
Programming Assignment 2:
Bufferbloat

Introduction tutorial
CSC458/2209-Fall 2025

Parsa Pazhooheshy

1

Fundamental Concepts

• Transmission Control Protocol (TCP)
• Reliability Over a Best-Effort Network
• One main question:

• How many packets should be sent in a certain time interval?

2

FairnessLink Utilization

Delay

Congestion Control (CC)Design

• CC schemes aim to achieve delay, link utilization and fairness at the same time.
• Trade-off

• Focus on two

• Throughput-hungry CC schemes
• TCP New-Reno
• TCP CUBIC

• Delay-based CC schemes
• TCP Vegas
• Copa

3

FairnessLink Utilization

Delay

Congestion window
• Our focus for PA2 is on throughput-hungry schemes
• Congestion Window (CWND):

• How many in-flight packets a sender has at any given time
• in-flight: on the link, in the buffers of routers, etc.

• Key question of many CC schemes:
• How to control CWND?
• Based on some signals from the network

• Throughput-hungry CC schemes favorite signal: PACKET LOSS
• Timeout
• 3 duplicate ACKs

• General behavior of throughput-hungry CC schemes:
• Increase the CWND if no packet loss detected
• Reduce the CWND if detected packet loss

4

Bufferbloat

6

I was in the
queue for 1 hour

High Speed Link

Buffer

Low Speed Link

Packets

Why Bufferbloat happens?

• Deep (large) buffer in the bottleneck
• The buffer only drops the packet when its full

• Sender keeps increasing the CWND as it sees no loss
• More packets get stuck in the buffer

• Packets experience huge delay
Bufferbloat

7

PA2 General Goals

• Learn the TCP sawtooth behavior and router buffer occupancy dynamics

in a network.

• Learn why large router buffers may lead to poor performance

(“bufferbloat.”)

• Learn how to use Mininet to run traffic generators, collect statistics, and

plot graphs.

• Learn how to organize your experiments in a reproducible manner.

8

Methodology

• Implement the following topology in MiniNet
• h1 is a host that has a fast connection (1 Gbps)
• Router (s0) has a slow uplink connection (10 Mbps)
• Minimum RTT between h1 and h2 is 4ms
• The router buffer can hold up to 100 full-sized ethernet frames

9

Traffic Flows (First Part)

• A long-lived TCP flow, sending data from h1 to h2, using iperf
• Ping from h1 to h2 10 times a second and record the RTTs
• Spawn a webserver on h1

• Periodically download the index.html web page (three times every five
seconds) from h1. (data is sent from h1 to h2)

• Measure how long it takes to be fetched (on average).
• Hints in starter code

10

Traffic Flows

• Keep all the flows alive together

• Plot the following time series:
• CWND for The long-lived TCP flow (available in h1 iperf)
• RTT reported by ping (use appropriate ping options. See ping man)
• Queue size at the bottleneck

• Reduce the router buffer size to 20 packets, repeat the above
experiment, and replot the three graphs .

11

Starting the assignment

• VM
• You will need the VM loaded with Mininet and the required

dependencies of the assignment
• VM image is provided in course webpage

12

Assignment files

• Look for TODOs
• bufferbloat.py

• Creates the topology; measures CWND, queue sizes, and RTTs; and spawns a
webserver.

• plot_queue.py
• Plots the queue occupancy at the bottleneck router.

• plot_ping.py
• Parses and plots the RTT reported by ping.

• plot_tcpprobe.py
• Plots the cwnd time-series for a flow specified by its destination port

• run.sh:
• Runs the experiment and generates all graphs in one go.

13

Run.sh

• Your whole code (including running the experiment and then
generating the results) should be done by just a “sudo ./run.sh”
command

14

Some hints

• The project is almost complete!
• You just need to implement few TODOs in bufferbloat.py and run.sh
• You need to read bufferbloat.py carefully first, it helps you
complete
TODOs.

15

