“Beyond”
Software Engineering

Guest Lecture, University of Toronto

Homy Dayani-Fard, PhD
Consultant, Technology Strategy
IBM Business Consulting Services

Summary

Software engineering is a new and fast
growing field, which has grappled with its
identity: from using the word engineering to
definition of the term, to educational needs, to
professional certification.

A personal, somewhat historical perspective,
on software engineering: from education, to
practice, and beyond.

A short biography

Consultant, Technology Strategy

Quality advisor, DB2 UDB development
Release analyst, DB2 UDB development
Research officer, Centre for Advanced Studies

Adjunct at University of Toronto, York University,
and Queen’s University

PhD, MSc from Queen’s University
BSc, University of Toronto
Service technician, Olivetti

Questions

What is software?
What is software engineering?
What makes a software engineer?

[What is engineering?]




Goal of software engineering

To build software

q Catches
Meets the specification
High quality
Cost and schedule control

a $$$

Software = program?

Who are software engineers?

History

1968 NATO conference

q Software crisis

¢ Software engineering

¢ Need for a formal discipline

Holy grails

Automatic programming
Formal methods

Reuse

q
q
q
q “Better” management

Automatic programming

A system that “automatically” generates
programs.

If the system is “reliable”, so are its resulting
programs

Examples:
q Compilers
qg 4GL

¢ Application generators (e.g., Draco, KBEmacs,
Programmer’s Apprentice)

Personal

A new compiler was being developed that
would radically change compilation. There
was only once catch: converting make files to
a standard configuration file.

Result: Failed!




Formal methods

Two camps:

q Verification

Create formal specifications and demonstrate that the
implementation is consistent with the specification

¢ Refinement

Using mathematical techniques step-by-step refine the
specification until it is “executable”

Examples
q¢ Z, VDM, CSP,
¢ Darlington, Paris Metro

Personal

Developed a small size distributed real-time
system. Developed formal specifications,
formally “proved” that the implementation was
consistent with its specification. A group of
five reviewed and approved the
implementation.

Result: Failed!

Reuse

Build software from components:
¢ Like hardware design, put together IC’s

Early success
q Fortran, C libraries

Challenges

Indexing and searching
Generality of code
Performance

NIH

Architectural mismatches

o o o o Qo

Personal: second hand

A large development group set a goal of
creating reusable modules. Developers had
to contribute to a central repository. They
also received bonus points if they used
modules from the library.

Result: Failed!




Reuse
... continued

Later success (or otherwise)
¢ COM, DCOM, CORBA, RMI, Java class libraries

Higher level reuse (and successes)

¢ Architectural patterns, e.g. n-tier, pipeline

¢ Design patterns, e.g. MVC, Command, Facade
¢ Frameworks, e.g. Struts

Future : Web services, SOAP, MDA

Management

Software life cycles
q Control

q Traceability

q Parallel development
¢ Risk management
Examples:

¢ Waterfall (and variations), Iterative (and variations),
Process oriented (RUP), people oriented (XP)

¢ Configuration management

Management
... continued

Certification: showing off our abilities to
customers (raise their level of confidence)
q CMMI

¢ SPICE, ISO 9000

¢ Other mandated government agencies, e.g., FDA

Personal

A model driven approach built on top of a
commercial framework generating web
services definitions.

q Process modeling

Use case modeling

Object modeling

Design

XML generation

o O O o

Results: jury is out!




Personal

A CIO of a financial institution asked us if he
could receive the same level of benefits (ROI
~ 20-40%) by investing in maturity. In
particular, going from level 2 to 3 on CMMI.

Software engineering characterization

Large

q Number of people
¢ Number of features
q Number of dependencies

Soft

RESUlt: No! ¢ Changing requirement
¢ Changing environment
q Changing people
Aside: Software engineering characterization
What is computer science? ... continued

If | had to summarize the entire field of
computing, it would be:

¢ Building hierarchies of abstractions for solving
[repetitive] problems

Repetition

q Problems solved will come back nastier
q Number of features
q Number of dependencies

Mosaic

Art: creativity, vision

Scientific: fact-based, hypothesis driven

Engineering: control, repetition of success

Management: team work, communication, decision making

2 o a a




Final thought
» Objective of software engineering is to solve
a problem.
n Size matters. Scalability is a must!

n Time goes on. History will repeat itself!

Final thought
... continued

» Whatever software engineering is, it helps if
you have, on top of all your technical and
conceptual skills
¢ Communication skills: influencing
¢ Team work: negotiation, compromise
¢ Vision: see beyond the technical solution

Thank you!

Questions?

| Categorization of software

n Commercial shrink-wrap
¢ Vertical vs. horizontal (middle-ware)
n Custom applications
n Government
n Safety critical
» Embedded




