SII199: Computer Networks and Society, Fall 2015
Department of Computer Science, University of Toronto

Handout # 1 – Information Sheet

<table>
<thead>
<tr>
<th>Class hours: Wed. 10AM-12PM</th>
<th>Office hours: Tue. 3-4 PM, Wed. 3-4 PM, or by appointment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: BA5205</td>
<td>Office: BA 5238</td>
</tr>
<tr>
<td>Instructor: Prof. Yashar Ganjali</td>
<td>E-mail: yganjali @ cs . toronto . edu</td>
</tr>
</tbody>
</table>

Course Description
The Internet has become such an inseparable part of our lives today that it is becoming more and more difficult imagining a world without it. It has significantly affected numerous aspects of our lives: from communications, to business, and even entertainment. It has changed many applications that existed before (like phone, and TV), and has become a birthplace for new applications that we could not have envisioned just a few years ago. In this course, we will study the Internet and its impact on our lives and society. We will briefly overview the structure of the Internet, and reasons behind its rapid growth and tremendous success. We will also study several cases where the Internet has played a major role in solving/alleviating real life problems.

Teaching Assistants
Please check class web page for information about TAs, and their office hours.

Bulletin Board and Class Mailing List
Please use the bulletin board to ask questions. By using the bulletin board, everyone in class can read the replies and the overall number of repeat questions is reduced. Please check the bulletin board before posting any new questions. We guarantee any question posted to the bulletin board will be responded within 48 hours.

There is also a class mailing list that will be used by the instructor for announcements. Please never use the class mailing list for questions. There are many students in class and we’d all be flooded with e-mails.

If you have any questions that cannot be posted on the bulletin board (e.g. questions about your grades), you can e-mail me directly. There is no guarantee on when you will get a reply for questions that can be asked on the bulletin board. We really want you to use the bulletin board. :-)

Textbook
There is no textbook required for this course. Each week the instructor will post links to papers and articles for reading.
Recommended Books
The following books are recommended (not required) for reading.

Notes and Handouts
I will use a combination of slides and blackboard. Please take notes when I am using the blackboard. The handouts will be provided to you so you don’t need to take notes.

Grading
- Assignments: 40%
 - Three assignments each 10%
 - Lecture notes: 10%
- Active participation in discussions: 10%
- Final project: 50%
 - Proposal: 5% - 1 page, due October 14th
 - Intermediate report: 10% - 2 pages, due November 4th
 - Presentation: 10% - last week of classes
 - Final report: 25% - 5 pages, due Dec. 2nd

Late Submission Policy
You have one free late submission of 24 hours for one of the assignments (problem set, or programming, but not both). You should e-mail the TAs before the deadline to get the free late submission. This 24 hour limit is hard, and cannot be extended. For any late submission other than the free one, 10% of the mark will be deducted for each day late, up to 20%. Assignments will not be accepted after two days.

Academic Offenses
“Briefly, an academic offence is a bad thing done to get marks you don’t deserve. Slightly more formally, an academic offence is an action by a student or course instructor that breaks the rules about academic credit at the University of Toronto.”1 Cheating is considered a very serious offense. Please avoid it! We are all here to teach and learn after all, and concerns about cheating make an unpleasant environment for everyone.

Permitted Collaboration
The following items are encouraged and allowed at all times for all students in this class:
- Discussion of material covered during lecture, problem sessions, or in handouts
- Discussion of the requirements of an assignment
- Discussion of the use of tools or development environments
- Discussion of general approaches to solving problems
- Discussion of general techniques of coding or debugging

1 Jim Clark, “Advice about academic offenses”, http://www.cs.toronto.edu/~clarke/acoffences/.
• Discussion between a student and a TA or instructor for the course

Collaboration Requiring Citation

Two students engaging in more detailed discussions must be careful to document their collaboration. Students are required to include the names of those who provide specific assistance to properly credit their contribution, in the same manner as one would cite a reference in a research paper. The expectation is that even with a citation, the author must be able to explain the solution.

Examples of Collaboration That Require Citation

• Discussing the "key" to a problem set or programming assignment. Problem set questions are often designed such that the critical concept takes careful thought and gaining that insight from someone else must therefore be documented.
• Discussing the design of a programming project. Design is a crucial aspect of the programming process and discussion can be valuable. Any design input received from others must be cited.
• Receiving assistance from another student in debugging code. While the TAs are the preferred source for advice, any detailed assistance from someone else must be credited.
• Sharing advice for testing. For example, if someone provides important information on lessons learned ("my program didn't handle the case where the value was 0") that source must be credited.
• Research from alternative sources. Researching related topics, such as through the Internet, must be documented if the solution submitted is derived from the research information.

Unpermitted Collaboration

All submissions must represent original, independent work. Some examples of activities that do not represent original work include:

• Copying solutions from others. In particular, do not ask anyone to provide a copy of his or her solution or, conversely, give a solution to another student who requests it. Similarly, do not discuss algorithmic strategies to such an extent that you and your collaborator submit exactly the same solution. Use of solutions posted to websites, such as at other universities, is prohibited. Be aware that we photocopy some of the exams prior to handing them back.
• Using work from past classes. The use of another student's solution or the posted class solutions from a previous class constitutes a violation.
• Studying another student's solution. Do not read another solution submission whether in electronic or printed form, even to "check answers."
• Debugging code for someone else. When debugging code it is easy to inadvertently copy code or algorithmic solutions. It is acceptable to describe a problem and ask for advice on a way to track down the bug.²

² Parts of this note are based on handouts from Nick McKeown, and Tom Fountain, who teach CSC244a and EE182 respectively at Stanford. Some portions are based on similar collaboration policies written by Eric Roberts, Julie Zelenski, and the Computer Science Department at Brown University.