
CSC 458/2209 – Computer Networking Systems

Handout # 12:
Transport Protocols

Professor Yashar Ganjali
Department of Computer Science
University of Toronto

ganjali7@cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

mailto:yganjali@cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

CSC 458/CSC 2209 – Computer Networks 2University of Toronto – Winter 2025

Announcements
• Programming Assignment 1

• Due Friday February 14th at 5pm.
• Submission instructions on course web page.

• Problem Set 1
• Solutions will be posted on Friday

• This week’s tutorial:
• Programming Assignment 1 Q&A

• Reading for this week:
• Chapter 5 of the textbook

Announcements – Cont’d
� Midterm exam

� L0101: Monday February 24th
� L0201: Tuesday February 25th
� In class: same room and time as the lecture
� For undergraduate and graduate students

• Sample midterm and solutions on class web page.

� Everything covered up to the end of today’s lecture
� Emphasis on the slides, problem set, and sample

midterm provided.
� Textbook: up to Chapter 5

CSC 458/CSC 2209 – Computer Networks 3University of Toronto – Winter 2025

Role of Transport Layer
� Link layer

� Transfer bit frames between neighboring nodes
� E.g., Ethernet

� Network layer
� Logical communication between nodes
� Hides details of the link technology
� E.g., IP

� Transport layer
� Communication between processes (e.g., socket)
� Relies on network layer and serves the application layer
� E.g., TCP and UDP

� Application layer
� Communication for specific applications
� E.g., HyperText Transfer Protocol (HTTP), File Transfer

Protocol (FTP), Network News Transfer Protocol (NNTP)

CSC 458/CSC 2209 – Computer Networks 4University of Toronto – Winter 2025

Today’s Lecture
� Principles underlying transport-layer services

� (De)multiplexing
� Detecting corruption
� Reliable delivery
� Flow control

� Transport-layer protocols in the Internet
� User Datagram Protocol (UDP)
� Transmission Control Protocol (TCP)

CSC 458/CSC 2209 – Computer Networks 5University of Toronto – Winter 2025

� Provide logical
communication between
application processes
running on different hosts

� Run on end hosts
� Sender: breaks application

messages into segments,
and passes to network
layer

� Receiver: reassembles
segments into messages,
passes to application layer

� Multiple transport protocol
available to applications
� Internet: TCP and UDP

Transport Protocols

CSC 458/CSC 2209 – Computer Networks 6University of Toronto – Winter 2025

Internet Transport Protocols
� Datagram messaging service (UDP)

� No-frills extension of “best-effort” IP
� Reliable, in-order delivery (TCP)

� Connection set-up
� Discarding of corrupted packets
� Retransmission of lost packets
� Flow control
� Congestion control (next lecture)

� Other services not available
� Delay guarantees
� Bandwidth guarantees

CSC 458/CSC 2209 – Computer Networks 7University of Toronto – Winter 2025

Do not overload the receiver

Do not overload the

network

� Host receives IP datagrams
� Each datagram has source

and destination IP
address,

� Each datagram carries one
transport-layer segment

� Each segment has source
and destination port
number

� Host uses IP addresses and
port numbers to direct the
segment to appropriate
socket

Multiplexing and Demultiplexing

CSC 458/CSC 2209 – Computer Networks 8University of Toronto – Winter 2025

source port # dest port #

32 bits

application

data

(message)

other header fields

TCP/UDP segment format

Unreliable Message Delivery Service
� Lightweight communication between processes

� Avoid overhead and delays of ordered, reliable
delivery

� Send messages to and receive them from a socket

� User Datagram Protocol (UDP)
� IP plus port numbers to support (de)multiplexing
� Optional error checking on the packet contents

CSC 458/CSC 2209 – Computer Networks 9University of Toronto – Winter 2025

SRC port DST port

checksum length

DATA

Why Would Anyone Use UDP?
� Finer control over what data is sent and when

� As soon as an application process writes into the socket
� … UDP will package the data and send the packet

� No delay for connection establishment
� UDP just blasts away without any formal preliminaries
� … which avoids introducing any unnecessary delays

� No connection state
� No allocation of buffers, parameters, sequence #s, etc.
� … making it easier to handle many active clients at

once
� Small packet header overhead

� UDP header is only eight-bytes long

CSC 458/CSC 2209 – Computer Networks 10University of Toronto – Winter 2025

Popular Applications That Use UDP
� Multimedia streaming

� Retransmitting lost/corrupted packets is not
worthwhile

� By the time the packet is retransmitted, it’s too late
� E.g., telephone calls, video conferencing, gaming

� Simple query protocols like Domain Name System
� Overhead of connection establishment is overkill
� Easier to have application retransmit if needed

CSC 458/CSC 2209 – Computer Networks 11University of Toronto – Winter 2025

“Address for www.cnn.com?”

“12.3.4.15”

Transmission Control Protocol (TCP)
� Connection oriented

� Explicit set-up and tear-down of TCP session
� Stream-of-bytes service

� Sends and receives a stream of bytes, not messages
� Reliable, in-order delivery

� Checksums to detect corrupted data
� Acknowledgments & retransmissions for reliable

delivery
� Sequence numbers to detect losses and reorder data

� Flow control
� Prevent overflow of the receiver’s buffer space

� Congestion control
� Adapt to network congestion for the greater good

CSC 458/CSC 2209 – Computer Networks 12University of Toronto – Winter 2025

An Analogy: Talking on a Cell Phone
� Alice and Bob on their cell phones

� Both Alice and Bob are talking

� What if Bob couldn’t understand Alice?
� Bob asks Alice to repeat what she said

� What if Bob hasn’t heard Alice for a while?
� Is Alice just being quiet?
� Or, have Bob and Alice lost reception?
� How long should Bob just keep on talking?
� Maybe Alice should periodically say “uh huh”
� … or Bob should ask “Can you hear me now?” J

CSC 458/CSC 2209 – Computer Networks 13University of Toronto – Winter 2025

Some Take-Aways from the Example
� Acknowledgments from receiver

� Positive: “okay” or “ACK”
� Negative: “please repeat that” or “NACK”

� Timeout by the sender (“stop and wait”)
� Don’t wait indefinitely without receiving some

response
� … whether a positive or a negative

acknowledgment

� Retransmission by the sender
� After receiving a “NACK” from the receiver
� After receiving no feedback from the receiver

CSC 458/CSC 2209 – Computer Networks 14University of Toronto – Winter 2025

Challenges of Reliable Data Transfer
� Over a perfectly reliable channel

� All of the data arrives in order, just as it was sent
� Simple: sender sends data, and receiver receives data

� Over a channel with bit errors
� All of the data arrives in order, but some bits corrupted
� Receiver detects errors and says “please repeat that”
� Sender retransmits the data that were corrupted

� Over a lossy channel with bit errors
� Some data are missing, and some bits are corrupted
� Receiver detects errors but cannot always detect loss
� Sender must wait for acknowledgment (“ACK” or “OK”)
� … and retransmit data after some time if no ACK arrives

CSC 458/CSC 2209 – Computer Networks 15University of Toronto – Winter 2025

TCP Support for Reliable Delivery
� Checksum

� Used to detect corrupted data at the receiver
� …leading the receiver to drop the packet

� Sequence numbers
� Used to detect missing data
� ... and for putting the data back in order

� Retransmission
� Sender retransmits lost or corrupted data
� Timeout based on estimates of round-trip time
� Fast retransmit algorithm for rapid retransmission

CSC 458/CSC 2209 – Computer Networks 16University of Toronto – Winter 2025

TCP Segments

CSC 458/CSC 2209 – Computer Networks 17University of Toronto – Winter 2025

CSC 458/CSC 2209 – Computer Networks 18University of Toronto – Winter 2025

TCP “Stream of Bytes” Service

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

B
yte 80

CSC 458/CSC 2209 – Computer Networks 19University of Toronto – Winter 2025

…Emulated Using TCP “Segments”

B
y

te
 0

B
y

te
 1

B
y

te
 2

B
y

te
 3

B
y

te
 0

B
y

te
 1

B
y

te
 2

B
y

te
 3

Host A

Host B

B
y

te
 8

0

TCP Data

TCP Data

B
y

te
 8

0

Segment sent when:
1. Segment full (Max Segment Size),

2. Not full, but times out, or

3. “Pushed” by application.

CSC 458/CSC 2209 – Computer Networks 20University of Toronto – Winter 2025

TCP Segment

� IP packet
� No bigger than Maximum Transmission Unit (MTU)
� E.g., up to 1500 bytes on an Ethernet

� TCP packet
� IP packet with a TCP header and data inside
� TCP header is typically 20 bytes long

� TCP segment
� No more than Maximum Segment Size (MSS) bytes
� E.g., up to 1460 consecutive bytes from the stream

IP Hdr

IP Data

TCP HdrTCP Data (segment)

CSC 458/CSC 2209 – Computer Networks 21University of Toronto – Winter 2025

Sequence Numbers

Host A

Host B

TCP Data

TCP Data

TCP

HDR

TCP

HDR

ISN (initial sequence number)

Sequence number

= 1st byte
ACK sequence

number = next

expected byte

CSC 458/CSC 2209 – Computer Networks 22University of Toronto – Winter 2025

Initial Sequence Number (ISN)
� Sequence number for the very first byte

� E.g., Why not a de facto ISN of 0?

� Practical issue
� IP addresses and port #s uniquely identify a connection
� Eventually, though, these port #s do get used again
� … and there is a chance an old packet is still in flight
� … and might be associated with the new connection

� So, TCP requires changing the ISN over time
� Set from a 32-bit clock that ticks every 4 microseconds
� … which only wraps around once every 4.55 hours!

� But, this means the hosts need to exchange ISNs

TCP Three-Way Handshake

CSC 458/CSC 2209 – Computer Networks 23University of Toronto – Winter 2025

CSC 458/CSC 2209 – Computer Networks 24University of Toronto – Winter 2025

Establishing a TCP Connection

� Three-way handshake to establish connection
� Host A sends a SYN (open) to the host B
� Host B returns a SYN acknowledgment (SYN ACK)
� Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

Data

A B

Data

Each host tells its ISN

to the other host.

TCP Header

CSC 458/CSC 2209 – Computer Networks 25University of Toronto – Winter 2025

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

CSC 458/CSC 2209 – Computer Networks 26University of Toronto – Winter 2025

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

Acknowledgment

Advertised window20 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

A tells B it wants to open a connection…

Step 2: B’s SYN-ACK Packet

CSC 458/CSC 2209 – Computer Networks 27University of Toronto – Winter 2025

B’s port A’s port

B’s Initial Sequence Number

A’s ISN plus 1

Advertised window20 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

CSC 458/CSC 2209 – Computer Networks 28University of Toronto – Winter 2025

Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

A tells B it is okay to start sending

Sequence number

… upon receiving this packet, B can start sending data

CSC 458/CSC 2209 – Computer Networks 29University of Toronto – Winter 2025

What if the SYN Packet Gets Lost?
� Suppose the SYN packet gets lost

� Packet is lost inside the network, or
� Server rejects the packet (e.g., listen queue is full)

� Eventually, no SYN-ACK arrives
� Sender sets a timer and wait for the SYN-ACK
� … and retransmits the SYN if needed

� How should the TCP sender set the timer?
� Sender has no idea how far away the receiver is
� Hard to guess a reasonable length of time to wait
� Some TCPs use a default of 3 or 6 seconds

CSC 458/CSC 2209 – Computer Networks 30University of Toronto – Winter 2025

SYN Loss and Web Downloads
� User clicks on a hypertext link

� Browser creates a socket and does a “connect”
� The “connect” triggers the OS to transmit a SYN

� If the SYN is lost…
� The 3-6 seconds of delay may be very long
� The user may get impatient
� … and click the hyperlink again, or click “reload”

� User triggers an “abort” of the “connect”
� Browser creates a new socket and does a “connect”
� Essentially, forces a faster send of a new SYN packet!
� Sometimes very effective, and the page comes fast

TCP Retransmissions

CSC 458/CSC 2209 – Computer Networks 31University of Toronto – Winter 2025

� Automatic Repeat reQuest
� Receiver sends

acknowledgment (ACK)
when it receives packet

� Sender waits for ACK and
timeouts if it does not
arrive within some time
period

� Simplest ARQ protocol
� Stop and wait
� Send a packet, stop and

wait until ACK arrives

Automatic Repeat reQuest (ARQ)

CSC 458/CSC 2209 – Computer Networks 32University of Toronto – Winter 2025

Time

Packet

ACK

T
im

e
o

u
t

Sender Receiver

CSC 458/CSC 2209 – Computer Networks 33University of Toronto – Winter 2025

Reasons for Retransmission

Packet

A
C

K

T
im

e
o

u
t

Packet

ACK

T
im

e
o

u
t

Packet

T
im

e
o

u
t

Packet

ACK

T
im

e
o

u
t

Packet

ACK

T
im

e
o

u
t

Packet

ACK

T
im

e
o

u
t

ACK lost

DUPLICATE

PACKET

Packet lost Early timeout

DUPLICATE

PACKETS

CSC 458/CSC 2209 – Computer Networks 34University of Toronto – Winter 2025

How Long Should Sender Wait?
� Sender sets a timeout to wait for an ACK

� Too short: wasted retransmissions
� Too long: excessive delays when packet lost

� TCP sets timeout as a function of the RTT
� Expect ACK to arrive after an RTT
� … plus a fudge factor to account for queuing

� But, how does the sender know the RTT?
� Can estimate the RTT by watching the ACKs
� Smooth estimate: keep a running average of the RTT

� EstimatedRTT = a * EstimatedRTT + (1 –a) * SampleRTT

� Compute timeout: TimeOut = 2 * EstimatedRTT

CSC 458/CSC 2209 – Computer Networks 35University of Toronto – Winter 2025

Example RTT Estimation
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

!""

!#"

$""

$#"

%""

%#"

! & !# $$ $' %E)% #" #* E) *! *& &# '$ '' !"E
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

+,-./0122 34RS-,R0T8122

A Flaw in This Approach
� An ACK doesn’t really acknowledge a transmission

� Rather, it acknowledges receipt of the data

� Consider a retransmission of a lost packet
� If you assume the ACK goes with the 1st transmission
� … the SampleRTT comes out way too large

� Consider a duplicate packet
� If you assume the ACK goes with the 2nd transmission
� … the Sample RTT comes out way too small

� Simple solution in the Karn/Partridge algorithm
� Only collect samples for segments sent one single time

CSC 458/CSC 2209 – Computer Networks 36University of Toronto – Winter 2025

TCP Sliding Window

CSC 458/CSC 2209 – Computer Networks 37University of Toronto – Winter 2025

Motivation for Sliding Window
� Stop-and-wait is inefficient

� Only one TCP segment is “in flight” at a time
� Especially bad when delay-bandwidth product is high

� Numerical example
� 1.5 Mbps link with a 45 msec round-trip time (RTT)

� Delay-bandwidth product is 67.5 Kbits (or 8 KBytes)
� But, sender can send at most one packet per RTT

� Assuming a segment size of 1 KB (8 Kbits)
� … leads to 8 Kbits/segment / 45 msec/segment è 182 Kbps
� That’s just one-eighth of the 1.5 Mbps link capacity

CSC 458/CSC 2209 – Computer Networks 38University of Toronto – Winter 2025

Sliding Window
� Allow a larger amount of data “in flight”

� Allow sender to get ahead of the receiver
� … though not too far ahead

CSC 458/CSC 2209 – Computer Networks 39University of Toronto – Winter 2025

Sending process Receiving process

Last byte ACKed

Last byte sent

TCP TCP

Next byte expected

Last byte written Last byte read

Last byte received

Receiver Buffering
� Window size

� Amount that can be sent without acknowledgment
� Receiver needs to be able to store this amount of

data

� Receiver advertises the window to the sender
� Tells the sender the amount of free space left
� … and the sender agrees not to exceed this amount

Window Size

Outstanding

Un-ack’d data

Data OK

to send

Data not OK

to send yet

Data ACK’d

CSC 458/CSC 2209 – Computer Networks 41University of Toronto – Winter 2025

TCP Header for Receiver Buffering

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

Fast Retransmission

CSC 458/CSC 2209 – Computer Networks 42University of Toronto – Winter 2025

Timeout is Inefficient
� Timeout-based retransmission

� Sender transmits a packet and waits until timer expires
� … and then retransmits from the lost packet onward

CSC 458/CSC 2209 – Computer Networks 43University of Toronto – Winter 2025

Fast Retransmission
� Better solution possible under sliding window

� Although packet n might have been lost
� … packets n+1, n+2, and so on might get through

� Idea: have the receiver send ACK packets
� ACK says that receiver is still awaiting nth packet

� And repeated ACKs suggest later packets have arrived

� Sender can view the “duplicate ACKs” as an early hint
� … that the nth packet must have been lost
� … and perform the retransmission early

� Fast retransmission
� Sender retransmits data after the triple duplicate ACK

CSC 458/CSC 2209 – Computer Networks 44University of Toronto – Winter 2025

Effectiveness of Fast Retransmit
� When does Fast Retransmit work best?

� Long data transfers
� High likelihood of many packets in flight

� High window size
� High likelihood of many packets in flight

� Low burstiness in packet losses
� Higher likelihood that later packets arrive successfully

� Implications for Web traffic
� Most Web transfers are short (e.g., 10 packets)

� Short HTML files or small images
� So, often there aren’t many packets in flight
� … making fast retransmit less likely to “kick in”
� Forcing users to like “reload” more often… J

CSC 458/CSC 2209 – Computer Networks 45University of Toronto – Winter 2025

Tearing Down the Connection

CSC 458/CSC 2209 – Computer Networks 46University of Toronto – Winter 2025

Tearing Down the Connection

� Closing the connection
� Finish (FIN) to close and receive remaining bytes
� And other host sends a FIN ACK to acknowledge
� Reset (RST) to close and not receive remaining

bytes

CSC 458/CSC 2209 – Computer Networks 47University of Toronto – Winter 2025

S
Y

N

S
Y

N
 A

C
K

A
C

K

D
a

ta

F
IN

F
IN

 A
C

K

A
C

K

time
A

B

F
IN

A
C

K

� Sending a FIN: close()
� Process is done sending

data via the socket
� Process invokes

“close()” to close the
socket

� Once TCP has sent all of
the outstanding bytes…

� … then TCP sends a FIN

� Receiving a FIN: EOF
� Process is reading data

from the socket
� Eventually, the attempt

to read returns an EOF

Sending/Receiving the FIN Packet

CSC 458/CSC 2209 – Computer Networks 48University of Toronto – Winter 2025

CSC 458/CSC 2209 – Computer Networks 49University of Toronto – Winter 2025

Conclusions
� Transport protocols

� Multiplexing and demultiplexing
� Sequence numbers
� Window-based flow control
� Timer-based retransmission
� Checksum-based error detection

� Next lecture (after reading week and midterm)
� Congestion control

