
CSC 408F/CSC2105F Lecture Notes

These lecture notes are provided for the personal use of

students taking CSC 408H/CSC 2105H in the Fall term

2004/2005 at the University of Toronto.

Copying for purposes other than this use and all forms of

distribution are expressly prohibited.

c David B. Wortman, 1999,2000,2001,2002,2003,2004

c Kersti Wain-Bantin, 2001

c Yijun Yu, 2004

0

What is Software Engineering
� The science and art of building LARGE Software Systems

On time

On budget

With Acceptable Performance

With Correct Operation

� LARGE means:

Many people, team not individual effort

Many $s spent on design and implementation

Over 75,000 lines of source code

Lifetime measured in years

Continuing modification and maintenance

� Software costs dominate hardware costs

1

Survey results
� Q2. Do you remember the LOC of the software?

A � 1000 : 7 (15%)

B � 10 � 000 25 (54%)

C � 100 � 000 3 (6%)

D � 100 � 000 6 (14%)

E Don’t know LOC 5 (11%)

� Q3. How many people were involved in the dev. team?

A 1: 12 (26%)

B 2-5 27 (37%)

C other 7 (15%)

C no answer 10 (22%)

2

� Q4. How long did it take to complete?

A 1 day: 0 (0%)

B 1 month 12 (17%)

C 1 year 11 (24%)

C other 23 (50%)

D no answer 4 (9%)

� Q6. Which programming language was used?

A C/C++ : 20 (43%)

B Java 18 (41%)

C other 10 (21%)

3

What Makes Large Software Different ?

Scale Precludes total comprehension

Complexity Number of functions, modules, paths

Team Effort Continuingly changing body of programmers

Communication Distribution of specifications and documentation

Continuing Change During design & implementation

During lifetime

Lifetime Measured in years or decades

Imprecise goals Conflicting or ambiguous, changing

4

Issues in Software Engineering
� Major concern is the construction of large programs.

� Central theme is mastering complexity.

� Software evolves over its lifetime.

� The efficiency of software development is of crucial importance

� Regular cooperation between people is an essential and unavoidable part of

large software development.

� Software has to support its users effectively.

� Software Engineering is a field in which members of one culture (designers,

programmers) create artifacts on behalf of members of another culture (end

users).

5

The Ideal Goals of Software Engineering
� Product Quality. To produce software that is correct and has high quality in

terms of user satisfaction.

� Productivity

– To produce software with a minimum of effort.

– To produce software at the lowest possible cost.

– To produce software in the least possible time.

� Profitability. To maximize the profitability of the software production effort.

� Maintenability. To produce software that can be maintained with a minimum

of effort.

In practice, none of these ideal goals is ever completely achievable. The

challenge of Software Engineering is to see how close we can get to achieving

these goals. The art of software engineering is achieving the best balance among

these goals for a particular project.

6

Goodness (Quality) Goals Conflict
� All goodness attributes cost $s to achieve

� Interaction between attributes

High efficiency may degrade maintainability, reliability

More complex User Interface may degrade efficiency, maintainability,

and reliability

Better documentation may divert effort from efficiency and reliability

� Software Engineering management has to trade-off satisfying goodness goals

� Software Development is (usually) done with a relatively inelastic upper

bound on resources expended.

There Ain’t No Such Thing As A Free Lunch

7

Need Different Approaches for Developing Large Software

� Need formal management of software production process
� Formal & detailed statement of requirements, specification and design

� Much more attention to modularity and interfaces

Must be separable into manageable pieces

� Need configuration management and version control

� More emphasis of rigorous and thorough testing

� Need to plan for long term maintenance and modification

� Need much more documentation, internal and external

”A typical commercial software project involves creating more than 20 kinds of paper documents on such

items as requirements and functional, logic, and data specifications. For civilian projects, at least 100

English words are produced for every source code statement in the software. For military software,

about 400 words are produced for every source code statement. Many new software professionals are

surprised when they spend more time producing words than code.”a

aCapers Jones, Gaps in programming education,IEEE Computer, April 1995 v.28 n.4, pg. 71

8

Laws of Software Evolutiona

1. Law of Continuing Change A system that is being used undergoes

continuous change until it is judged more cost effective to restructure the

system of replace it by a completely new system.

2. Law of Increasing Complexity A program that is changed becomes less and

less structured (entropy increases) and thus becomes more complex.

One has to invest extra effort in order to avoid increasing complexity.

3. Law of Program Evolution The growth rate of global system attributes may

seem locally stochastic, but is in fact self-regulating with statistically

determinable trends.

4. Law of Invariant Work Rate The global progress in software development

projects is statistically invariant.

aM.M. Lehman and L.A. Belady Program Evolution, - Processes of Software Change, Academic

Press, 1985

9

5. Law of Incremental Growth Limit A system develops a characteristic growth

increment. When this increment is exceeded, problems concerning quality

and usage will result.

Attribute

System

Time

10

Header restructuring project

11

Significance of Lehman & Belady’s Work
� Unless proactive steps are taken

– the maintainablilty of a software system will decrease over time

– the complexity of a system will increase over time

– disorder in the system will increase over time

� Change is inevitable, we must learn to accommodate it.

� The amount of maintenance that can be done in a given period of time cannot

be (on average) significantly increased by the addition of more resources.

� Attempting to make too large a change in a system will lead to lower quality

software

12

Large Software Development
� The requirements, specification and design of a software system are written by a team

of developers.

A hierarchical approach is often used, with sub-systems being developed by different

teams.

� Individual modules (source files) are written, debugged, tested and documented by

small teams of programmers.

� The modules in a system exist in some arbitrary client-server configuration. Some

form of interface documents the connection between each server and its clients.

� All of the modules in a system evolve over time, due to enhancements and the

correction of errors.

� The cost and time to compile an entire system is sufficiently large that separate

compilation and independent subsystem development are essential.

� Specific compiled version of individual modules are linked together to form an instance

of the complete software system.

13

Software Factories (Product-line Families)
� Many software producing organizations do not produce individual software

systems, they produce product families

– the same product implemented for different hardware platforms.

– the same product implemented for different operating system environments.

– similar products with different levels of functionality and price.

– similar products heavily customized to the environment of each customer.

� Cost minimization considerations imply that the development and

implementation of a product family must be integrated

– Use (and reuse) common software modules

– Use common development tools and testing

– Use common documentation

� The coordination and communication required to build product families makes

the development of the individual products much more complicated.

14

Problem
Specifcation
Requirements

Working
Program

Software Development Process

Program Specification

Testing

Requirements
Engineering

Design

Implementation

Maintenance

15

Major Software Production Tasks

Requirements Analysis Analyze software system requirements in detail

Specification Develop a detailed specification for the software

Design Develop detailed design for the software

Data structures, software architecture

procedural detail, interfaces

Coding Transform design into one or more programming language(s)

Testing test internal operation of the system

test externally visible operations & performance

perform Software Quality Assurance on the system

Release package and deliver software to users

Maintenance Error correction and enhancement after system

has been put into use

16

Software Development Phases

Phase Documents Effort

Project Planning Project Plan

Requirements Analysis System Requirements 10%

System Specification 10%

Design System Architecture Description

Detailed Software Design 15%

Implementation Source Code 20%

Internal documentation

Testing Test Plan 45%

Test case suite, test results log

17

Allocation of Effort
� A typical project follows the 40-20-40 rule:

40% on requirements, specification, architecture, design

20% on coding, debugging

40% on testing

� Boem’s successful projects followed the 60-15-25 rule:

60% on requirements, specification, architecture, design

15% on coding, debugging

20% on testing

� After a software system in put into use, long term maintenance and

modification effort is typically 50% .. 75% of the initial effort.

18

Requirements Analysis
� A software project will never be successful (i.e. on time, on budget) if the

developers do not have a clear idea of what the software should be.

The requirements should provide this clear idea.

� Requirements analysis should focus on what the client needs not what the

client wants.

� Requirements are one means of communication

– Between the client and the developer.

– Between marketing and development.

– Within the development organization.

� Requirements documents should be organized to accommodate change.

– Each requirement should be independent.

– Requirements should be individually modifiable.

i.e. without requiring changes in other requirements.

� Changes in requirements should be managed and controlled.

19

Why Requirements are Important
� Significant percentage of all project failure and/or errors in system are due to

errors in requirements analysis.

� The further an error propagates the more it costs to repair.

– $1 during requirements definition

– $5 during software design

– $10 during implementation

– $20 during unit testing

– $200 after delivery of the system

� A large percentage of all software project failures can be related to a failure to

get the requirements right.

20

Good Software Design Principles
� Abstraction

� Modularity

– Keep It Simple Stupid

– Don’t Repeat Yourself

� Information Hiding

� Functional Independence

– High Cohesion

– Low Coupling

� Traceability

21

Abstraction
� Abstractions are generalizations or simplifications of the design that suppress

detail

� Being able to view (think about) the design at different levels of abstraction

facilitates understanding

� Pseudo code or graphical techniques are often used to represent an abstract

design

� Abstraction is related to the design process refinement

� Develop procedural and data abstractions at different levels in the design

� Need to be careful that high level abstractions don’t preclude consideration of

design alternatives at a lower level

22

Modularity
� Modularity is a key factor in successful design

� Modularity assists in:

Understanding

Development

Testing

Portability

Maintenance

� Always develop software using the module concept even when implementing

in a programming language without a module construct (e.g. C)

� KISS principle should be applied to module interfaces

� Selecting an appropriate modularization for a system is one of

the most important tasks in software design

23

Information Hiding
� Keep knowledge of representation of data as localized as possible. i.e. hide

information about the representation of data from all those who do not have

an unavoidable need to know

� Modules in Modula-3, Classes in C++, Packages in Ada are mechanisms for

hiding information.

� Strict information hiding takes a lot of effort. Need control every where that a

data item might get created or modified.

� Information hiding is essential if modules are to be used as plug-replaceable

software components

� C++ has a very comprehensive set of mechanisms for information hiding and

controlled information disclosure

24

Functional Independence

� Want modules that implement a single function related to the system

requirements

� Design by successive refinement helps achieve this goal

� Design to minimize interactions between modules

� Design to keep module interfaces simple

Minimize number of exported items

Exported functions and procedures should have small number parameters

� Functional independence helps with

– Communication between module developers and users

– Maintenance using modules as units of change

– Concurrent development and testing of modules

– Tracking source code back to specification and requirements

– Containing the effects of software errors

25

Cohesion
� Cohesion is a measure of the self containedness of a module, i.e. to what

degree does it perform a single task

� High cohesion is desirable as it maximizes separability and functional

independence

� Levels of cohesion for operations exported by a module

Coincidental together by chance, i.e. unrelated

Logical perform logically related operations

Temporal perform operations related by time

Procedural operations related by processing requirements

Communicational operations communicate via common data

Sequential operations must be performed in specified order

Functional operations implement a single specific function

26

Coupling
� Coupling is a measure of the degree of interconnection among modules in a

software system

� Low coupling is desirable as it maximizes separability and functional

independence

� Levels of coupling among modules in a system

None No direct coupling

Data Modules communicate via simple data parameters

Stamp Modules communicate via complex data parameters

Control Modules communicate via control flags

External Modules communicate via external media (e.g. files)

Common Modules communicate via shared global data

Content Module uses data maintained by another module

or one module branches into another module

27

Advantages of Low Coupling and High Cohesion
� Communication between developers becomes simpler.

� Correctness proofs are easier to derive.

� It is less like that changes in one module will affect other modules making

maintenance easier.

� Increases the reusability of modules.

� Increases the comprehensibility of modules.

This makes maintenance easier and facilitates training new programmers to

work on the software.

� Empirically low coupling and high cohesion leads to fewer errors in the

software.

28

Traceability
� An important tool in managing the development of a software system.

� An aid to understanding the how and why in a complicated system design.

� Forward traceability

Requirements � Specification � Design � Code � Test Cases � Product

� Backward traceability

Requirements � Specification � Design � Code � Test Cases � Product

� Traceability aids in achieving correctness.

Traceability facilitates long term system maintenance.

29

Software Maintenance Activities

Type Purpose Effort

corrective Repair of errors 21%

adaptive Adapt to environment changes 25%

perfective Adapt to changes in requirements 50%

Improve performance or user interface

Add new functionality

preventative Increase future maintainability 4%

Updating documentation

Improving system modularity/structure

30

Course Project
� Reengineering a large software system

� Work in teams

� Three Phase Project

A. Study a large legacy software and specify new requirements, 15%

B. Partial implementation, 15%

C. Swap software and complete implementation, 20%

� http://www.cs.toronto.edu/ � yijun/csc408h/handouts/software.pdf

31

The OmniEditor Project
� Text editors are friends of programmers, they have advanced editing features

A. C/C++: VIM, Emacs, NEdit, etc.

B. Java: Eclipse, jEdit, etc.

C. Commercial: MS Word, Notepad, UltraEdit, etc.

� To edit as a group, we need groupwares, they have limited editing features

A. Messenger: MSN, Yahoo!, AOL, etc.

B. Bulletin Board: BBS, firebird, etc.

C. Bloggers: Blogger, Webblog, etc.

� How to combine the heterogenous editors into one groupware?

32

Why choose this project for CSC408H?
� It tackles a real problem: until now, there is not much work on bridging the

editors. One noteable solution is VIM/NetBeans or VIM/VisioStudio

combinations. However, the VIM/Eclipse combination is rather weak. Can you

have a general and strong solution?

� It involves large software systems: nowadays text editors are no longer toy

systems. They are tools that have been engineered for years.

� It requires new technologies: Web services, middleware

� It is tractable within our course: by divide and conquor

33

Size of editors

Table 1: LOC of popular open-source editors

editor version lines of code language

VIM 6.3 260,623 C

Emacs 21.3 306,746 C

263,178 Lisp

XEmacs 21.5.4 353,045 C

140,830 Lisp

jEdit 4.1 114,117 Java

Eclipse 3.0 1,585,873 Java

34

Phase A. Understanding legacy software and Requirements Analysis
� Pick 4 partners to form a project team

� Describe the people in the team, allocation of tasks

� Pick one editor (VIM or Eclipse) to study, document the discussions why and

how you choose the editor

� Discover why we shall use Web Services to bridge hetergeneous editors

� Describe the architecture of the OmniEditor project

� Plan the project as an iterative process and proposes a test plan

35

Phase A. Project Requirements

http://www.cs.toronto.edu/ � yijun/csc408h/handouts/project.pdf

� You must have a reasonable solution: Finally at least any two different editors

can synchronize the contents with each other through a pair of editing

operations.

� You don’t reinvent the wheel: try to reuse existing editor as much as possible

� You don’t implement everything: spirit of divide and conquor between teams

� You don’t all implement the simplest features

� You must be responsible for the product quality

phaseMark� projectMark� � 1 � max � 0 � 0 � 02� nSelectors � 0 � 001� nNetBugs �	

36

Deliverables after Phase A by Sept. 30
� Documents

– What is the architecture of the legacy editor and Why

– What is the architecture of the OmniEditor and Why

– What is the project plan of the OmniEditor and Why

– What is the risk of project failure and How to prevent

– What is your test plan

� Project team

– Who are the team members and Who is the team leader

– Skills and Preferences

– Tasks and allocations

– Team synchronizations and coordinations

37

Phase B. Develop the OmniEditor Web Service
� Web service is good for interoperatability and reuse

� Understand the three elements of Web services

– SOAP – Simple Object Access Protocol

– WSDL – Web Service Description Language

– UDDI – Universal Description, Discovering and Integration

� Define the WSDL description of your web service

� Implement the operations as a web service

� Install a web server for web services

– Java: Apache/Tomcat/Axis or webMethods glue

– C/C++: Apache/Axis-C or gSOAP

� Deploy the web service on the web server

38

Deliverables for Phase B by Nov 4
� Source code

– WSDL and server URLa

– Web service implementation, optional

– Unit Test cases

� Documentation

– User’s Guide

– Installation and Deployment

– Traceability: Requirements, Design and Implementation

– Bug Report and Maintenance plan

aThe instructor will assign a unique port number to the web service

39

Phase C. Integrate the OmniEditorWS with an Editor
� Invoke the web service when it is required by the editor to perform

cooperative tasks

� Discover bugs in the web service and communicate with the developers

� Help them to fix the bug and also fix the bug that others found in your

deliverable in Phase B

40

Deliverables for Phase C by Dec 2
� Source code

– An OmniEditor editor client implementation

– Integration test scenarios

� Documentation

– User’s Guide

– Installation and Deployment

– Bug Report and Fixed Bugs

– Measured software metrics during software evolution, optional

� Note that the Instructuor and Tutors may conduct a system test to find

outstanding bugs in your deliverables. So try not to be too ambitious in

number of features to keep bugs in bay.

41

Tutorials

1. Web Services: What is web service, Examples, HowTo’s

2. VIM editor: Architecture, Features, How to integrate VIM with IDE?

3. Eclipse: Plugin Architecture, Plugin development, CVS, Text Editor

4. Unit Tests: JUnit, CppUnit, How to test a web service

5. Measure Software Quality: Complexities, Reliability

6. Team Presentation 1 (by end of Phase B)

7. Web services registry (UDDI): Publish/Subscribe, Repository,

Advertise/Evaluation

8. Quality of Service: Customer Satisfaction and Defects Fixing

9. Team Presentation 2 (by end of Phase C)

10. Team Presentation 2 (by end of Phase C)

11. Q/A

42

