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Summary

Software engineering is a new and fast
growing field, which has grappled with its
identity: from using the word engineering to
definition of the term, to educational needs, to
professional certification.

A personal, somewhat historical perspective,
on software engineering: from education, to
practice, and beyond.
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Questions

What is software?
What is software engineering?
What makes a software engineer?

[What is engineering?]




Goal of software engineering

To build software

q Catches
Meets the specification
High quality
Cost and schedule control

a $$$

Software = program?

Who are software engineers?

History

1968 NATO conference

q Software crisis

¢ Software engineering

¢ Need for a formal discipline

Holy grails

Automatic programming
Formal methods

Reuse

q
q
q
q “Better” management

Automatic programming

A system that “automatically” generates
programs.

If the system is “reliable”, so are its resulting
programs

Examples:
q Compilers
qg 4GL

¢ Application generators (e.g., Draco, KBEmacs,
Programmer’s Apprentice)

Personal

A new compiler was being developed that
would radically change compilation. There
was only once catch: converting make files to
a standard configuration file.

Result: Failed!




Formal methods

Two camps:

q Verification

Create formal specifications and demonstrate that the
implementation is consistent with the specification

¢ Refinement

Using mathematical techniques step-by-step refine the
specification until it is “executable”

Examples
q¢ Z, VDM, CSP,
¢ Darlington, Paris Metro

Personal

Developed a small size distributed real-time
system. Developed formal specifications,
formally “proved” that the implementation was
consistent with its specification. A group of
five reviewed and approved the
implementation.

Result: Failed!

Reuse

Build software from components:
¢ Like hardware design, put together IC’s

Early success
q Fortran, C libraries

Challenges

Indexing and searching
Generality of code
Performance

NIH

Architectural mismatches
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Personal: second hand

A large development group set a goal of
creating reusable modules. Developers had
to contribute to a central repository. They
also received bonus points if they used
modules from the library.

Result: Failed!




Reuse
... continued

Later success (or otherwise)
¢ COM, DCOM, CORBA, RMI, Java class libraries

Higher level reuse (and successes)

¢ Architectural patterns, e.g. n-tier, pipeline

¢ Design patterns, e.g. MVC, Command, Facade
¢ Frameworks, e.g. Struts

Future : Web services, SOAP, MDA

Management

Software life cycles
q Control

q Traceability

q Parallel development
¢ Risk management
Examples:

¢ Waterfall (and variations), Iterative (and variations),
Process oriented (RUP), people oriented (XP)

¢ Configuration management

Management
... continued

Certification: showing off our abilities to
customers (raise their level of confidence)
q CMMI

¢ SPICE, ISO 9000

¢ Other mandated government agencies, e.g., FDA

Personal

A model driven approach built on top of a
commercial framework generating web
services definitions.

q Process modeling

Use case modeling

Object modeling

Design

XML generation
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Results: jury is out!




Personal

A CIO of a financial institution asked us if he
could receive the same level of benefits (ROI
~ 20-40%) by investing in maturity. In
particular, going from level 2 to 3 on CMMI.

Software engineering characterization

Large

q Number of people
¢ Number of features
q Number of dependencies

Soft

RESUlt: No! ¢ Changing requirement
¢ Changing environment
q Changing people
Aside: Software engineering characterization
What is computer science? ... continued

If | had to summarize the entire field of
computing, it would be:

¢ Building hierarchies of abstractions for solving
[repetitive] problems

Repetition

q Problems solved will come back nastier
q Number of features
q Number of dependencies

Mosaic

Art: creativity, vision

Scientific: fact-based, hypothesis driven

Engineering: control, repetition of success

Management: team work, communication, decision making
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Final thought
» Objective of software engineering is to solve
a problem.
n Size matters. Scalability is a must!

n Time goes on. History will repeat itself!

Final thought
... continued

» Whatever software engineering is, it helps if
you have, on top of all your technical and
conceptual skills
¢ Communication skills: influencing
¢ Team work: negotiation, compromise
¢ Vision: see beyond the technical solution

Thank you!

Questions?

| Categorization of software

n Commercial shrink-wrap
¢ Vertical vs. horizontal (middle-ware)
n Custom applications
n Government
n Safety critical
» Embedded




