major user interface and/or a lot of user interaction.

Prototyping is a form a risk sharing between the user and the developer.

Prototyping requires a strong commitment from the user(s) to evaluate and
improve the prototype.

24

How to Manage Prototyping

e Users must be made aware of potential problems.
— Major revisions to the prototype require substantial effort.
— Prototype is not a production system.
— Prototype process may lead to lower quality, less maintainable, less well

documented software.

e Designers must learn to cope with rapid, contradictory changes in
requirements. Be prepared to rewrite and revise the system.

e Prototyping must be managed
— Impose limits on number of iterations.

— Require version control and configuration management to keep track of the

prototype as it evolves.

— Establish firm procedures for documentation and testing of prototypes.

25

Incremental Development
Incremental Development is a process similar to prototyping.

Functionality of the system is delivered to the customer in small increments

— Each increment is developed using the Waterfall model.

Gets parts of the system to the user early.

— User is involved in planning for each increment.

Start with essential features to get initial system working

Good approach for avoiding excess functionality (over-ambitious

requirements).
Tracking of project progress is easier.
Tends to reduce chance of major error/mis-conception.

Need good planning of increment sequence.

26

Uncertainty and Risk Removal

e One way to look at the software development process is to think of it as

removing uncertainty and risk

e At the beginning of a project, there is high uncertainty about what the project

is doing and how it is going to do it.

® As a project proceeds through requirements, specification, design and
implementation, uncertainty is gradually removed as the solution becomes

more and more specific.

e At the beginning of a project there is high risk that the project will not succeed
in producing a software system to solve the given problem.

® As the project proceeds, risk is gradually removed as parts of the solution

become evident and implemented.

27

The Spiral Model
Combines classic life cycle and prototyping with risk analysis

Develop system in an iterative fashion
— identify sub-problem with highest risk

— find a solution for that problem
Each cycle removes some uncertainty about the final design of the system
Each cycle brings the prototype closer to a production system.

Risk analysis tries to identify problems and disasters early in the process

28

The Spiral Model
The Spiral Model

Good model for real world software development.

cumulative
cost

progress Cyclical approach is a good approximation to actual practice.

. through

e sep evaluate aemnatives, e Evolutionar roach mak nse given the inherent uncertainty in most

a(]z{t;;'e'glt\{vees; Sdentty, resave riske olutionary approach makes sense given the inherent uncertainty 0S
constraints

software projects

Forces frequent assessment of technical risks during development

analysis

T e
sk | -
analysis :pr% pmttz}type

e Needs care to guarantee convergence and cost containment

| protaiype
requirements plan T e _J___ simulatians, models, benchmarks)

and life-cycle plan concept of o
operation

o
Review

Doesn't guarantee that a major risk won't go undiscovered

i |
partition L
|

|

detaited
design

development
plan

requirements L
validation

design vafidation
and verification

integration and
test plan

;imegrazien}

; ¢ and test |

‘acceptance !

plan next phases implemenmtion: test :
|

develop, verify
next-level product

29 30

Project Management Cycle

e Plan the Project Project Plan & Project Control

— What are the deliverables? ® Project Plan includes overall control methods for

— What tasks are needed to produce the deliverables? — Project schedule

— What resources are needed and for how long? — Project cost and budget

— What will the project cost? — Resource management and team organization

e Schedule the Project — Change and scope management

Status reporting methods

— Who will work on it?
— Project process model

— When are they available?

What other resources are needed? e Project Plan includes steps in the delivery and support of the final product.

How can the resources be acquired and used? Broken down into work packages (tasks) with specific deliverables.

— Analysis and design — Training
e Control the Project
— Construction — Deliveryl/installation
— What happened since the last time the project plan was updated?
. — Data loading — Maintenance
— What is the effect on the schedule?
— What problems or opportunities need to be addressed? — Testing
— Are we on time and within budget?
32

31

e Project Plan includes methods used to control the produce and process
quality
— Quality Assurance
— Configuration Management

— Security

Auditability

— Risk Management

Documentation Management

— Data Management

Proposed tools and techniques for any of the above

33

Purpose of a Project Plan

e Developing a formal project plan forces management to consider all of the
activities and phases of a project.
® Project Plan is used for communication
— Information about the scope and structure of a project
— What must be done, how, why and when.
Information for participants and stakeholders.
e The Project Plan is used
— To schedule and organize the activities in a project.
— To request appropriate time and budget.

— To track project progress.

34

e The purpose of a project is to achieve clear goals that can be described by
documented deliverables.

e Examples of intermediate deliverables

— Design documents

Application source code

Approvals of intermediate work

— Quality Assurance proofs

e Examples of final deliverables
— Product and/or service

Customer/client satisfaction

Profit for the developers

— i.e. the realization of the project benefits

35

Hierarchical Project Decomposition

A project consists of hundreds or thousands of individual major tasks.

Each task is broken down into phases.

Each phase is broken down into steps (sub-phases)

The steps are broken down into activities (also known as tasks) that describe
the specific actions to be taken.

e For each activity the plan needs to specify the information in the table on the

next slide.

36

why

what

who

when

how

where

purpose

deliverable

personnel

resources

prerequisites

material

resources

location

text describing the importance of this task to the project.
typically a small part of a larger deliverable

e.g. source code for a single function or module.

type of person (e.g. tester, documentation writer)

later name actual individuals (e.g. Mary Smith)

time required by each person to complete the activity
activity(ies) that must be completed before this

activity can start and/or start dates.

Start/End time may be calculated by project management software
Any hardware or software needed for this activity

Any items for which costs need to be tracked with this activity
Only if location management is necessary

e.g. requires use of specific book-able facilities

37

Project Management Tools

® Most mangers use a project management tools such as

MSProject, CA Super project, Timeline, Project Workbench, etc.

to automate Project Plan creation and tracking.

e Input to a typical Project Planning Tool

Environment — work day calendar, typical hours per day
Staff resources — names, title, skills, availability, cost
Materials — name, description, price and payment schedule

Project — name, description, deliverables, budget (if not calculated),
overhead costs, tool setup parameters (i.e. granularity of reports)

Phases — first level breakdown, includes same information as project

Task/Activity Descriptions

38

Task Activity Descriptions for Project Planning Tool

o Name and Task Identification number/code.

e Ownership (project, phase, step)

e Description (deliverables, outline of work)

e Bill-to information

e Task category (e.g. design, testing)

e Original time estimate

e Original budget (unless done at a higher level)

e Skill sets required (e.g. designer, tester, Windows NT Admin, etc.

e Earliest start date, fixed or flexible

o Latest end date, fixed or flexible.

39

Any related tasks (name or identification number/code)

Identify prerequisites and successors.

Material resources used (identification, quantity, cost)

Staff resources used (time allocated, availability)

Additional costs (other than resource costs)

40

Gannt Chart Project Planning Tool

Pert Chart Project Planning Tool

Add/delete tasks, reassign resources.

43

Project StarDog T T E!PERT Chart EXPERT - [Sample PERT .pce] ! X
e [e0jo8 s sk s Ly E YIS RS E Elle Edt “iew Fomat Tools Window Help -Iﬁ' 5!
D|=lw| Sla| s[@=E] o] 5] @lal slnl| Slm=] al
Faed e January February March -
Requirements Farmulation
é&?ﬂ:::fﬂi:::::?ms Start Project Design Task 1 Program Task 2 Test Task Project End
e = 4 B 5 [wod w13 [1sd Fowf 10 [rsd fe oz [oo
i —— o1 4mz[atn 402 01 1 42 {20802 21102 a2 T 2202 (152202
Praject Scheduling —
::;1; r'r:nn:kruupnemqn Doc i P)
GESTEH REFI NEMENT w7] 25
A 011 42 [z 502
Choose Payload
DetnlaibatloalDengn Design Task 3 Program Task 3
Detailed Launch Interface ;b g | 150 ,7_, 10 | 10d | |
Detailed Structural Design 01 402 |02.'01 02 212 PQQZ!UZ
-3ize config. mockup
SUBSVETEM BEVELORMENT s
Uipdate FOD Program Task 1
Thermal Sensor Design — 8 | 20d
P TE Pratian T 1 402 [02i08/02
Eztvi‘t:jn:n:;r:::?n:i:qn - January IFehruary March I
Flnction Payioad Prototyps 4 4
Ready |16 Tasks [Scale 100% | | LINKED |
41 42
Project Plan Update During Project Project Planning Tool Output
e Revised start dates Comparisons Between original, revised and actual, schedule and budgets
o Actual end dates Critical Path Sequence of tasks that define the earliest completion date i.e.
A | tasks with no float.
e Actual cost . . -
Earliest Total time for tasks on the critical path.
e For each staff member Completion
— Time spent on the task/activity. Float/Slack Latest start date — earliest start date for each task
— Estimated time to completion Latest end date — earliest end date for each task
Tasks that could be started earlier or end later without affecting
e Material resources used. . .
project completion date.
e Changes in Phases, Tasks, Activities Staff load Staff who have too much or too little work assigned.

44

Phase Costs
Project costs

Resource
costs
Task costs

Task overruns

Task start

end dates
Task status

Totals by
category
Personel
reports

Total of task costs + phase overhead costs
Total of phase costs + project overhead costs

For staff — time * rate
For equipment — usage * unit cost
Cost of assigned resources + task overhead costs

Days or dollars that task exceeded schedule or budget.

If not provided, then calculated by the tool

Outstanding (not started), in progress (expected end), com-
pleted.

Summaries of all of the above.

Assigned tasks, status, dates, etc.

45

Formali

Pert Chart with Critial Path

PERT/CPM Chart - PC Card

Breadhoard
hardvware

Test Release

el hardware harchvware

hardware s -
G5

Complete
software

ze

Manufacture
hardyvare
"y
Release
software

specs 7

Buehs

Fueeks

Finish Release

rmanual _@ ranual

Guseks Tueak

Start project

All specs finalized e Harthware fully functional

Breadhoard running

Hardware design completed PC Board released

Manual layout completed Software finished

46

a

Tueek

i

.
Print

manuals

e Manual finalized
@ Manual ready for printer
(7). Prececomp

————— & Critical path

