CSC 458/2209 – Computer Networking Systems Handout # 2: Course Logistics and Introduction

Professor Yashar Ganjali Department of Computer Science University of Toronto

ganjali7@cs.toronto.edu http://www.cs.toronto.edu/~yganjali

Today

- Outline
 - What this course is about
- Logistics
 - Course structure, assignments, evaluation
 - What is expected from you
 - What you can expect from this course
- Review
 - Simple example mail vs. FTP
- Foundations and basic concepts

What is This Course About?

- Undergrad course; can be taken by grads
- Computer networks
 - Basics: layers, naming, and addressing, network (socket) programming, routing, congestion control, ...
 - Advanced networking: peer-to-peer, routers and switch architectures, software-defined networking, datacenter networking, networks for ML, ...
- Theory vs. Practice
 - CSC 457: focus on foundation, principles, and theory
 - CSC 458: focus on networking systems and programming

CSC 458/CSC 2209 - Computer Networking Systems

Logistics – Prerequisites, Readings

- Prerequisites
 - Algorithms
 - Basic probability theory
 - Strong background in C programming and Unix environment
- Note: CSC 457 is not a prerequisite.
- Readings
 - Will be posted on course schedule web page
 - Read before class

CSC 458/CSC 2209 – Computer Networking Systems

Logistics – Textbooks

- Textbook
 - Computer Networks: A Systems Approach (6th Edition), Peterson, Davie, 2021.
- You can get a print copy of this book. Alternatively, you can find an online version here:
 - <u>https://book.systemsapproach.org/</u>
- Recommended book
 - UNIX Network Programming, Volume I: The Sockets Networking API, W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff, 3rd edition, 2003

CSC 458/CSC 2209 – Computer Networking Systems

Logistics – Sections

- This course is offered in two sections
 - L0101: Mon. 9-11 AM, MP 137, Prof. Yashar Ganjali
 - L0201: Tue. 3-5 PM, ES B142, Prof. Peter Marbach
- Both sections are completely full.
 - Please only attend the class to which you have been assigned.
- Content/assignments are the same. Midterm exam is different.

Logistics – Hours, Web, Announcements

- Office hours
 - Section L0101:
 - **Time:** Mon. 11 AM Noon, Fri. 11 AM Noon, or by appointment
 - Location: BA5238
 - Section L0201:
 - Time: Tue. 5 PM 6 PM, or by appointment
 - Location: BA5224
- Course web page

http://www.cs.toronto.edu/~yganjali/teaching/csc458-winter-2025/

• Please check the class web page, and the bulletin board regularly for announcements.

CSC 458/CSC 2209 – Computer Networking Systems

Logistics – Teaching Assistants

- Hossein Bijanrostami
- Ehsan Etesami
- Parsa Pazhooheshy (Head TA)
- Sajad Shirali-Shareza
- Farid Zandi Shafagh
- Please check class web site for email addresses, and assignments for which each TA is responsible.

Logistics – TA hours, Tutorials

- Tutorials and discussion session
 - L0101: Wed. 10-11 AM, BA 1220
 - L0201: Thu. 3-4 PM, ES B 149
- First tutorial:
 - Next week

Logistics – Mailing List, Bulletin Board

- Bulletin board
 - We will use Piazza for announcements and Q&A
 - https://piazza.com/utoronto.ca/winter2025/csc458csc2209
 - Sign up link on class web site
 - Post any questions related to the course.
 - Check previous posts before asking a question.
 - We guarantee to respond within 48 hours.
- Class mailing list
 - Based on e-mail address you have defined on ACORN.
 - The TAs and I will use this list for announcements only.
 - Do not send e-mails to this list!

Logistics – Grading

- Grading for undergraduate AND graduate students
 - Assignments: 50%
 - Two problem sets: 20%
 - Two programming: 30%
 - Midterm exam: 20% In class
 - L0101: Feb. 24
 - L0201: Feb. 25
 - Final exam: 30% TBA
- Please note that grading is the same for graduate and undergraduate students.

CSC 458/CSC 2209 - Computer Networking Systems

Logistics - Deadlines

- Assignment deadlines
 - One free late submission of 24 hours
 - Use on assignment of your choice
 - E-mail TAs before the deadline
 - 10% deduction for each day late
 - Up to 20%
 - Assignment not accepted after two days

Logistics – Programming Assignments

- Implementing a simple network stack
- To be completed individually.
- You can submit your assignment during a seven- day period before the deadline
 - Your last submission before the deadline will be marked
- Marking:
 - Public tests: 50% of the mark
 - Private tests: 40%
 - Style and documentation: 10%

CSC 458/CSC 2209 – Computer Networking Systems

Logistics – Academic Integrity

- All submissions must present original, independent work.
- We take academic offenses very seriously.
- Please read
 - Handout # 1 (course information sheet)
 - "Guideline for avoiding plagiarism"
 - <u>http://www.cs.toronto.edu/~fpitt/documents/plagiarism.html</u>
 - "Advice about academic offenses"
 - <u>http://www.cs.toronto.edu/~clarke/acoffences/</u>
- Use of AI tools: OK to use for general questions, not specific ones related to assignments.
 - Please see Handout #1 for more information.

CSC 458/CSC 2209 - Computer Networking Systems

Logistics - Accessibility

- Accessibility Needs
 - The University of Toronto is committed to accessibility. If you require accommodations or have any accessibility concerns, please visit accessibility services as soon as possible.
 - <u>https://studentlife.utoronto.ca/department/accessibil</u> <u>ity-services/</u>

Acknowledgements

- Special thanks to:
 - Prof. Nick McKeown from Stanford University
 - Prof. Jennifer Rexford from Princeton University
 - Prof. David Wetherall from University of Washington
 - Prof. Nick Feamster from University of Chicago
 - Dr. Soheil Abbasloo from Microsoft Research

Quick Survey

- Have you taken another networking course before?
- Are you familiar with
 - Socket programming?
 - Ethernet, framing, encoding, error detection/correction?
 - UDP, TCP and congestion control?
 - DNS, SNMP, BGP?
 - Voice and video over IP?
 - Network security?
 - Software-defined networking?
 - Control plane vs. data path?
 - Datacenter networks?
 - Networks for machine learning?

What else do you want to know about this course?

CSC 458/CSC 2209 – Computer Networking Systems

Announcement

- First tutorial
 - Next week

• Covers socket programming

CSC 458/CSC 2209 – Computer Networking Systems

Let's Begin

- An introduction to the mail system
- An introduction to the Internet

CSC 458/CSC 2209 – Computer Networking Systems

An Introduction to the Mail System

Characteristics of the Mail System

- Each envelope is individually routed.
- No time guarantee for delivery.
- No guarantee of delivery in sequence.
- No guarantee of delivery at all!
 - Things get lost
 - How can we acknowledge delivery?
 - Retransmission
 - How to determine when to retransmit? Timeout?
 - Need local copies of contents of each envelope.
 - How long to keep each copy.
 - What if an acknowledgement is lost?

An Introduction to the Mail System

An Introduction to the Internet

Characteristics of the Internet

- Each packet is individually routed.
- No time guarantee for delivery.
- No guarantee of delivery in sequence.
- No guarantee of delivery at all!
 - Things get lost
 - Acknowledgements
 - Retransmission
 - How to determine when to retransmit? Timeout?
 - Need local copies of contents of each packet.
 - How long to keep each copy?
 - What if an acknowledgement is lost?

Characteristics of the Internet – Cont'd

- No guarantee of integrity of data.
- Packets can be fragmented.
- Packets may be duplicated.

Layering in the Internet

- Transport Layer
 - Provides reliable, in-sequence delivery of data from end-to-end on behalf of application.
- Network Layer
 - Provides "best-effort", but unreliable, delivery of datagrams.
- Link Layer
 - Carries data over (usually) point-to-point links between hosts and routers; or between routers and routers.

An Introduction to the Mail System

Some Questions About the Mail System

- How many sorting offices are needed and where should they be located?
- How much sorting capacity is needed?
 - Should we allocate for Mother's Day?
- How can we guarantee timely delivery?
 - What prevents delay guarantees?
 - Or delay variation guarantees?
- How can we build an infra-structure for overnight deliveries?
 - What are the challenges for extremely tight deadlines?
- How do we protect against fraudulent mail deliverers, or fraudulent senders?

Outline – Foundations & Basic Concepts

- A detailed FTP example
 - Layering
 - Packet switching and circuit switching

CSC 458/CSC 2209 – Computer Networking Systems

Example: File Transfer over the Internet

Using TCP/IP and Ethernet

In the Sending Host

- 1. Application-Programming Interface (API)
 - Application requests TCP connection with "B"
- 2. Transmission Control Protocol (TCP)
 - Creates TCP "Connection setup" packet
 - TCP requests IP packet to be sent to "B"

"B" Stanford 20

In the Sending Host – Cont'd

- 3. Internet Protocol (IP)
 - Creates IP packet with correct addresses.
 - IP requests packet to be sent to router.

"B" Stanford 20

₩ 5 R16 U 7 8 R2

In the Sending Host – Cont'd

4. Link ("MAC" or Ethernet) Protocol

- Creates MAC frame with Frame Check Sequence (FCS).
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

"B" Stanford 20

5. Link ("MAC" or Ethernet) Protocol

• Pass data to IP Protocol.

Destination Address: MAC "R1" Source Address: MAC "A" Protocol = IP "B" Stanford 20

6. Internet Protocol (IP)

- Use IP destination address to decide where to send packet next ("next-hop routing").
- Request Link Protocol to transmit packet.

University of Toronto – Winter 2025

20

7. Link ("MAC" or Ethernet) Protocol

- Creates MAC frame with Frame Check Sequence (FCS).
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

16. Link ("MAC" or Ethernet) Protocol

- Creates MAC frame with Frame Check Sequence (FCS)
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

18. Internet Protocol (IP)

- Verify IP address.
- Extract/decapsulate TCP packet from IP packet.
- Pass TCP packet to TCP Protocol.

"B" Stanford 20

In the Receiving Host - Cont'd

19. Transmission Control Protocol (TCP)

- Accepts TCP "Connection setup" packet
- Establishes connection by sending "Ack".

20. Application-Programming Interface (API)

• Application receives request for TCP connection with "A".

20

18 17

R16 1178

Outline – Foundations & Basic Concepts

• A detailed FTP example

Layering

Packet switching and circuit switching

CSC 458/CSC 2209 – Computer Networking Systems

Layering – The OSI Model

Layering – Our File Transfer Example

Outline – Foundations & Basic Concepts

- A detailed FTP example
- Layering
 - Packet switching and circuit switching

CSC 458/CSC 2209 – Computer Networking Systems

- It's the method used by the telephone network.
- A call has three phases:
 - Establish circuit from end-to-end ("dialing"),
 - Communicate,
 - Close circuit ("tear down").
- Originally, a circuit was an end-to-end physical wire.
- Nowadays, a circuit is like a virtual private wire: each call has its own private, guaranteed data rate from end-to-end.

Circuit Switching – Telephone Network

Packet Switching

- It's the method used by the Internet.
- Each packet is individually routed packet-by-packet, using the router's local routing table.
- The routers maintain no per-flow state.
- Different packets may take different paths.
- Several packets may arrive for the same output link at the same time. Therefore, a packet switch has buffers.

CSC 458/CSC 2209 – Computer Networking Systems

Packet Switching – Simple Router Model

Statistical Multiplexing – Basic Idea

- Network traffic is bursty.
 i.e. the rate changes frequently.
- Peaks from independent flows generally occur at different times.
- Conclusion: The more flows we have, the smoother the traffic.

Packet Switching – Statistical Multiplexing

 Because the buffer absorbs temporary bursts, the egress link need not operate at rate N.R.

But the buffer has finite size, B, so losses will occur.

CSC 458/CSC 2209 – Computer Networking Systems

Statistical Multiplexing

Statistical Multiplexing Gain

Other definitions of SMG: The ratio of rates that give rise to a particular queue occupancy, or particular loss probability.

CSC 458/CSC 2209 – Computer Networking Systems

Why Packet Switching in the Internet?

- Efficient use of expensive links:
 - The links are assumed to be expensive and scarce.
 - Packet switching allows many, bursty flows to share the same link efficiently.
 - "Circuit switching is rarely used for data networks, ... because of very inefficient use of the links" - Gallager
- Resilience to failure of links & routers:
 - "For high reliability, ... [the Internet] was to be a datagram subnet, so if some lines and [routers] were destroyed, messages could be ... rerouted" Tanenbaum

Final Comments, Discussion

- Is layering the best approach?
 - Simplifies design
 - Yet, limited and inflexible
- Best effort service
 - Made the rapid growth of the Internet possible
 - Makes providing any guarantees very difficult
- Packet switching
 - Enables statistical multiplexing
 - We need extremely fast routers
- Routing
 - How does a router know which output port to send the packet to?