
Removing False Code Dependencies to Speedup Software

Build Processes

Yijun Yu Homy Dayani-Fard John Mylopoulos

yijun@cs.toronto.edu homy@cs.toronto.edu jm@cs.toronto.edu

University of Toronto IBM Canada Ltd. University of Toronto

Abstract

The development of large software systems in-
volves a continual lengthy build process that
may include preprocessing, compilation and
linking of tens of thousands of source code
files. In many cases, much of this build time
is wasted because of false dependencies be-
tween implementation files and their respective
header files. We present a graph algorithm and
a programming tool that discovers and removes
false dependencies among files. We show exper-
imentally that the resulting preprocessed code
is more compact, thereby contributing to faster
build processes.

1 Introduction

Large software systems typically consist of a
number of source files. These codes include
headers (e.g., *.h) and implementations (e.g.,
*.c). The header files contain the necessary
program units for the implementation files.
Such units, in C, include external function dec-
larations, global variable declarations, struc-
ture definitions, enumerations and type defini-
tions. By including header files through pre-
processor directives (e.g., #include), an im-
plementation file creates dependencies on other
implementation files (or libraries) that facili-
tate the use of the program units in the in-
cluded headers. In an ideal scenario, an imple-
mentation file includes only the necessary def-

initions and declarations that it will use. As a
software system evolves, however, these depen-
dencies grow and result in excessive redundant
inclusions, because diagnostic information and
supporting tools are lacking. While optimizing
compilers can remove such redundancies from
the executable binary image, the duration of
the building process can drastically increase be-
cause of the size of the preprocessed files.

While excessive inclusions and false depen-
dencies do not affect the functionality of a sys-
tem, they affect the efficiency of the develop-
ment process and result in the waste of re-
sources. Furthermore, a false dependency be-
tween an implementation file and its header
can cause unnecessary compilation of the im-
plementation file when an independent part of
the header has changed. Consequently, the in-
cremental build time is also prolonged by false
dependencies. Hence, the efficiency of the build
process can be affected both during incremen-
tal builds (i.e., compiling what has changed)
and fresh builds (i.e., compiling everything
from scratch). Considering the nightly build
paradigms [3] the overall effect of false depen-
dencies can add up rapidly.

Traditional approaches to improving the effi-
ciency of the build processes focus on removing
false target dependencies in make files. These
approaches do not consider the internal de-
tails of implementation files , however, this pa-
per presents a novel approach to the removal
of false dependencies based on analyzing the

1

header files. The approach is incremental and
can be applied at various levels of complex-
ity (e.g. function declaration only or global
variables only) based on the non-functional re-
quirements. The main steps of this approach
involve:

1. constructing a graph of dependencies;

2. partitioning the dependency graph to re-
move false dependencies among files; and

3. reorganizing the header files to reduce cou-
pling between files and improve cohesion.

The rest of the paper is organized as follows:
Section 2 describes the refactoring algorithms
for discovering and removing false dependen-
cies among files; Section 3 demonstrates the
application of the refactoring algorithm to an
example program; Section 4 shows results of
applying the tool to a public-domain software
VIM 6.1 [11]; Section 5 compares the presented
approach with related work; Section 6 discusses
the future work; and Section 7 provides some
concluding remarks as the potential application
of this tool.

2 Refactoring software de-

pendencies

Software refactoring [7] is a process of applying
a sequence of small non-functional changes to
a software system to improve its overall qual-
ity. To effectively manage software quality, we
must manage the code-base health as well as
the overall quality of the end product. One
aspect of the code-base health in this study in-
volved file dependencies [4]. As the code-base
evolves, the number of false dependencies grows
rapidly, which contributes to the longer time
for building of the product and to the poten-
tial loss of component (e.g. a group of related
files) interfaces.

To reduce the dependencies among different
files, makefile optimization can be performed
to discover target dependencies: a set of files
that depend on others. However, this approach
tolerates false dependencies at the code level,
which can contribute to timely builds. An in-
crease in the build time, in turn, can reduce the

availability of the product for testing and other
quality assurance tasks.

The loss of component independence is an-
other effect of false code dependencies. When
the dependent component is outside the scope
of the developer, she will have to wait for the
whole system to be built before a thorough inte-
gration test can be done. To overcome the test
problem, code stubs of the interfacing modules
are created to replace the dependent compo-
nent in order to allow earlier unit tests before
the whole system is built. Code stubs are a
work-around to tolerate the false code depen-
dencies for speeding up the development pro-
cess, but a final integration test has to be per-
formed to demonstrate their smooth integra-
tion with the rest of the system.

The approach proposed in this paper differs
from the above mentioned one in that it relies
on fine-grain source code dependency checks.
This approach analyzes the dependencies at the
program units level to minimize build time.

2.1 Exposing false code depen-

dencies

The first step in identifying false dependen-
cies involves the construction of a depen-
dency graph. Using parsing technologies (e.g.
CPPX [9] or Datrix [2]), a set of relations can
be extracted from the source files. These re-
lations determine in which file a program unit
entity (e.g. a function, type, or variable) is de-
fined and where it has been used. Furthermore,
these relations provide the exact location (i.e.,
line number) where the program unit is defined
or used. The dependency relations between the
defines and the uses of a program unit form
a graph, where the program unit def/use in-
stances form the set of vertices and the edges
connect the corresponding defines and uses ver-
tices. We call this graph a code dependency
graph to differentiate its semantics from the
program (data/control) dependency graph [6].

Formally, a code dependency graph is a di-
graph [1] G = (V,E), where the vertices in V

represent the defines/declares of program units,
and the edges in E ⊂ V × V represent the de-
pendencies among program units. The vertices
are further divided into two mutually exclusive
sets: V = VH ∪ VC . VH represents the set of

2

program units that should be placed in header
files such as declarations of variables and func-
tions, and definitions of types, structures and
enumerations. VC represents the set of program
units that should be placed in the implemen-
tation files such as definition of variables and
functions. For example, consider the two files
main.c and its included header foo.h as shown
below:

--main.c--

#include ‘‘foo.h’’

int main () {
foo ();

}
--foo.h--

void foo ();

void bar ();

The set VH has two vertices foo declare and
bar declare and the set VC has one vertex
foo define. The only edge in this graph con-
nects the two vertices declaring and defining
the function foo.

In a complete system, a program unit that
occurs both in VH and VC causes true depen-
dencies among them. If a header file contains
two program units u, v ∈ VH , where w ∈ VC

depends on u but not on v, then a false depen-
dency (v, w) forms. Having false dependencies
implies not only potential increasing of prepro-
cessed file sizes, but also an unnecessary re-
building of any files containing w any time v

is modified.

To construct a code dependency graph, we
use the Datrix parser [2]. Datrix constructs
an Abstract Syntax Graph (ASG) expressed in
Tuple Attributes format (TA [8]). Using the
data from the ASG, we construct the code de-
pendency graph. Using the code dependency
graph, we remove the unused program units for
the definitions in the program, i.e., remove all
nodes in VH that have an empty dominate set
in VC . Then we apply the code partitioning
algorithm.

2.2 Code partitioning algorithm

Given a code dependency graph G = (V,E), all
false dependencies can be removed by putting
each element of VH in a separate header file.

This trivial partitioning has undesired side-
effects: the code is scattered into |VH | header
files that blur the big picture of the data struc-
tures. A better partition condenses related def-
initions into a smaller number of headers while
avoiding false dependencies. As a result, we
need to devise a non-trivial partitioning algo-
rithm to obtain partitions of the largest gran-
ularity without false dependencies.

Before partitioning, we preprocess the graph
to determine the influence of a header file over
an array of the implementation files. For each
vertex in the sets VH and VC , we first calcu-
late two transitive closures as Dominates D and
Dominated D′ defined as:

1. for each u ∈ VH

2. D(u) = {v|(u′, v) ∈ E, u′ ∈ D(u), v ∈ VC}
3. for each v ∈ VC

4. D′(v) = {u|(u, v′) ∈ E, v′ ∈ D′(v), v ∈ VH}

These calculations require O(|V |) transitive
closure operations if all vertices are calculated
separately. We can avoid this complexity by
finding a spanning tree of the graph, then cal-
culate the dominate set of a vertex as the union
of all its child vertices. Thus less than O(|V |)
set union operations are required.

Next, we merge the vertices that belong to
the same Dominates or the same Dominated
sets:

1. for each u, v ∈ V

2. if u, v ∈ VH and D(u)=D(v)
3. or u, v ∈ VC and D’(u)=D’(v)then

4. condense(u, v)
5. end if

The complexity of the partitioning proce-
dure is O(|V |2) set comparison operation plus
less than O(|E|) condense operations. Here
condense(u, v) is a procedure that removes the
vertex v while replacing any edges (v, w) by
(u,w) and (w, v) by (w, u) as long as w 6= u.
When w = u, the edges (u, v) and (v, u) are
removed to prevent cycles:

Input: u, v ∈ VH ∪ VC

1. for each e ∈ E

2. if e.to = v and e.from 6= u then

3. E = E \ {e} ∪ {(e.from, u)}
4. else if e.from = v and e.to 6= u then

5. E = E \ {e} ∪ {(u, e.from)}

3

6. else if e = (u, v) or e = (v, u) then

7. E = E \ {e}
8. end if

9. VH = VH \ v

The complexity of the condense operation is
O(|E|). Therefore, the above partitioning pro-
cedure costs O(|V |2+|E|2) operations. As a re-
sult, the partitioning algorithm groups not only
header files, but also the implementation files.
The granularity is as large as possible while
false dependencies are fully removed, stated as
follows.

Given the digraph G = (V,E), where V =
VH ∪ VC , the algorithm obtains a condensed
graph G′ = (V ′, E′), where V ′ = V ′

H
∪ V ′

C
and

V ′

H
, V ′

C
are partitions of VH , VC respectively.

The following properties hold for the graph G′:

1. No false dependencies. For any two
vertices u, v in u′ ⊂ VH , where u′ ∈ V ′

H
,

if there is a path from u to w ∈ VC , then
there is also a path from v to w; for any two
vertices u, v in u′ ⊂ VC , where u′ ∈ V ′

C
, if

there is a path from w ∈ VH to u, then
there is also a path from w to v.

2. Largest granularity. For any two ver-
tices u ∈ u′ and v ∈ v′, where u′, v′ ∈ V ′

H
,

there is a w ∈ VC such that either there is
a path from u to w but no path from v to
w, or there is a path from v to w but no
path from u to w.

In practice, it is not desirable to partition
the implementation files because the generated
code may become unfamiliar to the developers.
Thus we provide a second mechanism to impose
a constraint on the graph partitioning that all
the function definitions in one file are still in
the same file. Therefore, we want to remove
all the false dependencies among different files,
and tolerate the false dependencies within the
files.

For this purpose, the partitioning algorithm
can still be applied, with an exception that
V ′

H
= {f | file(u, f), u ∈ VH} is used instead

of VH and E′ = {(file(u),file(v))|u, v ∈ V } is
used for E, where file(u, f) is the relationship
between a program unit u and a filename f . If
u ∈ VC , then let file(u) = u.

The same algorithm also applies to still
larger granular modules such as components,

which can be considered as the abstraction of
a collection of files. Generally, the larger the
granularity, the more false dependencies are
tolerated.

2.3 Generating the code

The code generation for the target system is
based on the location information stored with
the program units. A program unit is associ-
ated with an original source program file name
and the beginning and ending line numbers. So
once the partitions are calculated, the corre-
sponding code segments can be extracted from
the original source program. Along with the
moved code, we attach a line # line file in-
dicating the source of the program unit so that
the developer can still see where they are taken
from. The names of the implementation files
are the same as the original implementation
files, but the names of new header files are gen-
erated by a sequence number.

For each partition, the program units must
be output in the topological order of the de-
pendency graph. However, the topological or-
dering requires that the graph be acyclic. In
our code dependency graph, such cycles do ex-
ist. For example, the following code segment
can produce a cycle between definitions of a
typedef unit and a struct unit:

typedef struct list list T; struct list {
int key;

list T * next;

};

We break a cycle a ↔ b, e.g. struct list as a

and typedef list T as b, by removing a → b

while for each vertex c in the graph such that
c → a, we add an edge c → b to make sure
all the uses of a and b in c still follow the def-
initions of a and b in the generated code. For
independent vertices, we generate the code in
the same lexicographical order as they were in
the original code for the programmer to recog-
nize the code in relation to the original code.

Having the partitions of header files and im-
plementation files, one can think of an addi-
tional optimization to move the header files and
associated implementation files together into a
local directory. As long as other implementa-
tion files do not refer to the header file that

4

was removed, such a restructuring can improve
the cohesion of the system1. This process is
done by checking the number of implementa-
tion files a header serves. If this number is one,
we move the header file to the corresponding
module directory in order to increase compo-
nent cohesion.

The next step in the code generation is to
inline the included files. A header file with sin-
gle out-degree will be embedded into the file
that includes it. In this way even fewer new
header files will be generated. Finally a make-
file is generated with the new file names to
avoid manual intervention.

3 An example

To illustrate the code partitioning algorithm,
this section provides a simple example. The
subject program has the following file struc-
tures:

./

include/

header.h # declares a, b, ..., i

module1/

1.c # defines a, b, c

2.c # defines d, e, f, g

module2/

3.c # defines h, i

main.c # defines main

header.h contains declarations for 9 func-
tions a, b, c, d, e, f, g, h, i. Every .c file includes
header.h in order to use the external functions.
However, as it can be seen, not all included
function declarations are necessary. The pre-
processed size of the implementation files can
be obtained by running a preprocessor (e.g.
gcc -E -P). The above example has 69 lines of
code. The following list shows the caller-callee
relation among functions.

main -> f, g, h, i

d -> a

f -> b

g -> c

i -> c, d

h -> e

1This restructuring creates a structure similar to

Java packages.

Using the above list, the partitioning algorithm
produces the following code structure, which
also satisfies file-scale granularity constraints
and localizing requirements

./

include/

2.h # declares c

module1/

1.h # declares a, b

1.c # no inclusion

2.c # include 1.h, 2.h

module2/

3.h # declares d, e

3.c # include 2.h, 3.h

0.h # declares f, g, h, i

main.c # include 0.h

After the reorganization, the size of the prepro-
cessed files is reduced to 42.

In practice, size reduction can be larger be-
cause of the inclusion of the entire library
header files for a small number of program
units. For example, most implementation files
include the entire <stdio.h> while using only
one or two functions, e.g. printf. Our algo-
rithm can reduce the preprocessed file size dra-
matically by leaving out unnecessary program
units.

4 Experiments

The header refactoring system is shown in fig-
ure 1. First, the C implementation files are
compiled with gcc (step 1). Next, running the
preprocessor gcc -E -P we measure the size of
the resulting files (step 2). The preprocessed
files are parsed by Datrix and passing the pro-
gram units for the header refactoring to be car-
ried out (step 3). The new program files are
compiled once again to assure that previous
steps did not remove any necessary dependency
(step 4). Finally, we measure the new code size
using the preprocessor only (step 5).

For large systems, the refactoring of multi-
ple files can be done incrementally by replac-
ing some of the object files with the refactored
ones. This facilitates the incremental build of
the system. Developers can perform the refac-
toring of their own headers without waiting for
the whole system to be ready.

5

Figure 1: The overview of the header refactoring
system. The usage is shown in steps: (1) compiling
the original program; (2) measuring the original
code size; (3) refactoring headers (4) compiling the
result program; (5) measuring the result program.

We have applied the header optimization on
a public domain software system VIM (Vi IM-
proved) 6.1 [11]. We consider the source code of
version 6.1, which includes 65 .c implementa-
tion files, 28 .h header files and 56 .pro header
files generated for function declaration proto-
types using cproto. A successful compilation
on the Linux platform requires 47 .c files.

To demonstrate the idea of the incremental
build, we just refactor 15 of the 47 files, and link
the new object files with the other 32 to ensure
that the program compiles. Table 1 lists the
result of refactoring in terms of lines of code,
number of words, and number of bytes before
and after using word count (wc).

The refactored file size include the # pragma
which says where the program units are ex-
tracted from. If these pragmas are removed,
there are more reductions. In summary, the
reduction of build size in bytes is 89.70% for
the incremental build and 26.38% for the fresh
build.

Table 2 shows the build time gain after refac-
toring. Initially we compare the build time
using the preprocessed files and the refactored
files. This comparison shows a 39.58% reduc-
tion for an incremental build and a 10.70% re-
duction for a fresh build. The preprocessed
files, however, are larger than the original files
because all inclusions are included. For ex-

ample, the buffer.c explodes from 108916
bytes to 365106 bytes after preprocessing, and
shrinks back to 134138 bytes after refactor-
ing the headers, and shrinks further to 113861
bytes by removing the unnecessary # pragmas.
Therefore, we shall compare the compilation
time among all the four sets of equivalent pro-
gram files.

A developer would choose a normal compi-
lation for the incremental build, and choose
an optimizing compilation for the fresh build
before the release of the software. Therefore,
time for both the normal gcc build and the
optimized gcc -O3 build were measured. It is
interesting to see that the absolute time gain
for both builds are about the same (1.34 vs.
1.28 sec.), which indicates that the large build
size reduction helps mostly for reducing syntax
parsing time while the other optimization pro-
cess times are not much influenced. Therefore,
we may expect that the time reduction ratio
for the fresh build is smaller than that for the
incremental build. Since the software develop-
ment is a process of frequently rebuilding the
code, the normal time reduction ratio 32.24%
for incremental build matters to the develop-
ment time.

5 Related work

Our approach is compared with existing tools
and related topics.

5.1 Existing tools

Existing tools such as make and makedepend

are commonly used to maintain the code de-
pendencies and speed up the build process by
avoiding the unnecessary compilation of files
that were not modified. However, the build-
time dependencies have larger granularity in
comparison to variables and functions at the
program unit level. For example, every imple-
mentation .c file of VIM includes vim.h, which
in turn includes almost every exported function
from the *.pro files. That means a change to a
single .c file requires almost all other files to be
rebuilt. Having a function prototype extractor
such as cproto helps with creating headers, but
the use of them can potentially slow down the
build of the whole program. Other techniques

6

Table 1: Measuring the size of the original and the refactored VIM program files after gcc -E -P.
Refactoring 15/47 of the source files leads to about 26.38% reduction of total size in bytes.

Size # lines # lines’ # words # words’ # bytes # bytes’

buffer.c 23531 4155 64414 11463 724131 112228

charset.c 21485 1345 58625 3933 660718 32354

diff.c 22108 2488 60471 6584 683455 63393

digraph.c 21072 448 57307 1458 651256 11590

edit.c 24929 5120 68136 14847 767021 148998

fold.c 22770 2663 62257 7771 701359 74801

mark.c 21601 2019 59742 5777 672967 52969

memfile.c 21411 1277 58302 3383 660857 31604

memline.c 23396 3862 64748 11016 733120 115647

misc1.c 24606 4932 67487 14424 755816 141171

ops.c 24434 4981 67385 14184 757182 142253

pty.c 20824 42 56711 139 645466 1067

tag.c 22396 2938 61232 7819 699744 83291

undo.c 21479 1335 58541 3598 665507 35988

version.c 21024 1331 57090 2699 651200 26684

subtotal 337066 38936 922448 109095 10429799 1074038

reduction -88.45% -88.17% -89.70%

other 32 files 743885 743885 2356587 2356587 25033807 25033807

total 1080951 782821 3279035 2465682 35463606 26107845

reduction -27.58% -24.80% -26.38%

such as pre-compiled headers help with reduc-
ing the time for file inclusions; however, they
do not remove the redundant program units ex-
cept for macros.

To extract finer granularity code dependen-
cies, a code factor extractor based on a parser
is necessary. Existing parsers such as CPPX,
Datrix [9] extract facts from a C program and
store them in usable formats such as TA [8]
and GXL [10]. Among them, CPPX reports pro-
gram unit relationships including macros, while
Datrix does not report any data on macro def-
initions but reports more accurate line num-
bers. Since we are not only going to analyze the
code, but also going to generate the code, we
used Datrix to locate the right line numbers.
Datrix outputs abstract syntax graphs (ASG)
in various formats including TA. We developed
an analyzer to extract header-related code de-
pendencies from the resulting ASG.

Other programming languages such as
C++/Java can also be analyzed. Java pro-
grams, however, use packages that are cleaner
than legacy C code. There are also tools that

can clean up false code dependencies in Java
code. It will be interesting to know how good
our partitioning algorithm can perform com-
pared to existing Java optimizers. For C++,
we believe it is necessary to do header file op-
timizations.

5.2 Related topics

The graph algorithm proposed for code par-
titioning is not the strongly connected com-
ponent partitioning algorithm for general di-
graphs [1] because this is the case not all ver-
tices in a connected component are treated the
same way. Instead, we treat “def” and “use”
vertices differently in order to ensure that false
code dependencies are not introduced. The
topological ordering is applied to generate code
for a partition with a variation that cycles are
removed by updating the edges incident on one
vertex to be incident on other vertices in the
cycle.

The code dependency partitioning is also dif-
ferent from the partitioning algorithms for data

7

Table 2: Measuring build time in seconds. Columns 2–3 compare the build time using preprocessed
files with that using refactored files; columns 4–6 compare the normal build time of gcc -c using
the original files to that using refactored files with/without the # pragmas; columns 7–9 compare
the build time of gcc -O3 optimizing options among the same sets of files. The first 15 rows are the
incremental refactored files, and the total build including the other 32 files are also measured.

Time cpp cpp’ gcc -c gcc -c’ gcc -c’ \# gcc -O3 gcc -O3’ gcc -O3’\#

buffer.c 0.64 0.46 0.58 0.46 0.46 1.23 1.10 1.09

charset.c 0.35 0.16 0.28 0.16 0.17 0.50 0.37 0.36

diff.c 0.44 0.26 0.37 0.26 0.26 0.71 0.58 0.57

digraph.c 0.26 0.07 0.19 0.07 0.06 0.26 0.12 0.12

edit.c 0.72 0.53 0.65 0.53 0.54 1.77 1.64 1.62

fold.c 0.52 0.33 0.45 0.33 0.33 1.01 0.89 0.89

mark.c 0.41 0.23 0.34 0.23 0.22 0.81 0.53 0.53

memfile.c 0.32 0.14 0.22 0.14 0.13 0.34 0.27 0.27

memline.c 0.63 0.44 0.46 0.44 0.43 1.00 0.99 0.98

misc1.c 0.79 0.61 0.61 0.61 0.60 1.93 1.95 1.91

ops.c 0.75 0.56 0.62 0.56 0.56 1.58 1.61 1.60

pty.c 0.25 0.04 0.17 0.04 0.04 0.18 0.05 0.07

tag.c 0.44 0.26 0.27 0.26 0.26 0.51 0.66 0.66

undo.c 0.33 0.15 0.26 0.15 0.14 0.41 0.30 0.33

version.c 0.30 0.08 0.19 0.08 0.08 0.25 0.15 0.15

subtotal 7.15 4.32 5.66 4.32 4.28 12.49 11.21 11.15

reduction -39.58% -23.67% -32.24% -10.25% -12.02%

other files 19.30 19.30 13.00 13.00 13.00 29.77 29.77 29.77

total 26.45 23.62 18.66 17.32 17.28 42.26 40.98 40.92

reduction -10.70% -7.18% -7.40% -3.03% -3.17%

dependencies [13, 5]. Data dependency par-
titioning looks for parallelism in independent
partitions, while the code dependency parti-
tioning may create partitions that still depend
on each other. The code dependency partition-
ing is a refactoring technique aiming at main-
tainability, while the data dependency parti-
tioning is a performance optimization transfor-
mation technique. Using parallelism speeds up
the execution of the code while removing code
dependencies speeds up both complete and in-
cremental builds and consequently accelerates
the development process. In this sense they are
complementary.

Another related topic is link-time optimiza-
tion [12], which tries to remove excessive vari-
able and function inclusions in order to make
the static binary size and the dynamic code size
(footprint) smaller. When the whole library
headers are included, it is often safer for the

developer to include the whole library to avoid
link error. After refactoring the headers at the
source level, such situations would be less com-
mon. A cleaner binary code can be generated
if we can further refactor the libraries being
linked. The combined approach may strip the
unused library functions completely and thus
lead to smaller binary size.

Among these possibilities, we believe the
header refactoring is most suitable for speed-
ing up the development, while time and space
performance optimizations are still possible.

6 Future work

We are currently investigating several enhance-
ments to our work. The initial aim is to com-
plete the refactoring of the VIM. The obser-
vations that we have made on VIM have en-
abled us to formulate a strategy for tackling

8

larger systems. In terms of potential impact,
our data suggests that for a large commercial
software product, there are tens of thousands of
files on average. In one experiment we observed
that an implementation file, on average, grows
by a factor of 50. In other words, while the
implementation file size is around 50 KB, the
preprocessed file becomes 2.5 MB. Based on our
VIM experiments and preliminary assessments,
we estimate that the size of preprocessed files
can be reduced, on average by 30 to 40 %. This
results in a saving of around 1 MB. Assuming
there are 1000 files in the system, there will be 1
GB of space savings. Furthermore, taking into
account the continuous build paradigms used
in commercial software development, this num-
ber has to be multiplied by 7 to compute the
weekly savings, i.e., 7 GB. Considering the av-
erage release cycle varies from 12 to 16 months,
the weekly saving is multiplied by the number
of weeks in the release cycle. This is a signif-
icant saving that justifies the overall effort of
refactoring as put forward by this paper.

Another challenge facing a refactoring effort
for a large software system involves the preva-
lent use of conditional compilation directives.
Most parsing technologies rely on preprocessed
programs and as such fail to provide any in-
formation about the conditional compilations.
In other words, we do not know exactly what
directive occurs on what line. Furthermore,
we gather data from one possible compilation
based on one set of conditional compilation di-
rectives per platform. Our initial strategy for
dealing with conditional compilations involves
the splitting of the conditional guards. For ex-
ample, consider the header file foo.h shown
below:

#ifdef FOO

#define EXTERN extern

EXTERN int foo ();

EXTERN int

bar ();

#else

#define EXTERN

EXTERN float moo();

EXTERN float

bar();

#endif

Here we split the header file into three files as

shown below:

----foo.h----

#ifdef FOO

#include "foo1.h"

#else

#include "foo2.h"

#endif

---foo1.h----

extern int foo ();

extern int bar ();

---foo2.h----

float moo();

float bar();

We can proceed with refactoring as before by
analyzing foo1.h and foo2.h without touch-
ing the foo.h. This requires enumeration of all
combinations of macros used in the program as
different scenarios, which can be exhausting for
large systems. Another way is to treat macros
as code dependencies from macro units to pro-
gram units. It works only when every single
macro can be located accurately in the code, in
which case there is only one scenario. However,
such accuracy is very hard to achieve. Cur-
rently we are investigating a way to confine the
scenario enumeration only to the explicit con-
ditional directives, while treating other macros
the same way as other program units. In this
way we hope to get a fast and accurate solution
in the near future.

7 Conclusions

False dependencies among implementation files
in large software systems can significantly in-
crease the build time. This paper described a
refactoring tool for discovering and removing
these dependencies from the header inclusions.
This tool can be applied incrementally to a sub-
set of files or its scope can be adjusted to in-
clude one or more types of program units (e.g.
functions, global variables to type definitions).
As shown through a series of experiments, the
resulting code is substantially reduced, thereby
reducing build time.

About the Authors

9

Dr. Yijun Yu is a research associate at the
University of Toronto. His Internet address is
http://www.cs.toronto.edu/∼yijun.

Dr. Homy Dayani-Fard is a member of the
IBM Toronto lab on a leave of absence at the
University of Toronto. His internet address is
http://www.cs.queensu.ca/∼dayani.

Prof. John Mylopoulos is the director of
the Knowledge Management lab at the Uni-
versity of Toronto. His Internet address is
http://www.cs.toronto.edu/∼jm.

References

[1] Jorgen Bang-Jensen and Gregory Gutin.
Digraph: Theory, Algorithms and Appli-
cations. Springer-Verlag, 2002.

[2] Bell Canada. DATRIX abstract seman-
tic graph reference manual (version 1.4).
Technical report, Bell Canada, May 2000.

[3] M. A. Cusumano and R. W. Selby. How
Microsoft builds software. Communica-
tions of the ACM, 40(6), June 1997.

[4] H. Dayani-Fard. Quality-based software re-
lease management. PhD thesis, Queen’s
University, 2003.

[5] Erik H. D’Hollander. Partitioning and la-
beling of loops by unimodular transfor-
mations. IEEE Transactions on Parallel
and Distributed Systems, 3(4):465–476, jul
1992.

[6] J. Ferrante, K.J. Ottenstein, and J.D.
Warren. The program dependence graph
and its use in optimization. ACM Transac-
tions on Programming Languages and Sys-
tems, 9(3):319–349, JUL 1987.

[7] Martin Fowler, Kent Beck, John Brant,
William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[8] R. C. Holt. Structural manipulations
of software architecture using tarski rela-
tional algebra. In Working Conference on
Reverse Engineering, October 1998.

[9] Richard C. Holt, Ahmed E. Hassan, Bruno
Lague, Sebastien Lapierre, and Charles
Leduc. E/R schema for the Datrix
C/C++/Java exchange format. In Work-
ing Conference on Reverse Engineering,
pages 284–286, 2000.

[10] Richard C. Holt, Andreas Winter, and
Andy Schürr. GXL: Towards a standard
exchange format. In Proceedings WCRE
’00, November 2000.

[11] Bram Moolenaar. Vim 6.1,
http://www.vim.org, 2003.

[12] R. Muth, S. Debray, S. Watterson, and
K. De Bosschere. Alto: A link-time op-
timizer for the compaq alpha. Software -
Practice and Experience, 31(1):67–101, 1
2001.

[13] Y. Yu and E. D’Hollander. Partition-
ing loops with variable dependence dis-
tances. In Proceedings of 2000 Interna-
tional Conference on Parallel Processing
(29th ICPP’00), Toronto, Canada, August
2000. Ohio State Univ.

Trademarks

IBM is a registered trademark of Interna-
tional Business Machines Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, and service names
may be trademarks or service marks of others.

c©Copyright IBM Canada Ltd., 2003. Per-
mission to copy is hereby granted provided the
original copyright notice is reproduced in copies
made.

10

