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Announcements
• Problem Set 1 out today (January 27th)

• 5 Problems (15 parts)
• Due: Friday, Feb. 7th at 5pm.
• Submit electronically on MarkUS.

• File name: ps1.pdf

• This week’s tutorial: 
• Problem Set 1 review and sample problems

• Programming assignment 1
• Due Friday February 14th at 5pm.
• Don’t leave to the last minute. 



Announcements – Cont’d
• Reading for this week:

• Chapter 3 of the textbook
• Next week: Chapter 4

� Midterm exam
� L0101: Monday February 24th 
� L0201: Tuesday February 25th 
� In class: same room and time as the lecture
� For undergraduate and graduate students
� Covers everything up to the end of Lecture 6 

(Transport Protocol)
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The Story 
• So far …

� Layers, and protocols
� Link layer
� Interconnecting LANs

� Hubs, switches, and bridges

� The Internet Protocol
� IP datagram, fragmentation
� Naming and addressing
� CIDR, DNS

� This time
� Routing and forwarding

Physical
Data Link
Network

Transport

Session

Presentation
Application
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The IP Datagram -- Recap 

Flags

vers

TTL

TOS

checksum

HLen Total Length

ID FRAG Offset

Protocol

SRC IP Address

DST IP Address

(OPTIONS) (PAD)

<=64 KBytes

Offset within 
original packet

Hop count

8 16 32bits       0



Fragmentation
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A

Ethernet MTU=1500 bytes MTU=1500 bytes
B

Source Destination

MTU<1500 bytes

Problem: A router may receive a packet larger than the maximum 
transmission unit (MTU) of the outgoing link.

R1 R2

Solution: R1 fragments the IP datagram into multiple, self-contained datagrams.

Data HDR (ID=x)

Data HDR (ID=x) Data HDR (ID=x) Data HDR (ID=x)

Offset>0
More Frag=0

Offset=0
More Frag=1



Fragmentation
� Fragments are re-assembled by the destination host; not by 

intermediate routers. 
� To avoid fragmentation, hosts commonly use path MTU 

discovery to find the smallest MTU along the path. 
� Path MTU discovery involves sending various size 

datagrams until they do not require fragmentation along 
the path. 

� Most links use MTU>=1500bytes today. 
� Try: 
traceroute –F www.uwaterloo.ca 1500 and
traceroute –F www.uwaterloo.ca 1501

� (DF=1 set in IP header; routers send “ICMP” error message, 
which is shown as “!F”).

� Bonus: Can you find a destination for which the path MTU 
< 1500 bytes?
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Switches vs. Routers
� We talked about switches (Link Layer).

� In network layer, we use “routers” to forward packets.

� Advantages of switches over routers: 
� Plug-and-play
� Fast filtering and forwarding of frames
� No pronunciation ambiguity (e.g., “rooter” vs. 

“rowter”)! J

� Disadvantages of switches over routers
� Topology is restricted to a spanning tree
� Large networks require large ARP tables
� Broadcast storms can cause the network to collapse
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Packet Routing and Forwarding
� Forwarding IP datagrams

� Class-based vs. CIDR 

� Routing Techniques
� Naïve: Flooding
� Distance vector: Distributed Bellman Ford 

Algorithm
� Link state: Dijkstra’s Shortest Path First-based 

Algorithm
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Hop-by-Hop Packet Forwarding
� Each router has a forwarding table

� Maps destination addresses…
� … to outgoing interfaces

� Upon receiving a packet
� Inspect the destination IP address in the header
� Index into the table
� Determine the outgoing interface
� Forward the packet out that interface

� Then, the next router in the path repeats
� And the packet travels along the path to the 

destination
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Inside a Router

Link 1, ingress Link 1, egress

Link 2, ingress Link 2, egress

Link 3, ingress Link 3, egress

Link 4, ingress Link 4, egress

Choose
Egress

Choose
Egress

Choose
Egress

Choose
Egress
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Inside a Router

Link 1, ingress Link 1, egress

Link 2, ingress Link 2, egress

Link 3, ingress Link 3, egress

Link 4, ingress Link 4, egress

Choose
Egress

Choose
Egress

Choose
Egress

Forwarding
Decision

Forwarding
Table



Forwarding in an IP Router
� Lookup packet DA in forwarding table.

� If known, forward to correct port.
� If unknown, drop packet.

� Decrement TTL, update header Checksum.
� Forward packet to outgoing interface.
� Transmit packet onto link.
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Question: 
How is the address looked up in a real router?



Separate Table Entries Per Address
� If a router had a forwarding entry per IP address

� Match destination address of incoming packet
� … to the forwarding-table entry 
� … to determine the outgoing interface
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host host host

LAN 1

... host host host

LAN 2

...

router router router
WAN WAN

1.2.3.4 5.6.7.8 2.4.6.8 1.2.3.5 5.6.7.9 2.4.6.9

1.2.3.4

1.2.3.5

Forwarding Table



CIDR Makes Packet Forwarding Harder
� There’s no such thing as a free lunch

� CIDR allows efficient use of the limited address 
space

� But, CIDR makes packet forwarding much harder

� Forwarding table may have many matches
� E.g., table entries for 201.10.0.0/21 and 

201.10.6.0/23
� The IP address 201.10.6.17 would match both!
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201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Provider 1 Provider 2



Longest Prefix Match Forwarding
� Forwarding tables in IP routers

� Maps each IP prefix to next-hop link(s)

� Destination-based forwarding
� Packet has a destination address
� Router identifies longest-matching prefix
� Cute algorithmic problem: very fast lookups
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Classless Inter-Domain Routing (CIDR) – Addressing 

0 232-1

128.9/16

128.9.16.14

128.9.16/20 128.9.176/20

128.9.19/24

128.9.25/24

Most specific route = “longest matching prefix”



How a Router Forwards Datagrams
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128.9/16
128.9.16/20

128.9.176/20

128.9.19/24
128.9.25/24

142.12/19

65/8

Prefix Port
3
2
2
7
2
1
3

128.17.14.1
128.17.14.1

128.17.20.1

128.17.10.1
128.17.14.1

128.17.16.1

128.17.16.1

Next-hop

R1

R2

R3

R4

1
2

3

128.17.20.1

128.17.16.1

e.g. 128.9.16.14 => Port 2

Forwarding Table



Simplest Algorithm is Too Slow
� Scan the forwarding table one entry at a time

� See if the destination matches the entry
� If so, check the size of the mask for the prefix
� Keep track of the entry with longest-matching prefix

� Overhead is linear in size of the forwarding table
� Today, that means 400,000-500,000 entries!
� And, the router may have just a few nanoseconds
� … before the next packet is arriving

� Need greater efficiency to keep up with line rate
� Better algorithms
� Hardware implementations
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Lookup Performance Required 

Line Rate PktSize = 40B PktSize = 240B

155 Mb/s 480 Kp/s 80 Kp/s

2.5 Gb/s 7.81 Mp/s 1.3 Mp/s

10 Gb/s 31.25 Mp/s 5.21 Mp/s

100 Gb/s 312.5 Mp/s 52.1 Mp/s

b/s: bits per second         p/s: packets per second



Fast Lookups
� The are algorithms that are faster than linear scan

� Proportional to number of bits in the address

� We can use special hardware
� Content Addressable Memories (CAMs)
� Allows look-ups on a key rather than flat address

� Huge innovations in the mid-to-late 1990s
� After CIDR was introduced (in 1994)
� … and longest-prefix match was a major bottleneck
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Where do Forwarding Tables Come From?
� Routers have forwarding tables

� Map prefix to outgoing link(s)
� Entries can be statically configured

� E.g., “map 12.34.158.0/24 to Port 1”
� But, this doesn’t adapt 

� To failures
� To new equipment
� To the need to balance load
� …

� That is where other technologies come in…
� Routing protocols, DHCP, and ARP
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Packet Routing and Forwarding
� Forwarding IP datagrams

� Class-based vs. CIDR 

� Routing Techniques
� Naïve: Flooding
� Distance vector: Distributed Bellman Ford 

Algorithm
� Link state: Dijkstra’s Shortest Path First-based 

Algorithm
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Routing is a very complex subject and has many aspects. 
Here, we will concentrate on the basics.



The Problem
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“A” “B”

R1

R2

R3

R4

How does R1 choose a 
next-hop on the path 
towards host B?



What is Routing?
� A famous quotation from RFC 791

�  “A name indicates what we seek.
An address indicates where it is.
A route indicates how we get there.”
      -- Jon Postel
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Forwarding vs. Routing
� Forwarding: data plane

� Directing a data packet to an outgoing link
� Individual router using a forwarding table

� Routing: control plane
� Computing paths the packets will follow
� Routers talking amongst themselves
� Individual router creating a forwarding table
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Why Does Routing Matter?
� End-to-end performance

� Quality of the path affects user performance
� Propagation delay, throughput, and packet loss

� Use of network resources
� Balance of the traffic over the routers and links
� Avoiding congestion by directing traffic to lightly-

loaded links

� Transient disruptions during changes
� Failures, maintenance, and load balancing
� Limiting packet loss and delay during changes
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Example Network
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Objective: Determine the route from A to B that minimizes the 
path cost.

R7

R6R4R2
R1

1 1 4

2

4

2 2 3

2
3

R8

Examples of link cost: 
Distance, data rate, price, 

congestion/delay, …
A

B
R5

R3
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Example Network

In this simple case, solution is clear from inspection

R7

R6R4R2
R1

1 1 4

2

4

2 2 3

2
3

R8

A

B
R5

R3
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What about this Network...!?

Learn more at
http://www.lumeta.com
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Technique 1: Naïve Approach

� Advantages:
� Simple
� Every destination in the network is reachable.

� Disadvantages:
� Some routers receive a packet multiple times.
� Packets can go round in loops forever.
� Inefficient.

Flood! -- Routers forward packets to all ports 
except the ingress port.

R1
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Lowest Cost Routes

Objective: Find the lowest cost route from each of 
(R1, …, R7) to R8.

R5

R3

R7

R6R4R2
R1

1 1 4

2

4

2 2 3

2
3

R8
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A Spanning Tree

� The solution is a spanning tree with R8 as the root of the tree.
�  Tree: There are no loops. 
�  Spanning: All nodes included.
�  We’ll see two algorithms that build spanning trees automatically:

� The distributed Bellman-Ford algorithm
� Dijkstra’s shortest path first algorithm

R3

R1

R5

R4

R8

R6R2

R7

1 1 4

2

4

2 2
3

2 3



Technique 2: Distance Vector
Distributed Bellman-Ford Algorithm
� Define distances at each node x

�  dx(y) = cost of least-cost path from x to y

� Update distances based on neighbors
�  dx(y) = min {c(x,v) + dv(y)} over all neighbors v
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3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t du(z) = min{c(u,v) + dv(z), 
                  c(u,w) + dw(z)}
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Distance Vector Algorithm 
� c(x,v) = cost for direct link from x to v

� Node x maintains costs of direct links c(x,v)

� Dx(y) = estimate of least cost from x to y
� Node x maintains distance vector Dx = [Dx(y): y є N ]

� Node x maintains its neighbors’ distance vectors
� For each neighbor v, x maintains Dv = [Dv(y): y є N ]

� Each node v periodically sends Dv to its neighbors
� And neighbors update their own distance vectors
� Dx(y) ← minv{c(x,v) + Dv(y)}    for each node y ∊ N

� Over time, the distance vector Dx converges



� Iterative, asynchronous: 
each local iteration 
caused by: 
� Local link cost change 
� Distance vector update 

message from neighbor

� Distributed:
� Each node notifies 

neighbors only when its 
DV changes

� Neighbors then notify 
their neighbors if 
necessary

Distance Vector Algorithm
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wait for (change in local link cost 
or message from neighbor)

recompute estimates

if DV to any destination has 
changed, notify neighbors 

Each node:
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Distance Vector Example: Step 1

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

Dst Cst Hop

A 0 A

B 4 B

C ¥ –

D ¥ –

E 2 E

F 6 F

Table for B

Dst Cst Hop

A 4 A

B 0 B

C ¥ –

D 3 D

E ¥ –

F 1 F

Table for C

Dst Cst Hop

A ¥ –

B ¥ –

C 0 C

D 1 D

E ¥ –

F 1 F

Table for D

Dst Cst Hop

A ¥ –

B 3 B

C 1 C

D 0 D

E ¥ –

F ¥ –

Table for E

Dst Cst Hop

A 2 A

B ¥ –

C ¥ –

D ¥ –

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 6 A

B 1 B

C 1 C

D ¥ –

E 3 E

F 0 F

Optimum 1-hop paths
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Distance Vector Example: Step 2

Table for A

Dst Cst Hop

A 0 A

B 4 B

C 7 F

D 7 B

E 2 E

F 5 E

Table for B

Dst Cst Hop

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F

Table for C

Dst Cst Hop

A 7 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Table for D

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E ¥ –

F 2 C

Table for E

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D ¥ –

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Optimum 2-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3
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Distance Vector Example: Step 3

Table for A

Dst Cst Hop

A 0 A

B 4 B

C 6 E

D 7 B

E 2 E

F 5 E

Table for B

Dst Cst Hop

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F

Table for C

Dst Cst Hop

A 6 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Table for D

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E 5 C

F 2 C

Table for E

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D 5 F

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Optimum 3-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3



Bellman-Ford Algorithm
� Questions: 

� How long can the algorithm take to run?
� How do we know that the algorithm always 

converges?
� What happens when link costs change, or when 

routers/links fail?

� Topology changes make life hard for the Bellman-
Ford algorithm… 
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A Problem with Bellman-Ford
Bad news travels slowly

R4R3R2R1
1 1 1

Consider the calculation of distances to R4:

…………
5,R24,R35,R23
3,R24,R33,R22
3,R22,R33,R21
1, R42,R33,R20
R3R2R1Time

“Counting to infinity”

R3 R4 fails



Counting to Infinity Problem – Solutions
� Set infinity = “some small integer” (e.g. 16). Stop 

when count = 16.
� Split Horizon: Because R2 received lowest cost 

path from R3, it does not advertise cost to R3

� Split-horizon with poison reverse: R2 advertises 
infinity to R3

� There are many problems with (and fixes for) the 
Bellman-Ford algorithm.
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Technique 3: Link State 
Dijkstra’s Shortest Path First Algorithm

� Routers send out update messages whenever the state 
of an incident link changes. 
� Called “Link State Updates”

� Based on all link state updates received each router 
calculates lowest cost path to all others, starting from 
itself.
� Use Dijkstra’s single-source shortest path algorithm
� Assume all updates are consistent

� At each step of the algorithm, router adds the next 
shortest (i.e. lowest-cost) path to the tree. 

� Finds spanning tree rooted at the router.
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Dijsktra’s Algorithm
1  Initialization: 
2    S = {u} 
3    for all nodes v 
4      if v adjacent to u {
5          D(v) = c(u,v) 
6      else D(v) = ∞ 
7 
8   Loop 
9     find w not in S with the smallest D(w)
10    add w to S 
11    update D(v) for all v adjacent to w and not in S: 
12       D(v) = min{D(v), D(w) + c(w,v)} 
13  until all nodes in S 
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Dijkstra’s Algorithm Example
Find Routes for the Red (Leftmost) Node

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3
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Dijkstra’s Algorithm Example

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3
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Shortest-Path Tree

Shortest-path tree from u Forwarding table at u

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

v (u,v)
w (u,w)
x (u,w)
y (u,v)
z (u,v)

link

s (u,w)
t (u,w)



Reliable Flooding of LSP
� The Link State Packet:

� The ID of the router that created the LSP
� List of directly connected neighbors, and cost
� Sequence number
� TTL

� Reliable Flooding
� Resend LSP over all links other than incident link, if the 

sequence number is newer.  Otherwise drop it.

� Link State Detection: 
� Link layer failure 
� Loss of “hello” packets
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Message complexity
LS: with n nodes, E links, 
O(nE) messages sent  
DV: exchange between 
neighbors only

Convergence time varies

Speed of Convergence
LS: O(n2) algorithm requires 
O(nE) messages
DV: convergence time varies

May be routing loops
Count-to-infinity problem

Robustness: what happens if 
router malfunctions?
LS: 

Node can advertise 
incorrect link cost

Each node computes only 
its own table

DV:
DV node can advertise 

incorrect path cost
Each node’s table used by 

others (error propagates)

Comparison of LS and DV algorithms
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