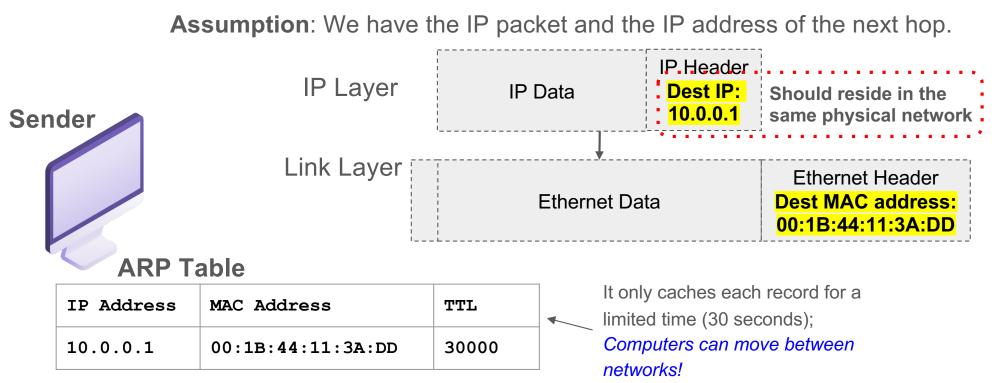

CSC458 PA1 Packaging IP in Ethernet

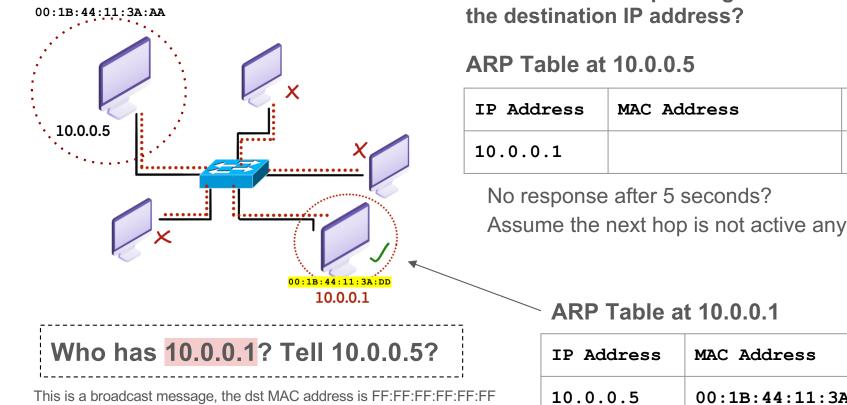
Ehsan Etesami ehsan.etesami@utoronto.ca

Thanks to Farid Zandi and Parsa Pazhooheshy

Winter 2025


Department of Computer Science University of Toronto

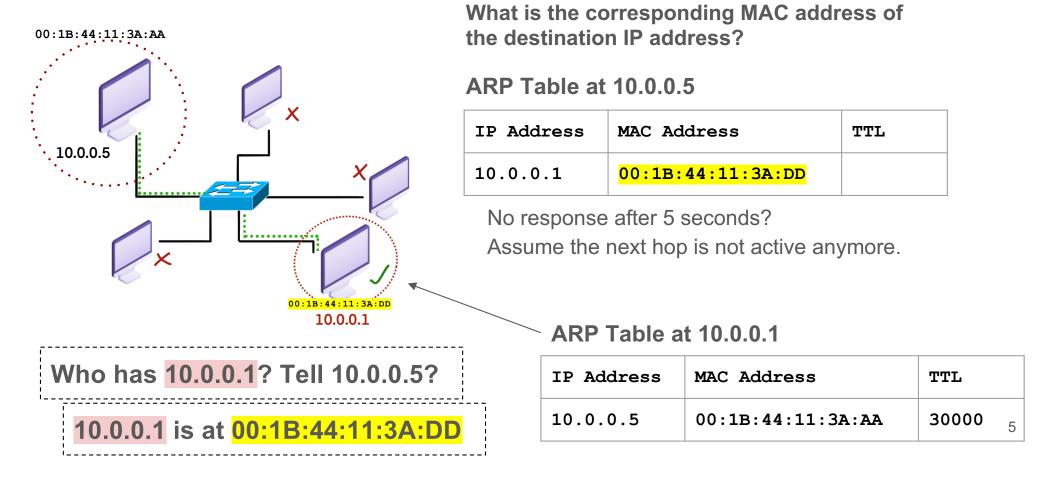
When data is sent over a network, it uses the **IP address** to find the correct destination.


Within the local network, it needs the MAC address to actually deliver the data to the right device.

Introduction

ARP: Address Resolution Protocol

Introduction


What is the corresponding MAC address of

IP Address	MAC Address	TTL
10.0.0.1		

Assume the next hop is not active anymore.

IP Address	MAC Address	TTL	
10.0.0.5	00:1B:44:11:3A:AA	30000	4

Introduction

PA1: Deliverables

network_interface.hh

network_interface.cpp

pa1.md

class NetworkInterface {
 private:

EthernetAddress ethernet_address_;
Address ip address ;

Public:

};

NetworkInterface(
 const EthernetAddress& ethernet_address,
 const Address& ip_address);

std::optional<EthernetFrame> maybe_send();

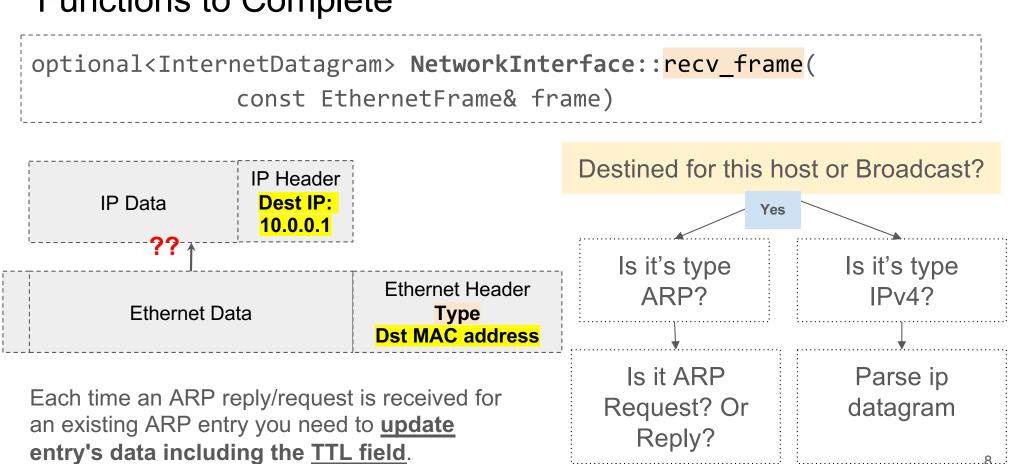
void send_datagram(
 const InternetDatagram& dgram,
 const Address& next hop);

std::optional<InternetDatagram> recv_frame(
 const EthernetFrame& frame);

void tick(size_t ms_since_last_tick);

Functions to Complete void NetworkInterface::send_datagram(const InternetDatagram& dgram, const Address& next_hop) **IP Header Destination IP Dest IP: IP** Data 10.0.0.1 10.0.0.1 **Ethernet Header Destination Mac** Ethernet Data **Dest MAC address:** is Known? Yes No

Create Ethernet


Frame, Send it

Note: Don't flood the network with ARP requests:

If you have sent an ARP request for the same IP address in the last 5 seconds, you should NOT send a new ARP request.

Broadcast an ARP request, Queue IP datagram

7

Functions to Complete

Functions to Complete

optional<EthernetFrame> NetworkInterface::maybe_send()

Whenever the physical layer of the network is ready to send out a packet, it will call this function to check if there is any packet ready to be sent.

```
void NetworkInterface::tick(const size_t ms_since_last_tick)
```

This is the callback function that informs you about the passage of time. You need to check:

- Expire any entry in ARP cache table that was learnt more than 30 seconds ago.
- Remove the pending ARP reply wait for any next hop IP that was sent more than 5 seconds ago.

PA1: Understanding the Tick Function

- To simulate the passage of time, we will call the **tick function** with a given value of X milliseconds.
- This means that X milliseconds have passed **since the last time** the tick function was called.
- Inside the function, you should check the Time-To-Live (TTL) of all entries and ensure that <u>none</u> of them have expired.

PA1: Notes

You can modify both **network_interface.cc** and **network_interface.hh** files.

You will only submit **these two files** along with **writeups/pa1.md**

We will use the MarkUs submission system.

We will

- Check your submission with automated tests (90%)
 - **50%** is dedicated to public tests
 - 40% is dedicated to private tests
- Read your source code and asses its coding style (5%)
- Check completeness of the pa1.md (5%)

PA1: Environment Setup

On Intel/AMD computers:

• Use a VM image in VirtualBox

On ARM MacBooks and Macs:

- Install the UTM virtual machine software
- Use the provided ARM64 GNU/Linux virtual machine image

Using your own GNU/Linux installation

- Require C++20 compiler (GCC 13 or later, clang 16 or later)
- Ubuntu 23.04+

https://stanford.edu/class/cs144/vm_howto/

PA1: Walkthrough: Environment Setup

- 1. Download the VM image
- 2. Connect to your VM
- 3. Clone the repository
- 4. Use VSCode to connect to your VM through SSH

Let's put it into practice.

PA1: Writeups

The "Credit/Thank" Section:

• Acknowledge anyone who assisted you in completing the assignment.

The "Collaborate" Section:

• Any kind of equal collaboration. We just want to make sure we understand the nature of any potential collaboration.

The "Program Structure and Design" Section:

• Explain the key design decisions you made to help reviewers understand your code. Start with a high-level overview of your approach, highlighting the most important choices. This section is not a substitute for inline comments but should be read before the reviewer examines your code in detail.