Programming Assignment 2:
Bufferbloat

Introduction tutorial
CSC458/2209-Fall 2025

Parsa Pazhooheshy

D0
et
«*:.‘K-gé" 2y

i Computer Science
&8 8

5> UNIVERSITY OF TORONTO

Fundamental Concepts

* Transmission Control Protocol (TCP)
 Reliability Over a Best-Effort Network

* One main question:
* How many packets should be sent in a certain time interval?

Delay

Link Utilization Fairness

Congestion Control (CC)Design

* CCschemes aim to achieve delay, link utilization and fairness at the same time.

* Trade-off
* Focus on two

* Throughput-hungry CC schemes
* TCP New-Reno
 TCP CUBIC

Delay

* Delay-based CC schemes
* TCP Vegas
* Copa

Link Utilization Fairness

Congestion window

e Our focus for PA2 is on throughput-hungry schemes

e Congestion Window (CWND):

* How many in-flight packets a sender has at any given time
* in-flight: on the link, in the buffers of routers, etc.

* Key question of many CC schemes:
* How to control CWND?
* Based on some signals from the network

* Throughput-hungry CC schemes favorite signal:

* General behavior of throughput-hungry CC schemes:
* Increase the CWND if no packet loss detected
* Reduce the CWND if detected packet loss

Bufferbloat

| was in the
gueue for 1 hour

Packets

Low Speed Link

High Speed Link

Buffer

Why Bufferbloat happens?

* Deep (large) buffer in the bottleneck
* The buffer only drops the packet when its full

e Sender keeps increasing the CWND as it sees no loss
* More packets get stuck in the buffer

* Packets experience huge delay
Bufferbloat

PA2 General Goals

» Learn the TCP sawtooth behavior and router buffer occupancy dynamics

in a network.

« Learn why large router buffers may lead to poor performance

(“bufferbloat.”)

* Learn how to use Mininet to run traffic generators, collect statistics, and

plot graphs.

» Learn how to organize your experiments in a reproducible manner.

Methodology

* Implement the following topology in MiniNet

* h1is a host that has a fast connection (1 Gbps)

« Router (s0) has a slow uplink connection (10 Mbps)
 Minimum RTT between h1 and h2 is 4ms

* The router buffer can hold up to 100 full-sized ethernet frames

h1 Router (s0) h2

1 Gbps 10 Mbps
> >

Minimum RTT: 4ms Queue: 150KB (100 packets)

Traffic Flows (First Part)

A TCP flow, sending data from h1 to h2, using iperf
* Ping from h1 to h2 and record the RTTs

« Spawn a webserver on h1

 Periodically download the index.html web page (three times every five
seconds) from h1. (data is sent from h1 to h2)

« Measure how long it takes to be fetched (on average).
 Hints in starter code

10

Traffic Flows

» Keep all the flows alive together

* Plot the following time series:
« CWND for The long-lived TCP flow (available in h1 iperf)
* RTT reported by ping (use appropriate ping options. See ping man)
* Queue size at the bottleneck

* Reduce the router buffer size to 20 packets, repeat the above
experiment, and replot the three graphs .

11

Starting the assignment

* VM

* You will need the VM loaded with Mininet and the required
dependencies of the assignment

* VM image is provided in course webpage

12

Assignment files

* Look for TODOs

 bufferbloat.py

» Creates the topology; measures CWND, queue sizes, and RTTs; and spawns a
webserver.

 plot_queue.py
* Plots the queue occupancy at the bottleneck router.

 plot_ping.py
» Parses and plots the RTT reported by ping.

 plot_tcpprobe.py
» Plots the cwnd time-series for a flow specified by its destination port

* run.sh:
* Runs the experiment and generates all graphs in one go.

13

Run.sh

* Your whole code (including running the experiment and then
generating the results) should be done by just a “sudo ./run.sh”
command

Some hints

* The project is almost complete!
e You just need to implement few TODOs in bufferbloat.py and run.sh

e You need to read bufferbloat.py carefully first, it helps you

complete
TODO:s.

