Tutorial #3

CSC458

Problem 1 – A

- We have a link, <u>rate 100 Kbit/s</u>, <u>latency 1ms</u>, <u>MTU 100</u>, sending 80 bytes of IP payload. How long does it take to transmit the data?
 - Ignore the Ethernet Header for now.

Propagation vs Transmission Delay

Problem 1 – A

• Step 1: Packet size 100 bytes × 8 = 800 bits

• Step 2: Transmission time t_tx = 800 / 100,000 = 0.008 s = 8 ms

• Step 3: Add propagation delay t_total = 8 ms + 1 ms = 9 ms

Problem 1 – B

 We have 3 back-to-back links, going through 2 intermediate switches. Similar numbers for the links. we have store and forward for the switches.

Problem 1 – B

- Step 1: Packet size 100 B × 8 = 800 bits
- Step 2: Per-link transmission time
 t_tx = 800 / 100,000 = 0.008 s = 8 ms
- Step 3: Per-link total delay 8 ms (tx) + 1 ms (prop) = 9 ms
- Step 4: First packet arrival at destination $3 \text{ hops} \times 9 \text{ ms} = 27 \text{ ms}$

Problem 1 – C

• Similar, but cut-through switching for the switches.

Problem 1 – C

- Packet size = 100 B \rightarrow 800 bits. Header size = 20 B \rightarrow 160 bits.
 - packet serialization time = 800/100,000 = 0.008 s = 8 ms
 - header serialization time = 160/100,000 = 0.0016 s = 1.6 ms.
- Source transmits at t = 0.
- Switch 1 begins forwarding at 2.6 ms, finishes at 10.6 ms.
- Switch 2 begins forwarding at 5.2 ms, finishes at 13.2 ms.
- Destination receives the last bit at 14.2 ms.

Problem 1 – D

• Let's go back to store and forward, Last link has MTU of 60.

Problem 1 – D

• Links 1–2 (no fragmentation):

- On-wire size = 100 B \to 100×8 = **800 bits**
- Per-link tx time: 800/100,000 = 0.008 s = 8.0 ms
- Per-link total (tx + prop): 8.0 + 1.0 = 9.0 ms
- Arrival at Switch 1: 9.0 ms; arrival at Switch 2: 9.0 + 9.0 = 18.0 ms

Fragmentation for Link 3 (MTU 60):

- Each IP fragment must be \leq 60 B including its 20 B IP header
- Payload per fragment \leq 40 B and (except maybe last) a multiple of 8 \rightarrow two fragments: 20+40 and 20+40 = 60 B each

Link 3 transmissions:

- Each fragment: $60 \text{ B} \rightarrow 60 \times 8 = 480 \text{ bits} \rightarrow \text{tx } 480/100,000 = 0.0048 \text{ s} = 4.8 \text{ ms}$
- Frag 1: starts at 18.0 ms, finishes tx at 22.8 ms, arrives (prop 1 ms) at 23.8 ms
- Frag 2: starts at 22.8 ms, finishes tx at 27.6 ms, arrives at 28.6 ms

Problem 1 – other variations.

- Think about the other cases for the next session
 - Fragmentation happens at the second link, we have cut-through
- What if IP didn't support fragmentation? What would be the transmission time?

What are the values of the fragmentation-related header fields?

 Learning bridges, Initially empty, sending these packets:

- A → C
- $C \rightarrow A$
- D \rightarrow C

What happens in the bridges?

 $\bullet A \rightarrow C$

- $\bullet \ \mathsf{A} \to \mathsf{C}$ $\bullet \ \mathsf{C} \to \mathsf{A}$

- $\bullet A \rightarrow C$
- $\cdot C \rightarrow A$
- D \rightarrow C

- $\bullet A \rightarrow C$
- $\bullet C \rightarrow A$
- D \rightarrow C

BEFORE STP (Example 1): All links forwarding

AFTER STP (Example 1): Spanning tree (thick)

BEFORE STP (Example 2): All links forwarding

AFTER STP (Example 2): Spanning tree (thick)

- What happens when the link costs are different?
- What happens when a new link is created or removed, or a node goes down?
- Is this a minimum spanning tree (MST)?
- What is the stretch factor for these examples? Will an MST create the lowest stretch factor?

- Assume we did distance vector.
- A network with 6 hosts, A to F.
- This is how the tables ended up at A and F.

 What does the network actually look like?

Node	Distance	Nexthop
В	1	В
С	2	В
D	1	D
Е	2	В
F	3	D

Forwarding table on A

Node	Distance	Nexthop
А	3	Е
В	2	С
С	1	С
D	2	Е
Е	1	Е

Forwarding table F

	Node	Distance	Nexthop
	В	1	В
	С	2	В
\subset	D	1	D
	E	2	В
	F	3	D

Forwarding table on A

	Node	Distance	Nexthop
	А	3	Е
	В	2	С
	С	1	C
	D	2	E
	E	1	E
Forwarding table F			

Node	Distance	Nexthop
В	1	В
C	2	В
D	1	D
Е	2	В
F	3	D

Forwarding table on A

Forwarding table on A

Forwarding table on A

Where these packets will be routed based on Longest Prefix Matching?

- a) 10.1.129.70 → ____
- b) 10.1.129.10 → ____
- c) 10.1.130.5 → ____
- d) 10.2.3.4 → ____
- e) 11.0.0.1 → ____
- f) 10.1.0.1 → ____
- g) 10.1.128.200 → ____
- h) 10.1.255.255 → ____

Prefix	Next Hop
10.0.0.0/8	P
10.1.0.0/16	Q
10.1.128.0/17	R
10.1.128.0/24	S
10.1.129.64/26	Т
* (Default)	U

Where these packets will be routed based on Longest Prefix Matching?

Prefix	Next Hop
10.0.0.0/8	Р
10.1.0.0/16	Q
10.1.128.0/17	R
10.1.128.0/24	S
10.1.129.64/26	Т
* (Default)	U

- a) $10.1.129.70 \rightarrow T$ (matches 10.1.129.64/26; longest over /17, /16, /8)
- b) $10.1.129.10 \rightarrow \mathbf{R}$ (in /17, not /24)
- c) $10.1.130.5 \rightarrow \mathbf{R}$ (in $10.1.128.0 10.1.255.255 \rightarrow /17$)
- d) $10.2.3.4 \rightarrow P$ (in 10.0.0.0/8)
- e) 11.0.0.1 → **U** (no 11.0.0.0/... entries; default)
- f) 10.1.0.1 \rightarrow Q (in /16; not in /17)
- g) $10.1.128.200 \rightarrow S$ (in /24; /24 outranks /17)
- h) $10.1.255.255 \rightarrow R$ (in /17; not in /24 or /26)