
CSC 408F/CSC2105F Lecture Notes

These lecture notes are provided for the personal use of

students taking

CSC 408F/CSC 2105F in the Fall term 2003/2004

at the University of Toronto

Copying for purposes other than this use and all forms of

distribution are expressly prohibited.

c David B. Wortman, 1999,2000,2001,2002,2003,2004

c Kersti Wain-Bantin, 2001

c Yijun Yu, 2004

0

CSC408F/CSC2105F - Software Engineering

Instructor Dr Yijun Yu
Sandford Fleming Building, Room 1101
yijun@cdf.toronto.edu

Marking Mid term test 15%
Final Exam 35%
Course Project 50%

Text Hans van Vliet
Software Engineering - Principles and Practice, 2nd ed.

News Group ut.cdf.csc408h
Read the newsgroup on a regular basis!

Web Page www.cs.toronto.edu/˜yijun/cs408h/

Slides CDF: ˜yijun/csc408h/slides/

1

Course Project
� Reengineering a large software system

� Work in teams

� Three Phase Project

A. Study a large legacy software and specify new requirements

B. Partial implementation

C. Swap software and complete implementation

� Select any other teams software at swaps

� Project specification announced soon

2

Immediate Project Issues
� Team Selection

Work in teams of 5, self-selection of teams

Form teams ASAP for start of project

Instructor/tutor deal with orphans/disputes

� Programming Language for Project

Discuss/decide in class after project is announced

Possible choices XML, C/C++, Java

� Selecting a hard-working, compatible team is important for success in

the course project

3

Major Themes
� What is Software Engineering

van Vliet Chapter 1

� The Software Process

van Vliet Chapter 3

� Software Project Management

van Vliet Chapters 2,5,6,7,8

� Software Construction

van Vliet Chapters 4, 17, 19

� Software Testing and Validation

van Vliet Chapters 13,15

� Software Product Delivery, Software Maintenance

van Vliet Chapter 14

4

Topics Not Covered in CSC408H
� Requirements and Specifications

van Vliet Chapter 9

CSC340H or CSC2106H

� Software Architecture and Software Design

van Vliet Chapters 10, 11, 12

CSC407H or CSC2103H

� User Interface Design

van Vliet Chapter 16

CSC318H or CSC2514H

5

Reading Assignment

van Vliet, Chapter 1

Sections 3.5, 3.7

Sections 11.1.1 .. 11.1.3

Usenet news group comp.risks

READ comp.risks on a regular basis

6

Alternative Major Themes
� How to survive in a large software project

� Getting software right the first time

� Minimizing software production costs

� Maximizing software quality

� Being organized and systematic is infinitely better than not being so

� An engineering approach should be used for the development of software

� Design for Maintainability is really important.

7

Software Engineering Information Sources
� IEEE Transactions on Software Engineering

� ACM Transactions on Software Engineering and Methodology

� International Conference on Software Engineering (yearly)

� IEEE Software

� ACM SigSoft - Software Engineering Notes (monthly)

� Software - Practice & Experience

� International Conference on Software Maintenance

� Usenet news group - comp.risks, comp.soft-eng

comp.risks archive: http://catless.ncl.ac.uk/Risks/

� Libraries: CS & Engineering, Gerstein, Metro Reference

8

What is Software Engineering
� The science and art of building LARGE Software Systems

On time

On budget

With Acceptable Performance

With Correct Operation

� LARGE means:

Many people, team not individual effort

Many $s spent on design and implementation

Over 75,000 lines of source code

Lifetime measured in years

Continuing modification and maintenance

� Software costs dominate hardware costs

9

Calibration on LARGE
� 1,000,000 lines of source code

� 13,333 pages at 75 lines/page (laser print)

� A 4’ 5” (1.46m) high stack of paper at 500 pages/2”

� 41,667 screens at 24 lines/screen, or

20,833 screens at 48 lines/screen

� 22.2 hours to print at 10 pages/minute

� 16.7 hours to compile at 1000 lines/minute (wildly optimistic)

Many real software systems are 3,000,000 to 6,000,000 lines of source code.

Many existing systems are in the 10,000,000 to 20,000,000 range.

Windows 98 is alleged to be more than 50,000,000 lines.

10

Why is Software Engineering Important
� Cost of getting software wrong is often horrendous

Bankruptcy of software producer

Injury or loss of human life Broken software can KILL people

� Software producer profitability depends on producing software efficiently and

minimizing maintenance effort. Software reuse is an economic necessity

� Immense body of old software (legacy code or dusty decks) that must be

rebuilt or redesigned to be usable on modern computer systems

� Software maintenance increases the entropy (disorder) in a software system.

Without proper care the software can become unmanageable and unusable

� Very, very few contemporary systems work correctly when first installed.

We need to do much better

� Over $600,000,000,000 spent each year on producing software

11

Software Horror Storiesa
� Bank of America spent $23,000,000 on a 5-year project to develop a new accounting

system. Spent over $60,000,000 trying to make new system work, finally abandoned

it. Loss of business estimated in excess of $1,000,000,000

� Starting in 1982, Allstate Insurance spent $8,000,000 on an effort to automate its

business. The supposed 5-year project continued until 1993 at a cost approaching

$100,000,000

� The B1 Bomber required an additional $1,000,000,000 to improve its air defense

software, but the software still isn’t working to specification

� A U.S. Air Force air defense system was $1,000,000,000 over budget, 4 years behind

schedule and only marginally usable

� A regional Blue Cross service lost $60,000,000 in incorrect over payments due to

errors in a $200,000,000 computer processing system that wasn’t adequately tested

before being put into service.

aP.Neuman, System Development Woes, CACM, Oct 1993

12

� Ariane 5, Flight 501

The loss of a $500,000,000 spacecraft was ultimately attributed to errors in

requirements, specifications and inadequate software reuse practices.

� Therac-25

Hospital patients died or were seriously injured due to errors in programming

the user interface of this machine.

� London Ambulance Service

Major software problems rendered this ambulance dispatching system

unusable. Poor project management and poorly developed requirements

contributed to the problems. People died and/or received less than optimal

medical care due to the problems with this system.

13

What is Software ?
� Requirements and specification documents

� Design documents

� Source Code

� Test suites and test plans

� Interface to hardware and software operating environment

� Documentation, internal and external

14

What Makes Large Software Different ?

Scale Precludes total comprehension

Complexity Number of functions, modules, paths

Team Effort Continuingly changing body of programmers

Communication Distribution of specifications and documentation

Continuing Change During design & implementation

During lifetime

Lifetime Measured in years or decades

Imprecise goals Conflicting or ambiguous, changing

15

Real Programs Resemble Large Puzzles

16

� The dimensionality of the puzzle (connections between pieces) is much

higher that can be shown on a 2-dimensional slide.
� Each piece may be written by different (group of) programmers.

� Each piece has a rigorously specified interface that describes how it

interconnects with other pieces.

� For a program to be correct, all of the pieces must fit exactly.

� The shape of the pieces and the interconnections between them change over

time as the program is modified and maintained.

17

Issues in Software Engineering
� Major concern is the construction of large programs.

� Central theme is mastering complexity.

� Software evolves over its lifetime.

� The efficiency of software development is of crucial importance

� Regular cooperation between people is an essential and unavoidable part of

large software development.

� Software has to support its users effectively.

� Software Engineering is a field in which members of one culture (designers,

programmers) create artifacts on behalf of members of another culture (end

users).

18

The Ideal Goals of Software Engineering
� To produce software that is absolutely correct.

� To produce software with a minimum of effort.

� To produce software at the lowest possible cost.

� To produce software in the least possible time.

� To maximize the profitability of the software production effort.

� To produce software that can be maintained with a minimum of effort.

In practice, none of these ideal goals is ever completely achievable.

The challenge of Software Engineering is to see how close we can get to

achieving these goals.

The art of software engineering is achieving the best balance among these goals

for a particular project.

19

