CSC458/2209 Programming Assignment 1

Winter 2025

Packaging IP in Ethernet

The main goal of PA1 is to set the environment for your programming assignments' , and use that environment
to implement a simplified portion of the network stack: creating Ethernet frames from IP packets and sending
them out. One of the key ideas of the networking stack is to hide details of lower layers from higher levels
and make it possible to have different upper layers that rely on the same lower layer. In this assignment, we
focus on the link layer which is responsible for creating and sending out Ethernet frames and also receiving
and processing incoming Ethernet frames. You will complete a simplified network interface to perform
these two tasks.

1. Send Ethernet frames and ARP requests

When the IP layer decides to send a packet, it identifies the next hop, which is the next machine/router on
the network set to receive the packet®. This next hop must reside on the same physical network, enabling
direct transmission of packets at the link layer, without intermediate routing decisions. Once the next hop
address is determined, the IP layer invokes the link layer interface to transmit the packet to the next hop,
providing it with 1) the IP packet and 2) the IP address of the next hop.

Although the IP layer supplies the next hop’s IP address to the link layer, MAC addresses are necessary
to reach other interfaces within the physical network. Therefore, the first job of the link layer interface is to
determine the corresponding MAC address for the given IP address. The link layer protocol used to perform
this task is the Address Resolution Protocol (ARP). To this end, the link layer maintains a mapping, known
as the “ARP Table”, that translates IP addresses to MAC addresses. It simply contains the MAC address
associated with different IP addresses that the interface is aware of.

If the IP-MAC mapping for the next hop is available in the table when the link layer is invoked (i.e., the
interface knows the corresponding MAC address for the next hop), it can readily proceed with sending the

packet by creating an Ethernet frame that contains

* the entire given IP packet as the payload,
e the translated MAC address as the destination MAC address,

* and the other appropriate header sections (such as its own MAC address as the source).

1 CSC458 programming assignments are based on some of the Stanford CS144 lab assignments.
2 The routing process determines the next hop, which will be the focus of PA2. For now, we assume that the next hop for the packet
is already known.

(Upper Receiver
Layers) ﬁﬁ Sender ﬁn
Receive 5
Network I;l IP Packet |;|
Layer

1 Provide next hop
\/ IP to link Layer \j Hop #3
Extract IP 4

Translate Payload

: IP to MAC Network
Link imortace (JE2) IF) \rtertace

\ 5 Send Ethernet —/1
Frame

Figure 1: A typical communication workflow. You will implement steps 2, 3, and 4 in PAI.

Layer

If the next-hop IP address is not available in the table, the link layer must try to find it using the ARP
protocol. It sends an ARP request to all interfaces in the local network, asking who has that specific IP
address. When it receives a response, it records the answer in the table for future use and then sends the
waiting packet. However, if it does not receive a response within a 5-second window, it assumes that the
next hop is not accessible and drops the packet. Considering that computers can move between networks,
the answers are only cached for a limited time (30 seconds), after which the entry is removed from the table.
Hence, the table might also be referred to as the ARP cache.

2. Receive Ethernet frames and create ARP responses

The other task of the link layer interface is to process incoming Ethernet frames. When it receives an
Ethernet frame addressed to this device, it will extract its payload and pass it to the upper layer (i.e., the IP
layer). It also needs to process incoming ARP requests and respond to queries of its own IP address.

Getting Started

This section guides you to set up your development environment and test your code.

Setting up the environment

The programming assignments require Linux operating system and a recent C++ compiler. We highly
recommend that you use the virtual machine (VM) that is created for CS144 at the Stanford University.
Do not use your own GNU/Linux installation as you might risk losing points during the marking. The

instructions to use that is available at
https://stanford.edu/class/cs144/vm_howto/

The instructions on that website walk you through the installation and use of VirtualBox to use the VM
image they prepared. There are also alternative instructions for computers with Apple M series chips, which
are based on UTM instead of VirtualBox. Setting up this environment is important for the two programming

assignments in this course.

Note: If downloading the images from the Stanford servers is taking too long, you might want to try

these local mirrors for the VirtualBox and UTM images.

Getting the code

You will be adding some lines of code to a simple network simulator to implement the requirements of this
assignment. Follow these steps to get the starter code:

1. Clone the starter code:
git clone https://github.com/yganjali/csc458-pa
cd csc458-pa

2. Verify that your build system is properly set up (or set it up in case you start from scratch by cloning
the repository into a new folder):

cmake -S . -B build

3. Now you can try to build the starter code:
cmake --build build

4. You are ready to start working on the source code to complete the assignment. Whenever you want
to build your solution and run the tests, you can:
cmake --build build --target pal

which shows you the tests that your code has passed. There are currently 10 test cases included in

your starter code to run your code through various scenarios.

https://stanford.edu/class/cs144/vm_howto/
https://www.cs.toronto.edu/~yganjali/assets/CSC458-VMs/cs144-intel-2025.ova
https://www.cs.toronto.edu/~yganjali/assets/CSC458-VMs/cs144-arm64-2025.utm.tar.gz

Functions to complete

There are 4 methods in the NetworkInterface class (network interface.cc file) that you should

implement.

1. void NetworkInterface::send datagram(const InternetDatagram& dgram,
const Address& next hop)

This is the function that is called by the IP layer to send an IP packet (dgram) to the next hop (with the
given IP address next_hop). The function should be completed to perform the following tasks.

* First, check to see if you know the MAC address of the next hop, by looking it up in your cached
ARP table. If you know the MAC address, you can create the proper Ethernet frame and put it in the
ready-to-be-sent queue (which will be discussed later). To do this, create an Ethernet frame, set the
type as an IPv4 packet (EthernetHeader: : TYPE_IPv4), properly set the source and destination
MAC addresses, and put the serialized version of the dgram in it.

* If you do not know the MAC address of the next hop, you should try to find it. This is done by
broadcasting an ARP request and asking what MAC address currently has the next hop IP address.
Then, you should wait for the response to that request. You should also place this packet in a queue
so that you can prepare it for sending when you receive a reply. There is one additional thing that
you need to consider here:

— If you have sent an ARP request for the same IP address in the last 5 seconds, you should
not send a new ARP request. Instead, you should append this packet to the queue that holds
previous packets waiting for that IP address.

2. optional<InternetDatagram> NetworkInterface::recv_frame(const EthernetFrame& frame)

This is the function that is called when the system receives an Ethernet frame. Its job is to process it as

follows:

¢ If the frame is not destined for this interface, discard it. A frame is destined for this interface if its
destination MAC address matches the interface’s MAC address or if it is broadcast to the whole

network.

* If this frame is destined for this interface and its payload contains an IPv4 packet, then try to parse
the payload as an InternetDatagram. If the parse is successful, it should be returned so that the
system can pass it to the higher IP layer in the network stack.

o If this frame is destined for this interface and its payload is an ARP message, process it. To do
this, first try to parse the payload as an ARPMessage. If it can be parsed properly, then learn the
mapping between the packet’s Sender IP address and its MAC address and cache this information
in the ARP cache table for 30 seconds. Note that this is true for both ARP responses and requests.

* If it is an ARP request that asks for our IP address, reply to it. To do this, create an ARP reply
message that is destined for the sender and contains the appropriate information, including our
IP and MAC address. Then, package this ARP message in an Ethernet frame and place it in the

ready-to-be-sent queue.

3. optional<EthernetFrame> NetworkInterface::maybe_send()

Whenever the physical layer of the network is ready to send out a frame, it will call this function to check
if there is any frames ready to be sent. At this point, you should check your ready-to-be-sent queue to
see if there are any frames in it. If so, remove the first frame (the oldest) waiting in the queue and return
it. If there are no frames to be sent, simply return nothing.

Note that there could be different types of Ethernet frames in the queue: datagrams passed by the IP
layer, ARP requests to learn the MAC address of the next hop, and ARP replies to requests about our IP
address.

4. void NetworkInterface::tick(const size_t ms_since_last_tick)

This is the callback function that informs you about the passage of time. When this function is called, it
means that ms_since_last_tick milliseconds have passed since the last time it was called. You should

keep track of time and perform the following two tasks:

» Expire any entry in the ARP cache table that was learned more than 30 seconds ago.

* Terminate the wait for any pending ARP reply for a next-hop IP that was sent more than 5 seconds

ago. You should also discard any packets waiting for that IP address from the queue.

In addition to completing these 4 functions, you can add extra helper functions to the NetworkInterface
class, or any extra state information to it (e.g., the ARP cache table). Therefore, you can modify both
network _interface.cc and network_interface.hh files. Do not modify any other files, because you
will only submit these two files (along with writeups/pal.md).

Submission and grading

We will use the MarkUs submission system for this assignment. Please check the class webpage for the
link and instructions. You need to submit the two source-code files for the NetworkInterface class
(network_interface.cc and network_interface.hh). You should also submit the writeups/pal.md
file that contains a few questions that you should answer about the assignment. In addition to checking your
submission with automated tests (to test its functionality), TAs will read your source code and assess its
coding style.

* 90% of the assignment mark is for the automated tests (i.e., correct functionality). This 90% is divided

into:

— 50% that can be acquired by passing the publicly available tests (already part of the starter code,
under tests directory),

— Another 40%, that will be dedicated to private tests. This is to make sure your code doesn’t run

correctly only in the provided scenarios.
* 5% of the mark is for providing reasonable answers to the questions found in pal.md.

* The remaining 5% is awarded for your coding style. The coding style includes factors such as inline
comments, proper variable names, breaking complex functions into smaller functions, preventing
duplicate code by defining helper functions, etc. You should be familiar with such marking from

previous programming cCourses.

Some Notes

* Important note: Although it is advised to backup your work periodically using some version control
method, you must not make your solutions publicly available. Make sure to keep your repositories
private.

e The tests are run independently of each other. Each test case creates new instances of your
NetworkInterface class. When a test fails, a trace of the events that led to the unexpected re-

sults will be printed, which can greatly guide you in debugging your issues.

 This assignment is to be done individually. Our sample solution added around 200 lines of code to

the starter code to pass all the tests.

