
“Beyond”

Software Engineering
Guest Lecture, Universityof Toronto

Homy Dayani-Fard, PhD
Consultant, Technology Strategy
IBM Business Consulting Services

Summary

n Software engineering is a new and fast
growing field, which has grappled with its
identity: from using the word engineering to
definition of the term, to educational needs, to
professional certification.

n A personal, somewhat historical perspective,
on software engineering: from education, to
practice, and beyond.

A short biography

n Consultant, Technology Strategy
n Quality advisor, DB2 UDB development
n Release analyst, DB2 UDB development
n Research officer, Centre for Advanced Studies
n Adjunct at University of Toronto, York University,

and Queen’s University
n PhD, MSc from Queen’s University
n BSc, University of Toronto
n Service technician, Olivetti

Questions

n What is software?

n What is software engineering?

n What makes a software engineer?

n [What is engineering?]



Goal of software engineering

n To build software
q Catches

n Meets the specification
n High quality
n Cost and schedule control

q $$$

n Software = program?

n Who are software engineers?

History

n 1968 NATO conference
q Software crisis
q Software engineering
q Need for a formal discipline

n Holy grails
q Automatic programming
q Formal methods
q Reuse
q “Better” management

Automatic programming

n A system that “automatically” generates
programs.

n If the system is “reliable”, so are its resulting
programs

n Examples:
q Compilers
q 4GL
q Application generators (e.g., Draco, KBEmacs,

Programmer’s Apprentice)

Personal

n A new compiler was being developed that
would radically change compilation. There
was only once catch: converting make files to
a standard configuration file.

n Result: Failed!



Formal methods

n Two camps:
q Verification

n Create formal specifications and demonstrate that the
implementation is consistent with the specification

q Refinement
n Using mathematical techniques step-by-step refine the

specification until it is “executable”

n Examples
q Z, VDM, CSP,
q Darlington, Paris Metro

Personal

n Developed a small size distributed real-time
system. Developed formal specifications,
formally “proved” that the implementation was
consistent with its specification. A group of
five reviewed and approved the
implementation.

n Result: Failed!

Reuse

n Build software from components:
q Like hardware design, put together IC’s

n Early success
q Fortran, C libraries

n Challenges
q Indexing and searching
q Generality of code
q Performance
q NIH
q Architectural mismatches

Personal: second hand

n A large development group set a goal of
creating reusable modules. Developers had
to contribute to a central repository. They
also received bonus points if they used
modules from the library.

n Result: Failed!



Reuse
… continued

n Later success (or otherwise)
q COM, DCOM, CORBA, RMI, Java class libraries

n Higher level reuse (and successes)
q Architectural patterns, e.g. n-tier, pipeline
q Design patterns, e.g. MVC, Command, Facade
q Frameworks, e.g. Struts

n Future : Web services, SOAP, MDA

Management

n Software life cycles
q Control
q Traceability
q Parallel development
q Risk management

n Examples:
q Waterfall (and variations), Iterative (and variations),

Process oriented (RUP), people oriented (XP)
q Configuration management

Management
… continued

n Certification: showing off our abilities to
customers (raise their level of confidence)
q CMMI
q SPICE, ISO 9000

q Other mandated government agencies, e.g., FDA

Personal

n A model driven approach built on top of a
commercial framework generating web
services definitions.
q Process modeling
q Use case modeling
q Object modeling
q Design
q XML generation

n Results: jury is out!



Personal

n A CIO of a financial institution asked us if he
could receive the same level of benefits (ROI
~ 20-40%) by investing in maturity. In
particular, going from level 2 to 3 on CMMI.

n Result: No!

Software engineering characterization

nLarge
q Number of people
q Number of features
q Number of dependencies

nSoft
q Changing requirement
q Changing environment
q Changing people

Aside:
What is computer science?

n If I had to summarize the entire field of
computing, it would be:
q Building hierarchies of abstractions for solving

[repetitive] problems

Software engineering characterization
… continued

nnRepetitionRepetition
q Problems solved will come back nastier
q Number of features
q Number of dependencies

nMosaic
q Art: creativity, vision
q Scientific: fact-based, hypothesis driven
q Engineering: control, repetition of success
q Management: team work, communication, decision making



Final thought

n Objective of software engineering is to solve
a problem.

n Size matters. Scalability is a must!

n Time goes on. History will repeat itself!

Final thought
… continued

n Whatever software engineering is, it helps if
you have, on top of all your technical and
conceptual skills
q Communication skills: influencing
q Team work: negotiation, compromise
q Vision: see beyond the technical solution

Thank you!

Questions?

Categorization of software

n Commercial shrink-wrap
q Vertical vs. horizontal (middle-ware)

n Custom applications
n Government
n Safety critical
n Embedded


