
! !

CSC!458/2209!–!Computer!Networks! ! Page!1!of!4!

!

UNIVERSITY*OF*TORONTO!
Faculty!of!Arts!and!Science!

!
Sample!Final!Exam!

!
CSC458!–!Computer!Networks!

Professor!Yashar!Ganjali!

!
Duration!@!3!hours!

!
Examination!Aids:!!

NonCProgrammable!Calculators,!1!DoubleCSided!Page!of!Notes!
!
!
(i)!This!exam! is! closed!book!and!closed!notes.!However,!you!may! refer! to!a! sheet!of!8.5”x11”!
paper!(doubleCsided)!of!your!own!design.!You!can!also!use!a!nonCprogrammable!calculator.!
!
(ii)!Write!your!answers!on!the!exam!booklet!only.!You!will!not!receive!any!points!for!any!answer!
you!write!on!the!questions!paper.!!
!
(iii)!Make!sure!to!write!your!name!and!student!ID!clearly!on!the!exam!booklet.!!
!
(iv)!Show!your!reasoning!clearly.!If!your!reasoning!is!correct,!but!your!final!answer!is!wrong,!you!
will!receive!most!of!the!credit.!If!you!just!show!the!answer!without!reasoning,!and!your!answer!
is!wrong,!you!may!receive!no!points!at!all.!
!
!
Part!I!@!Multiple!Choice!Questions![4!points]!
Instructions:!In!the!following!questions,!check!the!assertion!that!appears!to!be!correct.!There!is!
exactly! one! correct! assertion! per! question.! Checking! the! correct! assertion! will! earn! you! one!
point.!If!you!check!an!incorrect!assertion,!or!if!you!check!more!than!one!assertion!per!question,!
you!will!not!earn!any!points! for! that!question.!Don’t& forget& to&enter&your&answer&on&the&exam&
booklet&and&NOT&on&this&questions&paper.!
!
1.!TCP.!Which!one!of!the!following!is!a!true!statement!about!TCP?!

(a) TCP!is!a!routing!protocol!used!throughout!the!Internet.!
(b) TCP!establishes!a!connection!between!two!endChosts!using!a!2Cway!handshake!scheme.!
(c) TCP!learns!of!congestion!via!packet!loss!or!variations!in!delay.!
(d) If!the!SYN!packet!sent!by!a!TCP!source!is!lost,!the!connection!is!closed.!

!

LZ

LZ
TCP is a transport protocol. Hence A is not correct.

LZ
TCP uses a 3-way handshake: (1) client->server Flags=SYN, SequenceNum=x; (2) server->client Flags=ACK, Ack=x+1 and Flags=SYN, SequenceNum=y; (3) client->server Flags=ACK, Ack=y+1. Hence B is not correct.

LZ
The sender would retransmit the SYN packet after the timeout. Hence D is not correct.

! !

CSC!458/2209!–!Computer!Networks! ! Page!2!of!4!

2.!Coding.!Suppose!a!10Mb/s!adapter!uses!Manchester!encoding!to!send!an! infinite!stream!of!
1’s!into!a!link.!How!many!transitions!per!second!will!the!signal!emerging!from!this!adapter!have?!!

(a) 5!million!transitions!per!second.!
(b) 10!million!transitions!per!second.!
(c) 20!million!transitions!per!second.!
(d) None!of!the!above.!

!
3.!Random!Early!Detection!(RED).!Which!of!the!following!is!true?!

(a) !RED! is! tolerant! of! bursts! because!when! the! average!queue!occupancy! is! close! to! the!
maximum!threshold,!there!is!still!room!in!the!queue!to!accept!new!bursts!of!packets.!

(b) The! probability! of! RED! dropping! a! packet! belonging! to! a! flow! is! proportional! to! the!
number!of!the!flow’s!packets!queued!at!the!router.!

(c) RED!drops!packets!with!probability!1!when!the!router’s!queue!length!is!greater!than!the!
maximum!threshold!value.!

(d) If!two!flows,!one!TCP!and!one!UDP,!share!a!“RED”!router,!the!RED!algorithm!will!ensure!
that!both!flows!receive!an!identical!share!of!the!outgoing!link.!!

!
4.!TCP.!Which!of!the!following!statements!is!true!about!TCP?!

(a) TCP!segments!can!only!be!lost!when!router!queues!overflow.!
(b) There! is! no! performance! benefit! to! having! a! window! size! larger! than! the! receiver!

window!size.!
(c) The!received!sees!duplicate!ACKs!(with!the!same!sequence!number)!only!when!a!packet!

is!lost.!!
(d) A!receiver!reduces!the!advertised!window!size!in!response!to!congestion.!

!
!
!
!
Part!II!@!Definitions![3!points]!
Describe!each!of!the!following!terms/concepts!clearly!and!concisely!(in!at!most!4C5!sentences).!
For!each!of! these! terms,!explain! the! context! they!are!defined!at!–!which!protocol(s)! they!are!
related!to,!when/where!they!are!used,!etc.!–!and!give!examples! if!possible.!Remember!to!use!
the!exam!booklet!and!not!this!paper!for!your!answers.!
!
1.!Fast!Retransmission!
!
2.!Nagle’s!Algorithms!
!
3.!Maximum!Segment!Size!(MSS)!!
!
4.!Stub!Autonomous!System!(AS)!
!
5.!Interior!Gateway!Protocol!(IGP)!!
!
6.!Distance!Vector!
!
!
!

LZ

LZ

LZ

LZ
Manchester encoding results in 0 being encoded as a low-to-high transmision and 1 being encoded as a high-to-low transition. Because both 1s and 0s result in a transition to the signal, Manchester encoding doubles the rate at which signal transitions are made on the link. on Page 81 of text.

LZ
RED is the mechanism allows the router more accurately managing its queue length. But whether the average queue length is close to the MaxThreshold depends on several parameters: MaxThreshold, MaxP, Weight. Hence A is not correct.

LZ
B is correct. On page 521 of text: The probability that RED decides to drop a particular flow's packet is roughly proportional to the share of the BW that flow is currently getting at that router. This is because a flow that is sending a relatively large number of packets is providing more candidates for the random dropping.

LZ
RED operates on the queue length averaged over time, not instantaneous queue length. The incoming packet is dropped when the AVERAGE queue length is larger than the MaxThreshold. Hence C is not correct.

LZ
RED is designed to work in conjunction with TCP, not UDP. It works by implicitly sending signals to TCP flows to tell then to slow down the transmission by dropping one of its packets. But UDP doesn't monitor these signals, acting effectively the way as the "unresponsive flow" here, hence will not slow down the transmission, and eventually use more than their fair share of the outgoing link. on Page 523 of text. Hence D is not correct.

LZ
A is not correct. As the TCP segment could be dropped by RED algorithm in some routers in the middle, even though the queue has not yet overflown.

LZ
B is correct. on page 408 of text: The sender is limited to having no more than a value of AdverisedWindow bytes of unacknowledged data at any given time.

LZ
The receiver would ACK every data packet it receives, even if its sequence number has been ACKed before. e.g., when a packet arrives out of order - when TCP cannot yet ACK the data packet contains because earlier data has not yet arrived - TCP resends the same ACK it sent the last time. Two possibilities occur there: the earlier packet is lost; or the earlier packet is delayed. on Page 511 of text. Hence C is not correct.

LZ
D is not correct. The advertized window reduction at the receiver side is a reaction of Flow control, not congestion control. Flow control is to prohibit the sender from over-running the receiver's buffer. Congestion control is to prohibit the sender from over-loading too much traffic into the network.

LZ
Fast retransmission is used in TCP, to trigger the retransmission of a dropped packet sooner than the regular timeout mechanism. When the receiver receives an out-of-order packet, it resends the same acknowledgement it sent the last time. The sender who receives three duplicate ACKs then retransmit the dropped packet instead of waiting for the timeout of that packet. On page 511 of text.

LZ
Nagle's algorithm is used by TCP senders to determine when to transmit a segment. The algorithm allows to send a full segment if the window permits. It also allows to send small amount of data if there are no segments in transit. Otherwise, if there is anything in flight, the TCP sender must wait for an ACK before transmitting the next segment. on Page 417 of text.

LZ
MSS is a variable used by TCP to determine the size of the largest segment to send. TCP waits until having collected MSS bytes from the sending process and then sends a segment. MSS is usually set to the MTU of the directly connected ntework, minus the size of the TCP and IP headers. on Page 415 of text.

LZ
A group of networks and routers, subject to a common authority and using the same intra-domain routing protocol.

LZ
The protocol used to exchange inter-domain routing information among routers in the same domain.

LZ
A lowest-cost-path algorithm used in intra-domain routing. Each node advertises reachability information and associated costs to its immediate neighbors and uses the updates it receives to construct its forwarding table. The routing information protocol (RIP) uses a distance-vector algorithm. on Page 245 and Page 820 of text.

! !

CSC!458/2209!–!Computer!Networks! ! Page!3!of!4!

!
Part!III!@!Longer!Questions![18!points]!
!
1.! Routing! Protocol! [2! points].! Consider! the! network! topology! shown! below.! The! topology!
consists! of! multiple! routers! interconnected! by! fullCduplex! links.! Each! link! has! a! static! cost!
associated!with!it,!which!represents!the!cost!of!sending!data!over!that!link.!For!example,!the!link!
from! B! to! F! has! a! cost! of! 6.! All! of! the! links! are! symmetric! (i.e.! the! cost! is! the! same! in! both!
directions,!such!as!between!B!and!F).!
!

!
!
!
(a)!If!we!use!BellmanCFord’s!distributed!algorithm!to!find!the!shortest!path!between!every!pair!
of!nodes,!how!many!steps!will!it!take!for!the!algorithm!to!converge!in!this!case?!Explain.!
!
(b)!In!general!if!we!have!a!network!with!N!nodes,!what!is!the!maximum!number!of!steps!for!the!
BellmanCFord!algorithm!to!converge?!Explain.!
!
2.! Spanning!Trees! [4!points].!Ethernet! switches! compute!a! spanning! tree!using! the! spanningC
tree!protocol.!!!
!
2a)!Explain!briefly!how!the!spanning!tree!protocol!works.!!(2!points)!
!
!
2b)!Do!the!switches! learn!the!network!topology!(connecting!the!switches),! like!routers!do!in!a!
linkCstate!protocol?!Does!each!pair!of!switches!communicate!over!a!shortest!path,! like!routers!
do!in!linkCstate!protocols?!!(2!point)!
!
!
!
!
!
3.!TCP![6!points].!Consider!a!TCP!flow!over!a!1CGb/s!link!with!a!latency!of!1!second!that!transfers!
a!10!MB!file.!The!receiver!advertises!a!window!size!of!1!MB,!and!the!sender!has!no!limitation!on!
its!congestion!window!(i.e.,!it!can!go!beyond!64!KB).!
!

A

B

C

E

F

D

G

1

6

3 1

1 1

3 1

4

1

4

LZ
You don’t need to compute the distance vectors to find out the answer of this question. You can simply find the length of the longest simple unweighted path in the graph.
So 6 steps are needed.
So the following calculations are not necessary for this question.

Step1 (0,1,3,inf,inf,inf,inf; 1,0,1,inf,3,6,inf; 3,1,0,4,1,inf,inf; inf,inf,4,0,inf,1,1; inf,3,1,inf,0,1,inf; inf,6,inf,1,1,0,4; inf,inf,inf,1,inf,4,0).
Step2 (0,1,2,7,4,7,inf; 1,0,1,5,2,4,10;2,1,0,4,1,2,5; 7,5,4,0,2,1,1; 4,2,1,2,0,1,5; 7,4,2,1,1,0,2; inf,10,5,1,5,2,0).
Step3 (0,1,2,6,3,5,8; 1,0,1,5,2,3,6; 2,1,0,3,1,2,5; 6,5,3,0,2,1,1; 3,2,1,2,0,1,3; 5,3,2,1,1,0,2; 8,6,5,1,3,2,0).
Step4 (0,1,2,6,3,4,7; 1,0,1,4,2,3,6; 2,1,0,3,1,2,4; 6,4,3,0,2,1,1; 3,2,1,2,0,1,3; 4,3,2,1,1,0,2; 7,6,4,1,3,2,0).
Step5 (0,1,2,5,3,4,7; 1,0,1,4,2,3,5; 2,1,0,3,1,2,4; 5,4,3,0,2,1,1; 3,2,1,2,0,1,3; 4,3,2,1,1,0,2; 7,5,4,1,3,2,0).
Step 6 (0,1,2,5,3,4,6; 1,0,1,4,2,3,5; 2,1,0,3,1,2,4; 5,4,3,0,2,1,1; 3,2,1,2,0,1,3; 4,3,2,1,1,0,2; 6,5,4,1,3,2,0)

LZ
N-1 steps for the worse case.

LZ
The spanning tree protocol is designed to eliminate loops in the forwarding topology. It provides a distributed manner for individual switches to cooperatively form a spanning tree topology: each switch first declares itself as the root and passes the configuration messages out to each of its interfaces identifying itself as the root with distance 0. Switches periodically receive these messages from their neighbours and update their view of the root. Upon receiving a message, a switch checks the root id. If the new id is smaller than the recorded one, it starts viewing that switch as root.
Switches compute their distance from the root. Also they add 1 to the distance received from a neighbour. Comparing these two values, they identify interfaces which are not on a shortest path to the root and exclude them from the spanning tree.

LZ
The spanning tree protocol is different from the link-state protocol. The first difference is the content exchanged between nodes - both the reachability and distance are exchanged in spanning tree configuration messages; only the reachability information is exchanged in link-state protocol. The second difference is that the shortest paths (from each switch to the root) are formed at the same time of forming the tree topology in Spanning tree protocol, whereas the shortest paths are calculated in the second stage after every node has learnt the network topology in the link-state protocol. The third difference is that the switches in spanning tree protocol only learn their paths to the root; but the routers learns their paths to all other routers in link-state protocol.

LZ
The switches communicate via a path with the root in the middle, not necessarily the shortest path directly between the two switches, hence unlike the pair of routers communicating via the shortest path in the link-state protocol.

! !

CSC!458/2209!–!Computer!Networks! ! Page!4!of!4!

(a)!How!many!RTTs!does!it!take!until!slowCstart!opens!the!send!window!to!1!MB?!
!
(b)!How!many!RTTs!does!it!take!to!send!the!file?!
!
(c)! If! the! time! to! send! the! file! is! given!by! the!number!of! required!RTTs!multiplied!by! the! link!
latency,!what!is!the!effective!throughput!of!the!transfer?!
!
(d)!What!percentage!of!the!link!bandwidth!is!utilized?!
!
!
4.! Power! [6! points].! In! class! and! the! textbook,! we! used! the! somewhat! arbitrary!measure! of!
“power”!to!characterize!network!performance.!The!usual!definition!of!power,!P,!is!given!by:!
!

delay&average
load

=P !

(a)!Explain!why!this!definition!of!power!is!commonly!used,!and!in!what!sense!it!is!“arbitrary”.!
!
(b)! A! commonly! used! approximation! to! the! relationship! between! normalized! load! (which! can!

vary! between! 0! and! 1! only)! and! average! delay! is
λ−

=
1
1d ;! where! λ! is! the! normalized! load!

offered!to!the!network!and!d!is!the!average!delay!of!packets!passing!through!the!network.!Find!
and!sketch!the!value!of!power,!P,!as!a!function!of!the!offered!load!for!this!network.!Be!sure!to!
show!the!minimum!and!maximum!values!of!power!and!load,!as!well!as!the!value!of!offered!load!
that!maximizes!the!power.!
!
(c)!Now!suppose!we!modify!the!definition!of!power!to!give!more!emphasis!to!throughput!than!

delay,! i.e.! let! us! have
d

P
2λ

= .! Sketch! the! new! power! function! against! the! offered! load,! being!

careful!to!show!the!maximum!and!minimum!values!of!both!load!and!power,!as!well!as!the!value!
of! load!that! leads!to!maximum!power.!Comment!on!why!the!value!of! load!that!maximizes!the!
power!is!larger!than!in!the!previous!part!of!the!question.!
!
!
!

Total!Marks!=!25!points!
!

LZ
Assuming TCP packet size is 1500 Bytes, 1MB is about 1000000/1500=667 packets.
Starting from initial congestion window size of 1 packet, after each RTT the window size doubles. Therefore, we need to find the smallest n such that:
2^n>=667 => n=10
After 10 RTTs the window size opens to 1Mb which equals to the advertised window size.

LZ
During the first 10 RTTs of slow-start, 1500B*(1+2+4+…+512) = 1534500B is transmitted. Starting from the 11th RTT, the sender will send 1MB to the network. Hence the remaining file takes (10MB-1.5345)/1MB = 8.4655RTT to finish. Hence in total, it takes 10RTT + 9RTT = 19RTT to send the file.

LZ
Throughput = Transfer Size / Transfer Time = 10 MB / 19*1 second = 0.5263 MB/s
(We assume that the Acks are immediately received and so the latency is 1sec)

LZ
Utilization = 0.5263*8 Mbps / 1000 Mbps = 0.42 %

LZ
The throughput and delay are two principal metrics of network performance. Yet there is a reciprocal-like relation between these two metrics: if we were to increase the load offered to the network, we get better throughput, but the average queue length at the intermediate switches can increase, thus increase the average delay. Hence this definition of power is common. It is arbitrary in the senses: (1) it doesn't consider the finite buffer in switches (2) it is defined relative to a single flow, not clear how it can extend to multiple competing flows. on Page 489 of text.

LZ
P = lambda - lambda^2. plot the parobola (lambda, P). The maximum P is 0.25 when lambda = 0.5. The minimum P is 0 when lambda = 0 or 1.

LZ
P = lambda^2 - lambda^3. Plot the parabola (lambda, P). To get the maximum of P, set the derivative to zero P' = 2*lambda - 3*lambda^2 = 0, hence the maximum is attained when lambda = 2/3 = 0.6667, and the maximum P = 4/27 = 0.14815. The maximum of P is attained when the load is larger than (b) because the power function in (c) emphasis more in the throughput by taking the nominator to be lambda square.

