
CSC458/2209 - Computer Networking Systems

Programming Assignment 1 - Simple Router

Department of Computer Science
University of Toronto

Fall 2025

1 Introduction

In this assignment you will develop a simple router (SR) with a static routing table. Your router
must receive raw Ethernet frames, process the packets like a real router, and forward them to
the correct outgoing interface. We will make sure you receive the Ethernet frames; your job is
to create the forwarding logic so that the packets are forwarded to the correct interface.

Your router must route real packets from an emulated host (client) to two emulated appli-
cation servers (http server 1 and 2) sitting behind your router. Each of the application servers
runs an HTTP server. When you have completed the forwarding path of your router, you should
be able to access these servers using regular client software. In addition, you should be able to
ping and traceroute to and through a functioning Internet router. A sample routing topology
is shown below:

Figure 1: Sample routing topology

If the router is working correctly, all of the following operations should work:

• Pinging from the client to any of the router’s interfaces (192.168.2.1, 172.64.3.1, 10.0.1.1)

• Tracepathing from the client to any of the router’s interfaces

• Pinging from the client to any of the app servers (192.168.2.2, 172.64.3.10)

• Tracepathing from the client to any of the app servers

• Downloading a file using HTTP from one of the app servers

Additional requirements are laid out in the ’Required Functionality’ section.

1

Simple Router CSC458 - Programming Assignment 1

2 Mininet

This assignment runs on top of Mininet, which allows you to emulate a topology on a single
machine. It provides the needed isolation between the emulated nodes so that your router node
can process and forward real Ethernet frames between the hosts. You don’t have to know how
Mininet works to complete this assignment, but more information about Mininet is available at
http://mininet.org (if you are curious).

3 Get Started

To do the assignment you will need the VM loaded with Mininet and the required dependencies
of the assignment. Check the VM Setup page for information on how to access this VM. Note
that the username/password for this VM is mininet/mininet.

3.1 Starter code and configuration

To check out the starter code, configure the environment, and set up the modules you need for
the controller, run the following commands:

1 cd ~

2 git clone https :// github.com/yganjali/csc458 -pa -fall -2025. git

3 cd csc458 -pa -fall -2025/

4 ./ run_config.sh

3.2 Setting up the emulator

At this stage, you need 3 terminals for the controller, Mininet, and router. Assuming you
already have one, spin up two more terminals before you continue.

3.2.1 Controller

Mininet requires a controller, which we implemented on top of POX. POX is already available
in the VMs and the modules were configured in the previous steps. To run the controller, run
the following command in the first terminal:

1 cd ~/csc458 -pa -fall -2025/

2 ./ run_pox.sh

You should see the following output:

1 POX 0.9.0 (ichthyosaur) / Copyright 2011 -2023 James McCauley , et al.

2 INFO:.home.mininet.pa1.pox_module.csc458.ofhandler:Successfully loaded IP

settings for hosts: {’server1 ’: ’192.168.2.2 ’ , ’server2 ’: ’172.64.3.10 ’ , ’

client ’: ’10.0.1.100 ’ , ’sw0 -eth1 ’: ’192.168.2.1 ’ , ’sw0 -eth2 ’: ’172.64.3.1 ’ ,

’sw0 -eth3 ’: ’10.0.1.1 ’}

3 INFO:.home.mininet.pa1.pox_module.csc458.srhandler:Created SR server on port

8888

4 INFO:.home.mininet.pa1.pox_module.csc458.srhandler:SRServerListener listening

on port 8888

5 INFO:.home.mininet.pa1.pox_module.csc458.srhandler:SR Handler started

6 INFO:core:POX 0.9.0 (ichthyosaur) is up.

Let the controller do its job and switch to the next terminal.

3.2.2 Mininet

In the second terminal, start Mininet emulator by running the commands:

1 cd ~/csc458 -pa -fall -2025/

2 ./ run_mininet.sh

2

http://mininet.org

Simple Router CSC458 - Programming Assignment 1

which should give you the following output:

1 *** Shutting down stale SimpleHTTPServers

2 *** Shutting down stale webservers

3 server1 192.168.2.2

4 server2 172.64.3.10

5 client 10.0.1.100

6 sw0 -eth1 192.168.2.1

7 sw0 -eth2 172.64.3.1

8 sw0 -eth3 10.0.1.1

9 *** Successfully loaded ip settings for hosts

10 {’server1 ’: ’192.168.2.2 ’ , ’server2 ’: ’172.64.3.10 ’ , ’client ’: ’10.0.1.100 ’ , ’

sw0 -eth1 ’: ’192.168.2.1 ’ , ’sw0 -eth2 ’: ’172.64.3.1 ’ , ’sw0 -eth3 ’: ’10.0.1.1 ’}

11 *** Creating network

12 *** Creating network

13 *** Adding controller

14 Unable to contact the remote controller at 127.0.0.1:6653

15 Connecting to remote controller at 127.0.0.1:6633

16 *** Adding hosts:

17 client server1 server2

18 *** Adding switches:

19 sw0

20 *** Adding links:

21 (client , sw0) (server1 , sw0) (server2 , sw0)

22 *** Configuring hosts

23 client server1 server2

24 *** Starting controller

25 c0

26 *** Starting 1 switches

27 sw0 ...

28 *** setting default gateway of host server1

29 server1 192.168.2.1

30 *** setting default gateway of host server2

31 server2 172.64.3.1

32 *** setting default gateway of host client

33 client 10.0.1.1

34 *** Starting SimpleHTTPServer on host server1

35 *** Starting SimpleHTTPServer on host server2

36 *** Starting CLI:

37 mininet >

Note that if you switch back to the controller terminal, you will see that the mininet instance
has connected itself to the controller:

1 INFO:openflow.of_01:[ca -15-44-5c-86-4b 1] connected

2 INFO:.home.mininet.pa1.pox_module.csc458.srhandler:Received RouterInfo event ,

populating interfaces ...

3 INFO:.home.mininet.pa1.pox_module.csc458.srhandler:Adding interface: eth1 (IP:

192.168.2.1 , MAC: 9e:f1:ed:01:e3:48, Port: 1)

4 INFO:.home.mininet.pa1.pox_module.csc458.srhandler:Adding interface: eth2 (IP:

172.64.3.1 , MAC: e6:02:fe:f8:d6:76, Port: 2)

5 INFO:.home.mininet.pa1.pox_module.csc458.srhandler:Adding interface: eth3 (IP:

10.0.1.1 , MAC: f6:e4:e1:d0:a3:d3, Port: 3)

6 INFO:.home.mininet.pa1.pox_module.csc458.srhandler:Interfaces populated

successfully

Keep the emulator running and switch to the next terminal.

3.2.3 Router

The final component you need is the router. To help you with debugging, we have pro-
vided you with the executable binary of the solution for the router in the sr solution file
(sr solution arm for ARM64 users). Note that your ultimate goal in this assignment is to im-

3

Simple Router CSC458 - Programming Assignment 1

plement the router’s logic and compile it into an executable just like this. In the third terminal,
execute the binary file of the solution by running:

1 cd ~/csc458 -pa -fall -2025/

2 ./ sr_solution

which will output the following:

1 Using VNS sr stub code revised 2009 -10 -14 (rev 0.20)

2 Loading routing table from server , clear local routing table.

3 Loading routing table

4 ---

5 Destination Gateway Mask Iface

6 10.0.1.100 10.0.1.100 255.255.255.255 eth3

7 192.168.2.2 192.168.2.2 255.255.255.255 eth1

8 172.64.3.10 172.64.3.10 255.255.255.255 eth2

9 ---

10 Client mininet connecting to Server localhost :8888

11 Requesting topology 0

12 successfully authenticated as mininet

13 Loading routing table from server , clear local routing table.

14 Loading routing table

15 ---

16 Destination Gateway Mask Iface

17 10.0.1.100 10.0.1.100 255.255.255.255 eth3

18 192.168.2.2 192.168.2.2 255.255.255.255 eth1

19 172.64.3.10 172.64.3.10 255.255.255.255 eth2

20 ---

21 Router interfaces:

22 eth3 HWaddr8e :5a:1f:45:ce:90

23 inet addr 10.0.1.1

24 eth2 HWaddrca :67:4f:02:e4:6b

25 inet addr 172.64.3.1

26 eth1 HWaddrca :91:bf :78:1e:7d

27 inet addr 192.168.2.1

28 <-- Ready to process packets -->

3.3 Test Connectivity of Your Emulated Topology

Now that you have all the necessary components, you can test out the connectivity of the
environment setup. In our setup, 192.168.2.2 is the IP for server1, and 172.64.3.10 is the
IP for server2. You can find the IP addresses in your IP CONFIG file.

Now, switch back to the terminal where Mininet is running. To issue a command on the
emulated host, type the hostname (server1, server2, or client) followed by the command in
the Mininet console. The following tests can be useful:

3.3.1 Ping Test

You can test the accessibility of the nodes to each other with the ping command. For example,
to test that between client and server1 you can:

1 mininet > client ping -c 3 192.168.2.2

2 PING 192.168.2.2 (192.168.2.2) 56(84) bytes of data.

3 64 bytes from 192.168.2.2: icmp_req =1 ttl=63 time =66.9 ms

4 64 bytes from 192.168.2.2: icmp_req =2 ttl=63 time =49.9 ms

5 64 bytes from 192.168.2.2: icmp_req =3 ttl=63 time =68.8 ms

You can check the output created by sr solution and the controller as a result of the
generated packets.

4

Simple Router CSC458 - Programming Assignment 1

3.3.2 Tracepath Test

You can use tracepath (or traceroute) to see the route used between nodes:

1 mininet > client tracepath -n 192.168.2.2

2 1?: [LOCALHOST] pmtu 1500

3 1: 10.0.1.1 38.445 ms asymm 29

4 1: 10.0.1.1 46.965 ms asymm 29

5 2: 192.168.2.2 130.594 ms reached

6 Resume: pmtu 1500 hops 2 back 2

3.3.3 Webserver test

Finally, to test the web server is properly working at the server1 and server2, issue an HTTP
request by using wget or curl.

1 mininet > client wget http ://192.168.2.2

2 --2022-08-25 08:10:45 - - http ://192.168.2.2/

3 Connecting to 192.168.2.2:80... connected.

4 HTTP request sent , awaiting response ... 200 OK

5 Length: 161 [text/html]

6 Saving to: ’index.html ’

7

8 100%[====================================== >] 161 --.-K/s in 0s

9

10 2022 -08 -25 08:10:46 (16.9 MB/s) - ’index.html ’ saved [161/161]

Note (or test) that if you stop sr solution, the ping/tracepath/wget won’t work anymore.
In this assignment, you will replicate the functionality of sr solution. To help you get started,
we provide some starter code described in the following section.

4 Starting the assignment

With the bigger picture in mind, you can now focus on building and running your own router.
There are two configuration files you need to know about:

• IP CONFIG: Listed out the IP addresses assigned to the emulated hosts.

1 > cat ~/csc458 -pa -fall -2025/ IP_CONFIG

2 server1 192.168.2.2

3 server2 172.64.3.10

4 client 10.0.1.100

5 sw0 -eth1 192.168.2.1

6 sw0 -eth2 172.64.3.1

7 sw0 -eth3 10.0.1.1

8

• router/rtable (also linked to ~/csc458-pa-fall-2025/rtable): The static routing ta-
ble used for the simple router.

1 > cat ~/csc458 -pa -fall -2025/ rtable

2 10.0.1.100 10.0.1.100 255.255.255.255 eth3

3 192.168.2.2 192.168.2.2 255.255.255.255 eth1

4 172.64.3.10 172.64.3.10 255.255.255.255 eth2

5

4.1 The starter router code

You can build and run the skeleton of the router with:

5

Simple Router CSC458 - Programming Assignment 1

1 cd ~/csc458 -pa -fall -2025/ router/

2 make

3 ./sr

5 General Forwarding Logic

To get you started, an outline of the forwarding logic for a router follows, although it does
not contain all the details. There are two main parts to this assignment: IP forwarding, and
handling ARP (address resolution).

IP Forwarding: Given a raw Ethernet frame, if the frame contains an IP packet that is
not destined for one of our interfaces:

• Sanity-check the packet (meets minimum length and has correct checksum). If a packet
is malformed, the router should silently drop it.

• Decrement the TTL by 1, and recompute the packet checksum over the modified header.

• Find out which entry in the routing table has the longest prefix match with the destination
IP address.

• Check the ARP cache for the next-hop MAC address corresponding to the next-hop IP.
If it’s there, send it. Otherwise, send an ARP request for the next-hop IP (if one hasn’t
been sent within the last second), and add the packet to the queue of packets waiting on
this ARP request.

Obviously, this is a very simplified version of the forwarding process, and the low-level details
follow. For example, if an error occurs in any of the above steps, you will have to send an ICMP
message back to the sender notifying them of an error. You may also get an ARP request or
reply, which has to interact with the ARP cache correctly.

6 Protocols to Understand

6.1 Ethernet

You are given a raw Ethernet frame and have to send raw Ethernet frames. You should under-
stand source and destination MAC addresses and the idea that we forward a packet one hop
by changing the destination MAC address of the forwarded packet to the MAC address of the
next hop’s incoming interface.

6.2 Internet Protocol

Before operating on an IP packet, you should verify its checksum and make sure it meets the
minimum length of an IP packet. You should understand how to find the longest prefix match
of a destination IP address in the routing table described in the ”Getting Started” section. If
you determine that a datagram should be forwarded, you should correctly decrement the TTL
field of the header and recompute the checksum over the changed header before forwarding it
to the next hop.

6.3 Internet Control Message Protocol

ICMP is a simple protocol that can send control information to a host. In this assignment,
your router will use ICMP to send messages back to a sending host. You will need to properly

6

Simple Router CSC458 - Programming Assignment 1

Name Type Code Explanation

Echo reply 0 - Sent in response to an echo request (ping)
to one of the router’s interfaces. (This
is only for echo requests to any of the
router’s IPs. An echo request sent else-
where should be forwarded to the next hop
address as usual.)

Destination net unreachable 3 0 Sent if there is a non-existent route to
the destination IP (no matching entry in
the routing table when forwarding an IP
packet).

Destination host unreachable 3 1 Sent if five ARP requests were sent to the
next-hop IP without a response.

Port unreachable 3 3 Sent if an IP packet containing a UDP or
TCP payload is sent to one of the router’s
interfaces. This is needed for traceroute
to work.

Time exceeded 11 0 Sent if an IP packet is discarded dur-
ing processing because the TTL field is 0.
This is also needed for traceroute to work.

Table 1: ICMP Messages

generate the following ICMP messages (including the ICMP header checksum) in response to
the sending host under the following conditions:

The source address of an ICMP message can be the source address of any of the incoming
interfaces, as specified in RFC 792. As mentioned above, the only incoming ICMP message
destined towards the router’s IPs that you have to explicitly process are ICMP echo requests.
You may want to create additional structs for ICMP messages for convenience, but make sure
to use the packed attribute so that the compiler doesn’t try to align the fields in the struct to
word boundaries.

6.4 Address Resolution Protocol

ARP is needed to determine the next-hop MAC address that corresponds to the next-hop IP
address stored in the routing table. Without the ability to generate an ARP request and process
ARP replies, your router would not be able to fill out the destination MAC address field of the
raw Ethernet frame you are sending over the outgoing interface. Analogously, without the
ability to process ARP requests and generate ARP replies, no other router could send your
router Ethernet frames. Therefore, your router must generate and process ARP requests and
replies.

To reduce the number of ARP requests you send, you must cache ARP replies. Cache entries
should time out after 15 seconds to minimize staleness. The provided ARP cache class already
times the entries out for you.

When forwarding a packet to a next-hop IP address, the router should first check the ARP
cache for the corresponding MAC address before sending an ARP request. In the case of a
cache miss, an ARP request should be sent to a target IP address about once every second until
a reply comes in. If the ARP request is sent five times with no reply, an ICMP destination host
unreachable is sent back to the source IP as stated above. The provided ARP request queue
will help you manage the request queue.

In the case of an ARP request, you should only send an ARP reply if the target IP address

7

Simple Router CSC458 - Programming Assignment 1

is one of your router’s IP addresses. In the case of an ARP reply, you should only cache the
entry if the target IP address is one of your router’s IP addresses.

Note that ARP requests are sent to the broadcast MAC address (ff-ff-ff-ff-ff-ff).
ARP replies are sent directly to the requester’s MAC address.

7 IP Packet Destinations

An incoming IP packet may be destined for one of your router’s IP addresses, or it may be
destined elsewhere. If it is sent to one of your router’s IP addresses, you should take the
following actions, consistent with the section on protocols above:

• If the packet is an ICMP echo request and its checksum is valid, send an ICMP echo reply
to the sending host.

• If the packet contains a TCP or UDP payload, send an ICMP port unreachable to the
sending host.

• Otherwise, ignore the packet.

Packets destined elsewhere should be forwarded using your normal forwarding logic.

8 Code Overview

8.1 Basic Functions

Your router receives a raw Ethernet frame and sends raw Ethernet frames when sending a reply
to the sending host or forwarding the frame to the next hop. The basic functions to handle
these functions are:

1 void sr_handlepacket(struct sr_instance* sr , uint8_t * packet ,

2 unsigned int len , char* interface)

This method, located in sr router.c, is called by the router each time a packet is received.
The ”packet” argument points to the packet buffer which contains the full packet including the
ethernet header. The name of the receiving interface is passed into the method as well.

1 int sr_send_packet(struct sr_instance* sr , uint8_t* buf ,

2 unsigned int len , const char* iface)

This method, located in sr vns comm.c, will send an arbitrary packet of length, len, to the
network out of the interface specified by iface.

You should not free the buffer given to you in sr handlepacket (this is why the buffer is
labeled as being ”lent” to you in the comments). You are responsible for doing correct memory
management on the buffers that sr send packet borrows from you (that is, sr send packet will
not call free on the buffers that you pass it).

1 void sr_arpcache_sweepreqs(struct sr_instance *sr)

The assignment requires you to send an ARP request about once a second until a reply
comes back or we have sent five requests. This function is defined in sr arpcache.c and called
every second, and you should add code that iterates through the ARP request queue and resends
any outstanding ARP requests that haven’t been sent in the past second. If an ARP request
has been sent 5 times with no response, a destination host unreachable should go back to all
the senders of packets that were waiting on a reply to this ARP request.

8

Simple Router CSC458 - Programming Assignment 1

9 Data Structures

9.1 The Router (sr router.h)

The full context of the router is kept in the struct sr instance (sr router.h). sr instance

contains information about the topology the router is routing for as well as the routing table
and the list of interfaces.

9.2 Interfaces (sr if.c/h)

After connecting, the server will send the client the hardware information for that host. The
stub code uses this to create a linked list of interfaces in the router instance at member if list.
Utility methods for handling the interface list can be found at sr if.c/h.

9.3 The Routing Table (sr rt.c/h)

The routing table in the stub code is read on from a file (default filename ”rtable”, can be set
with command line option -r) and stored in a linked list of routing entries in the current routing
instance (member routing table).

9.4 The ARP Cache and ARP Request Queue (sr arpcache.c/h)

You will need to add ARP requests and packets waiting on responses to those ARP requests
to the ARP request queue. When an ARP response arrives, you will have to remove the ARP
request from the queue and place it onto the ARP cache, forwarding any packets that were
waiting on that ARP request. Pseudocode for these operations is provided in sr arpcache.h.
The base code already creates a thread that times out ARP cache entries 15 seconds after they
are added for you. You must fill out the sr arpcache sweepreqs function in sr arpcache.c

that gets called every second to iterate through the ARP request queue and re-send ARP
requests if necessary. Pseudocode for this is provided in sr arpcache.h.

9.5 Protocol Headers (sr protocol.h)

Within the router framework you will be dealing directly with raw Ethernet packets. The stub
code itself provides some data structures in sr protocols.h which you may use to manipulate
headers easily.

Several resources describe the protocol headers in detail. Here are some general useful
pointers:

• Ethernet

• IP

• ICMP

• ARP

For the actual specifications, there are also the RFC’s for ARP (RFC826), IP (RFC791),
and ICMP (RFC792).

10 Required Functionality

• The router must successfully route packets between the Internet and the application
servers.

9

https://en.wikipedia.org/wiki/Ethernet_frame
https://en.wikipedia.org/wiki/IPv4#Packet_structure
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc792.txt

Simple Router CSC458 - Programming Assignment 1

• The router must correctly handle ARP requests and replies.

• The router must correctly handle traceroutes through it (where it is not the end host)
and to it (where it is the end host).

• The router must respond correctly to ICMP echo requests.

• The router must handle TCP/UDP packets sent to one of its interfaces. In this case, the
router should respond with an ICMP port unreachable.

• The router must maintain an ARP cache whose entries are invalidated after a timeout
period (timeouts should be on the order of 15 seconds).

• The router must queue all packets waiting for outstanding ARP replies. If a host does not
respond to 5 ARP requests, the queued packet is dropped and an ICMP host unreachable
message is sent back to the source of the queued packet.

• The router must not needlessly drop packets (for example when waiting for an ARP reply)

• The router must enforce guarantees on timeouts–that is, if an ARP request is not re-
sponded to within a fixed period of time, the ICMP host unreachable message is gen-
erated even if no more packets arrive at the router. (Note: You can guarantee this by
implementing the sr arpcache sweepreqs function in sr arpcache.c correctly.)

11 Deliverables

Compress all content of the router directory, name it as pa1.tar.gz, and submit it to markus.
There is a rule named compress in the provided Makefile (inside the router directory), which
will do the compression for you. You just need to run make compress which will create the
pa1.tar.gz file for you. By default, this command will add the README, Makefile, .c, and .h
files to the archive. If you wish to add more files to your submission, you should add them to
the end of the tar command under the compress rule in the Makefile.

For the auto-tester to work, your submitted files should create the sr executable as a result
of simply running make on them.

12 Marking & Testing

Your grade will be based on the following breakdown:

• Public tests: 50%

• Private tests: 40%

• Style and documentation: 10%

Before running the automated tester, first verify that your router works correctly by manu-
ally testing it as described in the Test Connectivity of Your Emulated Topology section.

The public tests include five cases that evaluate the core forwarding logic of the simple
router:

• ARP reply

• ARP expiration

• ICMP echo

10

Simple Router CSC458 - Programming Assignment 1

• ICMP forward

• TCP forward

The tester requires a compiled instance of your simple router. Instructions for running it
can be found in the README.md file of the tester module. The correct solution should have the
following output for the public test cases:

1 Running CSC458 Lab 1 Tester ...

2 {" compile ": [1, 1, "success"], "Public -ARP -Reply": [1, 1, "correct ARP reply\n

"], "Public -ARP -Expiration ": [1, 1, "router expired ARP cache and re-ARPed\n

"], "Public -ICMP -Echo": [1, 1, "correct ICMP echo reply\n"], "Public -ICMP -

Forward ": [1, 1, "correct ICMP forwarding\n"], "Public -TCP -Forward ": [1, 1,

"correct TCP forwarding\n"]}

Note: The ARP expiration test simulates realistic behavior and may take up to 20 seconds.
If needed, you can temporarily disable this test by commenting it out in Lab1Tester.

Finally, please review the coding guidelines and examples of good and bad programming
practices before you begin.

13 Final Notes

13.1 Logging Packets

You can log the packets received and generated by your SR program by using the ”-l” parameter
with your SR program. The file will be in pcap format, i.e., you can use Wireshark or tcpdump
to read it.

1 ./sr -l logname.pcap

13.2 Debugging Functions

We have provided you with some basic debugging functions in sr utils.h, sr utils.c. Feel
free to use them to print out network header information from your packets. Below are some
functions you may find useful:

• print hdrs(uint8 t *buf, uint32 t length) - Prints out all possible headers starting
from the Ethernet header in the packet

• print addr ip int(uint32 t ip) - Prints out a formatted IP address from a uint32 t.
Make sure you are passing the IP address in the correct byte ordering.

13.3 Length of Assignment

This assignment requires a significant amount of time to complete, so get started early. To give
you a rough idea of the size of the assignment, we added 520 lines of C, including whitespace
and comments in our reference solution:

1 > wc -l ~/csc458 -pa -fall -2025/ router /*.c | tail -1

2 1585 total

3 > wc -l ~/csc458 -pa -fall -2025/ router/solution /*.c | tail -1

4 2104 total

11

https://www.cs.toronto.edu/~yganjali/teaching/coding-guidelines/

Simple Router CSC458 - Programming Assignment 1

13.4 Tools

There are several tools that can make your life considerably easier.

• make is a utility used to conditionally recompile your program based on the timestamps
of the source code, object files, and executable. We expect that everyone in the class will
have seen a makefile before as they are a permanent fixture of every flavor of Unix and
most other platforms. If you don’t know how to use make or write a makefile, learn. We
require a makefile to be submitted with each assignment.

• gdb is the GNU debugger. gdb is an interactive, source-level debugger. It allows you to
trace through your code as it executes and examine the program state. If your program
seg faults, it will show you where. Learning to use gdb effectively will save you many hours
of debugging hell. To compile with gdb, simply add the ’-g’ flag to the gcc command.
You can then start gdb with your program with the command gdb progname. Type ’help’
from the gdb prompt for more information.

• Valgrind is a programming tool for finding memory leaks and memory errors. Use Val-
grind to ensure that your program is not leaking memory and that there aren’t potential
segfaults lurking in your code. The basic procedure for running valgrind is to run the
command valgrind progname progarg1 progarg2..., where progname is the name of
the program and progarg1, etc. are arguments to the program. Run valgrind --help

for additional options– most of the things that you will be interested in will be in the
Memcheck module.

12

	Introduction
	Mininet
	Get Started
	Starter code and configuration
	Setting up the emulator
	Controller
	Mininet
	Router

	Test Connectivity of Your Emulated Topology
	Ping Test
	Tracepath Test
	Webserver test

	Starting the assignment
	The starter router code

	General Forwarding Logic
	Protocols to Understand
	Ethernet
	Internet Protocol
	Internet Control Message Protocol
	Address Resolution Protocol

	IP Packet Destinations
	Code Overview
	Basic Functions

	Data Structures
	The Router (sr_router.h)
	Interfaces (sr_if.c/h)
	The Routing Table (sr_rt.c/h)
	The ARP Cache and ARP Request Queue (sr_arpcache.c/h)
	Protocol Headers (sr_protocol.h)

	Required Functionality
	Deliverables
	Marking & Testing
	Final Notes
	Logging Packets
	Debugging Functions
	Length of Assignment
	Tools

