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Announcements
• Programming Assignment 2: Simple Router

• Due Friday March 28th at 5pm.

• This week’s tutorial: 
• Programming Assignment 2 Q&A

• Next week: 
• Sample final exam review
• Sample final and solutions posted on class website

� Final Exam
� Time: April 26th, 2pm – 4pm
� Location: MS 3153 

� Please double check before the exam



The Story So Far
� Layering

� Link layer
� Network layer
� Transport layer

� Queueing Mechanisms, Middleboxes, 
� Software-Defined Networking

� Today: Data Center Networks & Networks for 
Machine Learning
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Machine Learning and Computer Networks
� Machine Learning (ML): 

� Significant growth in the recent years
� Lots of attention and impact

� How does it affect computer networking?
� Networks for ML: can traditional networks handle 

ML requirements?
� Our focus is on data center networks here.

� ML for Networks: how can ML be used to enhance 
computer networks?
� Networks in general.
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Today’s Lecture
� Data Center Networking

� Design Decision
� Topology
� Transport

� Networks for ML

� ML for Networks
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Data Center Network (DCN)
� A network of computing and storage 

resources
� Proximity of components (within the data 

center) facilitates communication, i.e., high-
performance

� Can lead to reduced cost and overheads
� Major cost upfront but less cost in long run.

� Functions
� Data Storage and Management

� Security, efficiency, reliability
� Application Hosting

� End-users and business applications, cloud 
computing and SaaS models

� Data Processing
� Large volumes of data for analytics and 

processing, big data and AI workloads
� And more …
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� Early Data Centers (1960s-1980s)
� Mainframes 
� Centralized computing: limited networking
� Point-to-point and proprietary connections

� Client-Server Model (1990s)
� Distributed computing
� Ethernet, TCP/IP

� Rise of Virtualization (2000s)
� Virtual machines 
� Efficiency and scalability
� VLANs, network segmentation

� Cloud Computing Era (2010s)
� Cloud services
� SDN: Scalability and automation

� Edge Computing and IoT (2020s)
� Demand for low-latency, distributed network architectures
� Micro data centers closer to data sources

� Machine Learning and AI (2010s-Present)
� Exascale high-performance computing
� Network as the bottleneck: stringent performance requirements

Evolution of DCN
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DCN Design Dimensions



Three-Tier Architecture
Hierarchical tree network 
topology
� Commonly used in traditional 

DCNs

Three layers: 
� Core: 

� Layer 3 (network layer)
� Fully connected high-speed mesh 

of multiple routers
� Connect to the external networks

� Aggregation:
� Layer 3 and 2 (network and link 

layers)
� Connect to core with few high-

speed links (e.g., 100 Gb/s links), 
to access with many low-speed 
links (e.g., 10Gb/s) → simplify 
cabling

� Middleboxes sit here (firewall, 
load balancer, …)

� Access: layer 2 (link)
� Connect to each server in the rack 

(e.g., through one or two 10Gb/s 
links) 

� VLANs used to limit broadcast

Modular design
� Easy to expand
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Traffic Direction in 3-Tier Architecture
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Within a rackTo/From
Internet

Switching and Routing:
� Communication within a rack 

or within the same 
aggregation switch happens at 
link layer (switching).

� Traffic going through core 
(between aggregation 
switches and to/from external 
networks/Internet) happens at 
network layer (routing).

� Different flows might have 
different RTTs (even within 
DCN)

Total Link Capacities at Each 
Layer Might Be:
� Equal to lower layers, or
� Less (over-subscription)
� Reason: 

� Cost-saving: less bandwidth → 
lower cost

� Locality: most communication 
within the same rack, or within 
the same cluster.
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To/from Internet
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Fat-Tree Architecture
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Properties of Fat-Tree Architecture:
� Scalable: easily expandable
� Low latency, high throughput
� Cost-effective

� Commodity hardware
� Lower operational costs

Reliability and Improved Performance:
� Edge and aggregation switches are grouped into “pods”.

� Multiple-paths (choice of aggregation and core)
� Automatic failover

� Leads to better load balance, redundancy, and thus
� Reliability and high availability, and 
� Improved performance



Other DCN Architectures/Topologies
� Mesh: every node is connected to every other node

� Direct communication, costly, but high performance

� Leaf-Spine topology: two-tier structure, servers and 
storage node connect directly to leaf switches
� Switched environment, VLANs to limit broadcasts

� Hyper-cube: multi-dimensional cube structure
� Used in high-performance computing and ML 

solutions

� Hybrid: combine two or more topologies
� Tailored to specific requirements of DCNs

� And many more …

� Question: what are the properties of each of these 
topologies?
� End-to-end latency?
� Simplicity? 
� Scalability?
� …
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Transport in Data Center Networks
� Data center network properties:

� Extremely short RTTs
� Extremely high bandwidth links
� Extremely large transfer
� Single authority (typically)

� Leads to new challenges and opportunities 
� Can you think of any challenges for providing good 

transport solutions?
� How about opportunities?
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ECN + DCTCP
� Easier to ensure ECN is enabled on all devices in DCN

� Single authority 

� DCTCP
� A variant of TCP 
� Uses ECN as congestion signal Use → reduced packet loss

� How does DCTCP work?
� Congestion measured based on fraction of packets marked with ECN (called ⍺).

� ⍺ is the moving average of the observed fractions (like estimatedRTT)
� Adjust congestion window based on the extent of congestion: cwnd  ⃪  cwnd x (1- 
⍺/2)
� Instead of halving the window in case of congestion.

� DCTCP Properties:
� More responsive and less aggressive to network conditions compared to traditional 

TCP
� Keeps queue lengths shorter (as reacts faster) → low latency
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Link Layer Flow Control

Two prominent techniques:
� Credit-based
� Pause-based

CSC 458/CSC 2209 – Computer Networks 16University of Toronto – Winter 2025

Transmit Queue Receive Buffer
Data Packets

Flow control mechanism used to create lossless networks.
� Not to be confused with flow control in transport layer which is end-to-end.
� Setup: two nodes (end-hosts or switches) connected via a link. 

� Both have buffer (transmitter queue and receive buffer).

� Goal: ensure the receiver can handle the traffic injected on the link → no 
packet loss



Credit-Based Link-Level Flow Control

� Receiver provides credits to the sender when it has room
� Credit unit: bytes or packets

� Credit allocation:
� At the beginning certain (fixed) credit is allocated.

� Question: how much credit should be allocated initially?

� Transmitter uses credit when transmitting.
� Pauses if there is no more credit available.

� Receiver replenishes transmitter credits as receiver buffer becomes available.

� Note: we also can have credit-based congestion control. This is not what 
we are covering here. The concepts are similar, but at different layers.
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Transmit Queue Receive Buffer
Data Packets

Credit



Pause-based Link-Level Flow Control

� Transmitter does not need permission to start.

� Receiver signals the transmitter when it is running out of buffer 
space.
� When buffer occupancy goes above a fixed pause-threshold.
� Pause-frame sent to transmitter
� Transmitter halts transmission

� Once the receiver buffer has sufficient space … 
� Receiver sends a resume frame to the transmitter
� The transmitter can resume sending.
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Transmit Queue Receive Buffer

Data Packets

PFC Pause 
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Priority-based Flow Control (PFC)
� Allows multiple priority-

queues.

� Pause individual queues not 
all traffic
� Allows other priority queues 

to continue transmitting 
even if a single queue is 
paused.

� Improves impact of pause on 
non-congested traffic to 
some extent

� Still, we might pause non-
congested flows
� Why? 
� Is there an easy way to solve 

this problem?

� Known issues: head-of-line 
blocking (deadlock), PFC 
storm
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Remote Direct Memory Access
� Directly write to remote server’s memory

� Both sides register memory regions to give RDMA direct access permission and 
mapping 

� Need trust/cooperation between two ends 

� RDMA-capable NIC (RNIC) handles data transfer entirely in hardware
� No need to involve CPU for transfer

� Queue Pairs (QPs): a send queue and a receive queue.
� Supports various operations like send, receive, read, and write. 



Benefits of RDMA
� Low Latency

� Minimizes delays by avoiding CPU intervention.
� Ideal for applications requiring real-time data processing.

� High Throughput
� Enables faster data transfer rates.
� Suitable for high-performance computing and large data sets.

� Reduced CPU Load
� Frees up CPU resources for other tasks.
� Improves overall system efficiency.

� Zero-copy data transfer.
� Eliminate (or minimize data copies)

� Applications: High-Performance Computing (HPC), Storage, …



From Proprietary to Commodity
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� Original technology InfiniBand
� Touching physical layer, link layer, and transport layer in the stack.
� Small number of vendors

� Later RDMA enabled over Ethernet
� RoCE: RDMA over Converged Ethernet
� With and without PFC support (RoCE v1 vs. v2)

� And even in WAN
� iWARP (Internet Wide-Area RDMA Protocol)
� Implemented over TCP/IP, no need for lossless network
� Significant challenges here, especially over long distances



Networks for Machine Learning
� Data Center Networks have evolved significantly 

� To accommodate demands for modern applications.
� Example: many novel congestion control algorithms in recent years:

� Swift, timely, HPCC, DCQCN, …
� Enablers: more accurate information from network (exact queue 

occupancy), assumptions about start rate (start at line rate), etc.

� Machine learning applications have grown significantly as well.
� Used more in various domains, solving a wide range of problems.
� At the same time, ML applications have higher demands from the 

underlying network

� Question: are existing DCN solutions enough?
� I.e., can they provide the high-performance connectivity needed for 

ML applications?
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Challenges: ML Workloads

� ML workloads can be extremely 
large:
� E.g., Training of Large-Language 

Models (LLMs) 

� Need various forms of parallelism
� Data parallelism
� Model parallelism
� Hybrid

� ML  workloads have extremely 
high requirements from the 
network:
� High bandwidth
� Low latency 
� Low jitter (variations in delay)

� Goal: Keep expensive GPUs busy
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Challenges: End of Moore’s Law
� Moore’s Law: the number of transistors on a microchip will 

double approximately every two years.
� For years, Moore’s law meant we could easily grow compute 

power according to growth in demand.

� End of Moore’s Law: recently, we have hit a wall and 
cannot continue growing compute per node as predicted 
by the Moore’s Law.
� However, the demand keeps growing …
� For ML even faster than what Moore’s law could handle.

� We need to add more nodes to scale to the demands of ML 
means.
� More nodes → more communication → increased need for 

network.
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All of this leads to significant pressure on the network (throughput, latency, reliability, …)



Challenges: Flow Dependencies 
� Handling many independent flows in a network makes many network 

problems easy (easier) to solve
� Random arrivals, each flow has a small share of bandwidth
� Why?

� In ML, we have few flows
� Having few flows means each flow can have a large fraction of link bandwidth

� ⇒ Any interaction between flows can lead to significant performance degradation

� In ML flows have direct/indirect dependencies
� Dependence between compute and communication

� ⇒ flows directly or indirectly depend on each other 
� ⇒ Performance degradation in one flow can impact the performance of the entire job

� Providing high-performance connectivity for ML workloads is extremely 
challenging. 
� Due to scale, high-performance requirements (bandwidth, latency, …), larger flows, 

dependencies, …

� Example: load balancing in ML
� Even two flows sharing a path can significantly reduce the overall performance.
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What Makes ML Different: Opportunities
� ML workloads are more more predictable

� Repeating patterns of communication
� Collective Communications: scatter, gather, all-reduce, …

� Knowing communication patterns ⇒ opportunities for …
� Building specialized hardware

� E.g., topology that matches the flow requirements
� Today’s most successful ML networking solutions 

� Build network solutions that adapt based on application 
requirements
� Application-aware scheduling
� Reconfigurable topology
� Adaptive routing, …

� Even without prediction, access to “Collective Communication 
Libraries” can provide significant opportunities.
� Examples to come.
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Network Topology 
� DCN topology: fat-tree, leaf-spine, …

� Static and uniform
� Needs to work with a wide range of workloads

� Tuned for average workload

� Distributed ML application have high demand which is not necessarily uniform
� More demand for certain paths

� Two options to deal with extra traffic
1. Add extra capacity and over-provision; or
2. Use existing capacity better: 

� Measurement studies show there is extra capacity available, it just needs to be used 
effectively

� How can we adapt the topology to match demand?
1. Customized the topology for specific classes of traffic

� Special-purpose design
� Can be optimal, but very expensive
� What happens if new communication patterns emerge?

2. Dynamically rearrange the topology
� How?
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Reconfigurable DCN Topology 
� Needs to adapt topology to workload

� Even more important when you share the infrastructure:
� Cloud-based ML training, or various ML jobs sharing the network

� Optical Circuit Switching: 
� Reconfigure input/output connectivity of switch ports
� Avoids electronic-optic-electronic conversion
� Various technologies: 

� MEMS-based Switching: mechanically rearrange mirrors to change 
connectivity of ports

� Arrayed Wave Guide (AWG) Switching: change wavelength to 
connect to different output ports

� Benefit: shifting capacity to where it is needed on demand

� Challenge: reconfiguration might take some time
� Not ideal for typical packet switching scenarios

� What if we know the demand and it is fairly stable?
� Google’s Jupiter: estimate demand matrix, adapt topology using a 

fast control plane

� ML Workloads are predictable ⇒ opportunity to change the switch 
connectivity to meet demand in real time

� RDCN performance improvements:
� High bandwidth (1.6-4x increased in available bandwidth), 70-

80% lower power, micro to nano-second scale delay

CSC 458/CSC 2209 – Computer Networks 29University of Toronto – Winter 2025

Mirrors on Motors

Input 1 Input 2 Input 3 Output 1 Output 2 Output 3

MEMS-based Optical Circuit Switch

Change 

Wavelength 



Adapting Other Network Functions
� Topology is only one dimension

� What about: routing, prioritization, scheduling, 
…?

� How can we optimize network behavior based on 
application requirements?
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Application-Aware Networking
� To optimize network behavior, we need to provide information about 

application requirements.
� Application-Aware Networking
� Today’s networks lack this information

� Main Question: how can we provide information from applications to the 
network?

� Naïve approach: 
� Create new interfaces between network and applications. 
� Allow application developers provide more information about the requirements 

� E.g., I need 10Gb/s bandwidth for 2 seconds.

� This is not very practical
� Putting the burden on application developer 
� She/he might not even know the requirements 

� Alternative: create tools/mechanisms to automatically generate signals that can 
help network adjust itself based on application requirements, or state.
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Example: Incast Problem
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� Consider a simple multi-get request from a 
distributed storage.
� Get some content from several servers

� The request can trigger large number of flows.
� Quickly fill up the buffer at switch → lots of 

packet drops
� This is called the incast problem
� Very challenging problem in DCNs

� Network does not know when incast will 
happen
� Cannot react in a timely manner.
� Over-provisioning seams to be the only viable 

solution.

� Applications, however, have information that 
can be used to predict incast.
� E.g., multi-get request can be seen as a hint.

Request

Response



Networks and Applications*

� Imagine, we have a system that 
observes network events 
� E.g., incast in switches

� Also, it can observe certain events 
in applications 
� E.g., when each function is called

� We correlate these events find out 
triggers on the end-host side for 
network events
� I.e., which application events lead 

to network problems 
� E.g., each incast event in the 

network is preceded by a multi-get 
request 1 RTT before

33

* Mortazavi, S.H., Munir, A., Bahnasy, M.M., Dong, H., Wang, S. and Ganjali, Y. 2022. EarlyBird: automating application 
signalling for network application integration in datacenters. Proceedings of the ACM SIGCOMM Workshop on Network-
Application Integration (New York, NY, USA, Aug. 2022), 40–45.

Correlation between selected function calls and 

micro-bursts for a distributed ML application.

Probability of Incast in Future

Incast Probability with SmartTag



SmartTags*

� We can use this information to generate 
messages on the end-host to notify the 
network of future network events.
� We call these SmartTags.

� We can use SmartTags to change the 
behavior of the network
� Example. To alleviate incase we can 

reroute traffic, delay certain flows, …

� Can lead to significant improvements in 
network behavior.
� Improvements that are not possible in 

today’s networks.

� Can be very effective for ML applications.
� Automatically predict flow arrivals to 

change topology, reroute traffic, adjust 
flow priorities, etc.

� Many more opportunities …

34

Packet Drops with and without SmartTags

* Munir, A., Mortazavi, S.H., Bahnasy, M.M., Baniamerian, A., Wang, S., Guan, S. and Ganjali, Y. 2022. SmartTags: bridging applications and network for proactive performance 
management. Proceedings of the ACM SIGCOMM Workshop on Network-Application Integration (New York, NY, USA, Aug. 2022), 46–52.

SmartTag

Response

SmartTags are indicators of future events: 

opportunity to prepare network.



Network Aware Applications
� Application-Aware Networking:

� Adapt network based on application requirements, signals, 
…

� Given tighter integration of applications and network why 
not use network information to help applications?
� Adapt application to network state.

� Example: scheduling ML jobs based on network state
� Each application is aware of its own requirements at best. 

� But not network state (e.g., available bandwidth): application 
must estimate network state by probing

� Network can provide information about its state 
� Help application-level scheduling
� As well as state of other applications 
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Cassini: Network-Aware Job Scheduling*

� CASSINI is a network-aware job scheduler for 
ML clusters 
� Goal: schedule ML jobs based on network state 

and other jobs in the system to ensure smooth 
operation

� Step 1. Profile individual jobs
� Identify communication patterns
� Why can we do this here?

� Step 2. Convert to a geometric abstraction that 
represents the network demand
� Perimeter of the circle: job's iteration time
� Arcs of the circle: job’s up and down phases.

� Question. How can we use this geometric 
abstraction to find good job schedules?
� Rotating the circle is equivalent to shifting the 

job in time.

36
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Data Parallelism Communication Patterns

Similar, but more complex, 

patterns for other type of 

parallelism

* Rajasekaran, S., Ghobadi, M. and Akella, A. 2024. CASSINI: Network-Aware Job Scheduling in Machine Learning Clusters. (2024), 1403–1420.



Cassini: Network-Aware Job Scheduling
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� CASSINI is a network-aware job scheduler for 
ML clusters 
� Goal: schedule ML jobs based on network state 

and other jobs in the system to ensure smooth 
operation

� Step 1. Profile individual jobs
� Identify communication patterns
� Why can we do this here?

� Step 2. Convert to a geometric abstraction that 
represents the network demand
� Perimeter of the circle: job's iteration time
� Arcs of the circle: job’s up and down phases.

� Question. How can we use this geometric 
abstraction to find good job schedules?
� Rotating the circle is equivalent to shifting the 

job in time.



Cassini: Network-Aware Job Scheduling

� Step 3. For each link in the network: 
� Overlays the circles of jobs going through the link and rotates them 
� Find a configuration that minimizes the total bandwidth demand 
� This gives us a set of relative shifts in time

� Step 4. Extend link-level compatibility to cluster level
� Start with job 1, set time to 0. 
� For each job that shares a bottleneck, use the method above to find the required 

shift in time.

� If there is no loop the output would be a job schedule
� I.e., when each job should start

� Question 1: what if jobs have different iteration periods? 
� Question 2: can we have a loop in the graph above?
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ML for Networks
� So far, we have focus on how to enhance networks 

to meet the stringent requirements of ML 
applications.

� Given the advances in ML, a natural question is: 
how can we use ML to enhance computer 
networks?

� Any suggestions?
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ML for Networks Examples - Part 1
Traffic Prediction and Forecasting: 

� We saw how knowing the pattern of traffic in ML workloads can 
help us make the network better.

� How about using ML to predict network traffic patterns
� To optimize resource allocation, …

� We can use time-series models (e.g., ARIMA, LSTMs, etc.).
� Analyze historical traffic data to anticipate congestion.

Congestion Control: 
� We have seen some examples of how congestion control can be 

enhanced for certain environments (DCN, wireless, …) and 
workloads 

� We can use ML to dynamically adjust flow rates 
� Minimize packet loss, delay, …
� Also, use ML-based prediction of queue lengths or latency

� Train reinforcement learning (RL) models for real-time congestion-
mitigation

� Examples: Orca, PCC-Vivace, …

40

* Abbasloo, S., Yen, C.-Y. and Chao, H.J. 2020. Classic Meets Modern: a Pragmatic Learning-Based Congestion Control for the Internet. Proceedings of the Annual conference of the ACM 
Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (Virtual Event USA, Jul. 2020), 632–647.
** Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael Schapira. 2018. PCC -Vivace: Online-Learning Congestion Control. In 15th USENIX 
Symposium on Networked Systems Design and Implementation (NSDI’18). 343–356.



ML for Networks Examples – Part 2
Network Routing and Load Balancing:

� Typically, rely on static routes
� Shortest path based on fixed costs and randomized load balancing

� If information about link loads are available, we can use 
reinforcement learning for adaptive path selection.
� Distribute load evenly across servers in data centers.

� E.g., apply graph neural networks (GNNs) to analyze network 
topologies, and find optimal routers.

Network Configuration Automation:
� Configuring switch/routers a tedious task, typically done manually
� We can use ML to automate switch/router configurations.

� Use natural language processing (NLP) to translate operator 
requirements to device configuration.

� Train models on historical configuration logs to predict optimal 
settings.

� Avoid misconfigurations (that can lead to outages) and optimize 
network performance.

CSC 458/CSC 2209 – Computer Networks 41University of Toronto – Winter 2025



ML for Networks Examples – Part 3
Network Management and Troubleshooting:

� Automatic configuration is done when the network is setup. 
� We can also think of more dynamic scenarios.

� How can we manage the network? 
� Ensure optimized behavior

� We have talked about SDN control applications.
� Routing, access control, load balancing, …

� A management layer above can help make high-level decisions on 
resource allocations, adapting control applications, etc. 
� Ideally, use natural language to describe the intent of network 

operators, called intent-based networking
� ML can provide the tools needed to convert operator intent to rules, 

and policies 
� Push to the network through SDN control and management plane.
� Also, optimize behavior based on operator intent.

� ML can also provide mechanisms for automated interaction with 
customers 
� E.g., troubleshooting customer systems in real-time. 
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