PA2 TUTORIAL Introduction to Internet Routing and Longest **Prefix Matching**

CSC 458

Parsa Pazhooheshy

BACKGROUND

• Internet Overview: The internet is a global network of connected computers and devices. These devices communicate using routers, which find the best path for each data packet to its destination.

Routers! Edge of the network...

- A router is a device that connects two or more networks or subnetworks.
- Routers direct the traffic on the internet, ensuring that data reaches its correct destination.
- Routers forward packets based on destination IP addresses.

LONGEST PREFIX MATCHING

- Longest prefix matching is a method used by routers to select the best route
- Done by comparing the destination IP to stored routes, choosing the one with the longest prefix match.

LONGEST PREFIX MATCHING

- Each router maintains a unique routing table
- Whenever a new packet arrives, router should find the row that best *matches* the packet destination

Route Prefix	Prefix Length	Next Hop	Interface Num
10.4.1.32	27	В	0
10.4.2.0	24	С	1
10.0.0.0	8	А	3

A Sample (simplified) Routing Table

- Each router maintains a unique routing table
- Whenever a new packet arrives, router should find the row that best *matches* the packet destination
- Assume for an entry of the routing table the prefix length is X:
 - We say a packet matches that entry of:
 - The destination IP of the packet matches the route prefix for the first X most significant bits (MSBs)

Route Prefix	Prefix Length	Next Hop	Interface Num
10.4.1.32	27	В	0
 10.4.2.0	24	С	1
10.0.0.0	8	А	3

- A Packet arrives with
 - <u>Destination IP: 10.4.1.45</u>
- How to find the best matching row of routing table?
- For every row of routing table check if the destination IP of the packet matches the route prefix for the first X most significant bits (MSBs).

Route Prefix	Prefix Length	Next Hop	Interface Num
10.4.1.32	27	В	0
 10.4.2.0	24	С	1
10.0.0.0	8	А	3

Destination IP: 10.4.1.45

- Route 1
 - Destination IP:10.4.1.45
 - Route Prefix/Prefix Length: 10.4.1.32/27:
 - They match

00001010.00000100.00000001.00101101

00001010.00000100.00000001.00100000

Route Prefix	Prefix Length	Next Hop	Interface Num
10.4.1.32	27	В	0

- Route 2:
 - Destination IP: 10.4.1.45: 00001010.00000100.0000001.00101101
 - Route Prefix/Prefix Length: 10.4.2.0/24: 00001010.00000100.00000010.00000000
 - Do they match?

Route Prefix	Prefix Length	Next Hop	Interface Num
 10.4.2.0	24	С	1

- Route 2:
 - Destination IP: 10.4.1.45:
 - Route Prefix/Prefix Length: 10.4.2.0/24:
 - They don't match!

00001010.00000100.00000001.00101101

00001010.00000100.00000010.0000000

Route Prefix	Prefix Length	Next Hop	Interface Num
 10.4.2.0	24	С	1 –

- Route 3:
 - Destination IP: 10.4.1.45:
 - Route Prefix/Prefix Length:10.0.0/8:
 - Do they match?

00001010.00000100.00000001.00101101

00001010.0000000.00000000.000000000

Route Prefix	Prefix Length	Next Hop	Interface Num
10.0.0.0	8	А	3

- Route 3:
 - Destination IP: 10.4.1.45:
 - Route Prefix/Prefix Length:10.0.0.0/8:
 - They match.

00001010 00000100.00000001.00101101

00001010.00000000.00000000.000000000

Route Prefix	Prefix Length	Next Hop	Interface Num
10.0.0.0	8	А	3

- Route 1 and 3 matched the packet IP.
- Which one to choose?
 - The route that has the **longest prefix length**
- So
 - Send on Interface 0

Matched and had largest prefix (27)

	Route Prefix	Prefix Length	Next Hop	Interface Num	
Matched but	10.4.1.32	27	В	0	
didn't have the	10.4.2.0	24	С	1 –	→ Didn't match
largest prefix (8)	10.0.0.0	8	А	3	

ROUTER BLOCK DIAGRAM IN PA2

 A router contains several network interfaces and can receive IP datagrams on any one of them.

- The router forwards any datagram it receives to the next hop, on the appropriate outbound interface.
- The routing table tells the router how to make this decision.

Implement two methods in Router class

- 1- add_route
 - Install new route in routing table of the router
 - Each route has 4 parts (same as the table covered in previous slides):
 - route_prefix
 - prefix_length
 - interface_num
 - next_hop:

Implement two methods in Router class

2- route

- Forward each datagram it receives:
 - to the correct next hop
 - on the correct outgoing NetworkInterface.

void Router::route()

- The Router performs Longest-Prefix Matching to find the best rout.
 - If no routes matched, the router drops the datagram.
- The router decrements the datagram's TTL (time to live).
 - If the TTL was zero already, or hits zero after the decrement, the router should drop the datagram.
- The router recalculates the checksum of the packet after reducing TTL.
- The router sends the modified datagram on the appropriate interface (interface(interface num)->send datagram()) to the appropriate next hop.

WHAT TO SUBMIT?

- network_interface.cc,
- network_interface.hh,
- router.cc,
- router.hh
- writeups/pa2.md