Tutorial #3

CSC458

Problem 1 – A

- We have a link, <u>rate 100 Kbit/s</u>, <u>latency 1ms</u>, <u>MTU 100</u>, sending 80 bytes of IP payload. How long does it take to transmit the data?
 - Ignore the Ethernet Header for now.

Problem 1 – B

 We have 3 back-to-back links, going through 2 intermediate switches. Similar numbers for the links. we have store and forward for the switches.

Problem 1 – C

• Similar, but cut-through switching for the switches.

Problem 1 – D

• Let's go back to store and forward, Last link has MTU of 60.

Problem 1 – other variations.

- Think about the other cases for the next session
 - Fragmentation happens at the second link, we have cut-through
- What if IP didn't support fragmentation? What would be the transmission time?

What are the values of the fragmentation-related header fields?

Problem 2

 Learning bridges, Initially empty, sending these packets:

- A → C
- $C \rightarrow A$
- D \rightarrow C

What happens in the bridges?

Problem 2 – Spanning Tree

BEFORE STP (Example 1): All links forwarding

Problem 2 – Spanning Tree

BEFORE STP (Example 2): All links forwarding

Problem 2 – Spanning Tree

- What happens when the link costs are different?
- What happens when a new link is created or removed, or a node goes down?
- Is this a minimum spanning tree (MST)?
- What is the stretch factor for these examples? Will an MST create the lowest stretch factor?

Problem 3

- Assume we did distance vector.
- A network with 6 hosts, A to F.
- This is how the tables ended up at A and F.

 What does the network actually look like?

Node	Distance	Nexthop
В	1	В
С	2	В
D	1	D
Е	2	В
F	3	D

Forwarding table on A

Node	Distance	Nexthop
А	3	Е
В	2	С
С	1	С
D	2	Е
Е	1	Е

Forwarding table F

Problem 4

Where these packets will be routed based on Longest Prefix Matching?

- a) 10.1.129.70 → ____
- b) 10.1.129.10 → ____
- c) 10.1.130.5 → ____
- d) 10.2.3.4 → ____
- e) 11.0.0.1 → ____
- f) 10.1.0.1 → ____
- g) 10.1.128.200 → ____
- h) 10.1.255.255 → ____

Prefix	Next Hop
10.0.0.0/8	P
10.1.0.0/16	Q
10.1.128.0/17	R
10.1.128.0/24	S
10.1.129.64/26	Т
* (Default)	U