Handout # 5: Scaling Controllers in SDN - Kandoo

Professor Yashar Ganjali
Department of Computer Science
University of Toronto

yganjali@cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

Joint work with Soheil Hassas Yeganeh
EVENTS

- Rare
 - Link state changes

- Frequent and Exhaustive
 - Network-wide stat collection
 - Packet-ins (if flow-entries are not installed proactively)
SCALABILITY ISSUES

Frequent events stress the control plane.

Control Plane

Data Plane

Stress controller's resources.

Stress the control channels.
EXISTING SOLUTIONS

Distributed Controllers:

- Consider this as an intrinsic limitation.
- HyperFlow, Onix, Devolved Controllers, ...

Data Plane Extensions:

- Delegate more responsibilities to the data plane.
- DIFANE, DevoFlow, ...

CSC2229 -- Software-Defined Networking
University of Toronto -- Winter 2017
EXISTING SOLUTIONS

Still, high control channel consumption.

Comes at the cost of visibility.

Need to modify the data plane.
How to handle frequent events close to the metal without modifying OpenFlow?
THE IDEA

OFFLOADING LOCAL CONTROL APPS TO LOCAL RESOURCES.

Applications that do not need the network-wide state.

Resources close to switches.
Local Apps

- An assumption in distributed controllers:
 - All control apps require the network-wide state.

- But, there are many apps that are local in scope:
 - Applications that require only local switch state.
LOCAL APPS

- **Local applications:**
 - Learning Switch
 - Local Policy Enforcer
 - Link Discovery

- **Local components in control applications:**
 - Elephant Flow Detection in an Elephant Flow Rerouting application.

Local apps have implicit parallelism.
LOCAL RESOURCES

We can offload local apps to computing resources next to switches.

On the same hosts running software switches.

Inside programmable switches.

Hosts close to switches.
KANDOO

- **Two layers of controllers:**
 - A logically centralized **Root Controller**.
 - **Local Controllers**.

The root controller runs non-local apps.

Lightweight and easy to implement.

Local controllers shield the root controller.

Local controllers run local apps.

Rare Events

Frequent Events
AN EXAMPLE:
ELEPHANT FLOW REROUTEING
AN EXAMPLE: ELEPHANT FLOW REROUTING

Kandoo’s event channels.

Application-specific events.

Scales linearly with the number of switches.
SIMPLE, YET FLEXIBLE, ARCHITECTURE

Scale at the edge.

Normal OpenFlow.

One local controller per switch!
EVALUATION

SUMMARY

- Implemented Kandoo:
 - Handles 1.3 Mp/s on a single core of Xeon E7-4807.

- Elephant Flow Rerouting:
 - In an emulated environment.
 - More than 5x less channel consumption.
 - Significantly better scalability in regards to the network size.
FINAL COMMENTS

• Controller scalability is a concern in SDN
 • Control channels
 • Controller resources

• Distributed controllers alleviate the problem to some extent
 • Many complications

• Developers are not shielded
 • As originally promised

• Troubleshooting, debugging still complex

• Next: we’ll see how these problems have been addressed