CSC 458/2209 - Computer Networking Systems

Handout # 17:
Congestion Control

Professor Yashar Ganjali
Department of Computer Science
University of Toronto

ganjali7 @cs.toronto.edu

http://www.cs.toronto.edu/~yganjali

mailto:yganjali@cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

Announcements

* Programming assignment 1
e Due Friday October 17th at 5pm.

e Midterm exam
e Tuesday, October 215
e |n class: same room and time as the lecture
e For undergraduate and graduate students

e Sample midterm
e And solutions posted on class website

e No tutorial this week
e And next week

e Reading for this week:
e Chapter 6 of the textbook

TA office hours
e Please check class website for the latest version of time/location

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

Today’s Lecture

* Principles of congestion control
e Learning that congestion is occurring
e Adapting to alleviate the congestion

* TCP congestion control
e Additive-increase, multiplicative-decrease
e Slow start and slow-start restart

* Related TCP mechanisms
e Nagle’s algorithm and delayed acknowledgments

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

What is Congestion?

D(t)
1.5Mb/s @

A,(t)

(> D(t)

100Mb/s
Aq(t)
A
Az(t) A (t) X(t)
Cumulative 2T
bytes

At
X(t)

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 4

Flow Control vs. Congestion Control

e Flow control

e Keeping one fast sender from overwhelming a slow
receiver

* Congestion control
e Keep a set of senders from overloading the network

e Different concepts, but similar mechanisms
e TCP flow control: receiver window
e TCP congestion control: congestion window

e TCP window: min{congestion window, receiver
window}

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

Time Scales of Congestion

Too many users using a
link during a peak hour

TCP flows filling up all
available bandwidth

Two packets colliding
at a router — also
referred to as contention

CSC 458/CSC 2209 — Computer Networks

v

v

| | |
100us 200ps 300ps

University of Toronto — Fall 2025

Dealing with Congestion

Example: two flows arriving at a router

Aq(t) X ,
A -_E
Strategy

Drop one of the flows

Buffer one flow until the other
has departed, then send it

Re-Schedule one of the two flows
for a later time

Ask both flows to reduce their
rates

IIF ,,

Congestion is Unavoidable

* Two packets arrive at the same time
e The node can only transmit one
e ... and either buffer or drop the other

* If many packets arrive in a short period of time
e The node cannot keep up with the arriving traffic
e ... and the buffer may eventually overflow

N

4 [

/’ _____

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

Arguably Congestion is Good!

* We use packet switching because it makes
efficient use of the links. Therefore, buffers in the
routers are frequently occupied.

* If buffers are always empty, delay is low, but our
usage of the network is low.

e If buffers are always occupied, delay is high, but
we are using the network more efficiently.

* So how much congestion is too much?

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

Congestion Collapse

e Definition: Increase in network load results in a
decrease of useful work done

* Many possible causes

e Spurious retransmissions of packets still in flight
» Classical congestion collapse
« Solution: better timers and TCP congestion control
e Undelivered packets

» Packets consume resources and are dropped
elsewhere in network

» Solution: congestion control for ALL traffic

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 10

What Do We Want, Really?
* High throughput

e Throughput: measured performance of a system

e E.g., number of bits/second of data that get through
* Low delay

e Delay: time required to deliver a packet or message

e E.g., number of msec to deliver a packet

* These two metrics are sometimes at odds
e E.g., suppose you drive a link as hard as possible

e ... then, throughput will be high, but delay will be,
too

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 11

Load, Delay, and Power

Typical behavior of queuing A simple metric of how well the
systems with random arrivals: network is performing:
Load
Power =
Delay
Average Power

Packet delay

Load “optimal LOAd

load”

Goal: maximize power

Fairness

» Effective utilization is not the only goal

e \We also want to be fair to the various flows
e ... but what the heck does that mean?
* Simple definition: equal shares of the bandwidth
e N flows that each get 1/N of the bandwidth?
e But, what if the flows traverse different paths?

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 13

Resource Allocation vs. Congestion Control

* Resource allocation
e How nodes meet competing demands for resources
e E.g., link bandwidth and buffer space
e When to say no, and to whom

* Congestion control

e How nodes prevent or respond to overload
conditions

e E.g., persuade hosts to stop sending, or slow down

e Typically has notions of fairness (i.e., sharing the
pain)

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 14

Simple Resource Allocation
e Simplest approach: FIFO queue and drop-tail

e Link bandwidth: first-in first-out queue
e Packets transmitted in the order they arrive

Kl —

* Buffer space: drop-tail queuing

e |f the queue is full, drop the incoming packet

>

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 15

Simple Congestion Detection

* Packet loss

e Packet gets dropped along the way
* Packet delay

e Packet experiences high delay

e How does TCP sender learn this?

* Loss

» Timeout

» Triple-duplicate acknowledgment
e Delay

» Round-trip time estimate

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

16

Options for Congestion Control

* Implemented by host versus network
* Reservation-based, versus feedback-based
* Window-based versus rate-based.

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

17

TCP Congestion Control

* TCP implements host-based, feedback-based,
window-based congestion control.

* TCP sources attempts to determine how much
capacity is available

* TCP sends packets, then reacts to observable
events (loss).

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

18

Idea of TCP Congestion Control

* Each source determines the available capacity

e ... so it knows how many packets to have in transit

e Congestion window
e Maximum # of unacknowledged bytes to have in transit
e The congestion-control equivalent of receiver window

e MaxWindow = min{congestion window, receiver
window}

e Send at the rate of the slowest component: receiver or
network

* Adapting the congestion window
e Decrease upon losing a packet: backing off
e Increase upon success: optimistically exploring

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 19

Additive Increase, Multiplicative Decrease

* How much to increase and decrease?
e Increase linearly, decrease multiplicatively
e A necessary condition for stability of TCP

e Consequences of over-sized window are much worse
than having an under-sized window

» Over-sized window: packets dropped and retransmitted
» Under-sized window: somewhat lower throughput

e Multiplicative decrease

e On loss of packet, divide congestion window in half
* Additive increase

e On success for last window of data, increase linearly

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 20

Additive Increase

Src

[T O] L O [1 0 0

Dest ’

Actually, TCP uses bytes, not segments to count:
When ACK is received:

cwnd+ = MSS [

MSS j

cwnd

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 21

Leads to the TCP “Sawtooth”

Window

Loss

|
4’

K 4

CSC 458/CSC 2209 — Computer Networks

University of Toronto — Fall 2025

22

Congestion Window Evolution

Only W packets
may be outstanding

util = 0%

N
Vd

time

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 23

Congestion Window Evolution

util = 0%

time

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 24

Practical Details

* Congestion window

e Represented in bytes, not in packets (Why?)
e Packets have MSS (Maximum Segment Size) bytes

* Increasing the congestion window

e Increase by MSS on success for last window of data

e In practice, increase a fraction of MSS per received
ACK

» # packets per window: CWND / MSS
» Increment per ACK: MSS * (MSS / CWND)

* Decreasing the congestion window
e Never drop congestion window below 1 MSS

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 25

TCP Sending Rate

* What is the sending rate of TCP?

* Acknowledgement for sent packet is received after
one RTT

e Amount of data sent until ACK is received is the
current window size W

* Therefore sending rate is R = W/RTT

* |s the TCP sending rate saw tooth shaped as well?

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

26

TCP Sending Rate and Buffers

6000

TCPSIM: Time evolution of a TCP flow#(RTT 142ms, BW 8000kb, buffer 142 pkts of 1000 bytes)

! ' | ! | I Packlet Drops [i°kts/s*10]I —
5000 ki S N N R Sending Rate [Pkis/s] -------- _
Cong. Window [Pkts*10] -
4000 | R H I B B L e] .
3000 | T -, e e .
2000 _ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA]
O W \ | I | E | | | ‘ | | |
0 10 20 30 40 50 60 70 80 90 100
160 | | | | | | | I 1
140 : uffer Occupancy [Pkts] -
L e L ST L ICu s et -
100 ... —
8O [l T T T -
60 ... ——
L o s e L T B T -
2 i ; T P A T R R A
0 10 20 30 40 50 60 70 80 90 100

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 27

Getting Started

Need to start with a small CWND to avoid overloading the network.

Window

A

X/I/ //

But, could take a long
time to get started! t

v

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 28

“Slow Start” Phase

e Start with a small congestion window
e |nitially, CWND is 1T MSS
e So, initial sending rate is MSS/RTT

* That could be pretty wasteful
e Might be much less than the actual bandwidth
e Linear increase takes a long time to accelerate

* Slow-start phase (really “fast start”)
e Sender starts at a slow rate (hence the name)
e ... butincreases the rate exponentially
e ... until the first loss event

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 29

Slow Start in Action

Double CWND per round-trip time

Increase CWND by 1 for each ACK received

Src [T Ay III 1L I_I—II_I—II_I—II_I_I

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 30

Slow Start and the TCP Sawtooth

Window

A

Loss

DN

A

Exponential “slow start” t

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just
start by sending a whole window’s worth of data.

Two Kinds of Loss in TCP

* Triple duplicate ACK

e Packet n is lost, but packets n+1, n+2, etc. arrive
e Receiver sends duplicate acknowledgments

e ... and the sender retransmits packet n quickly

e Do a multiplicative decrease and keep going

e Timeout
e Packet n is lost and detected via a timeout
e E.g., because all packets in flight were lost

e After the timeout, blasting away for the entire
CWND

e ... would trigger a very large burst in traffic
e So, better to start over with a low CWND

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

32

Repeating Slow Start After Timeout

Window

timeout

/

v’

Slow start in operation until
it reaches half of previous
cwnd.

Slow-start restart: Go back to CWND of 1, but take advantage
of knowing the previous value of CWND.

Repeating Slow Start After Idle Period

* Suppose a TCP connection goes idle for a while

e E.g., ssh session where you don't type for an hour

* Eventually, the network conditions change
e Maybe many more flows are traversing the link
e E.g., maybe everybody has come back from lunch!
* Dangerous to start transmitting at the old rate
e Previously-idle TCP sender might blast the network
e ... causing excessive congestion and packet loss
* So, some TCP implementations repeat slow start
e Slow-start restart after an idle period

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 34

Other TCP Mechanisms

* Nagle’s Algorithm and Delayed ACK

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

35

Motivation for Nagle’s Algorithm

* Interactive applications
e E.g., ssh
e Generate many small packets (e.g., keystrokes)
e Small packets are wasteful
e Mostly header (e.g., 40 bytes of header, 1 of data)
* Appealing to reduce the number of packets
e Could force every packet to have some minimum size
e ... but, what if the person doesn’t type more characters?
* Need to balance competing trade-offs
e Send larger packets
e ... but don’t introduce much delay by waiting

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

36

Nagle’s Algorithm
* Wait if the amount of data is small
e Smaller than Maximum Segment Size (MSS)
* And some other packet is already in flight
e |e, still awaiting the ACKs for previous packets

* That is, send at most one small packet per RTT
e ... by waiting until all outstanding ACKs have arrived

ACK

HE BN v« BH B N

* Influence on performance
e Interactive applications: enables batching of bytes
e Bulk transfer: transmits in MSS-sized packets anyway

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 37

Motivation for Delayed ACK

» TCP traffic is often bidirectional
e Data traveling in both directions
e ACKs traveling in both directions
* ACK packets have high overhead
e 40 bytes for the IP header and TCP header
e ... and zero data traffic
e Piggybacking is appealing
e Host B can send an ACK to host A
e ... as part of a data packet from B to A

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

38

TCP Header Allows Piggybacking

Flags: SYN
FIN
RST
PSH
URG
ACK

Source port Destination port

Sequence number

Acknowledgment
HdrLen| o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Data

CSC 458/CSC 2209 — Computer Networks

University of Toronto — Fall 2025

39

Example of Piggybacking

A has data to send

CSC 458/CSC 2209 — Computer Networks

A B

Data

%

B has data to send

B doesn’t have data to send

University of Toronto — Fall 2025

40

Increasing Likelihood of Piggybacking
* Increase piggybacking

e TCP allows the receiver to wait
to send the ACK A B

e ... in the hope that the host will {)
have data to send et ACK
e Example: ssh o
e Host A types characters at a wﬁ
UNIX prompt A
P p < ACK —
e Host B receives the character — ,4/
and executes a command (T/a
e ... and then data are generated %}
e Would be nice if B could send X

the ACK with the new data

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 41

Delayed ACK
* Delay sending an ACK

e Upon receiving a packet, the host B sets a timer
» Typically, 200 msec or 500 msec

e |f B's application generates data, go ahead and send
 And piggyback the ACK bit

e |f the timer expires, send a (non-piggybacked) ACK

* Limiting the wait
e Timer of 200 msec or 500 msec
e ACK every other full-sized packet

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025 42

Conclusions

» Congestion is inevitable

e Internet does not reserve resources in advance
e TCP actively tries to push the envelope

* Congestion can be handled
e Additive increase, multiplicative decrease
e Slow start, and slow-start restart

* Can the network help more? Later we will cover:

e Active Queue Management (AQM)
e Network-Application Integration (NAI)

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2025

43

