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Announcements

e Final project
e Form your team (2-3 students)

e Start drafting your project proposal
« Due: Friday, Feb. 13

» Please check class website for sample project topics, and
more information.

e List of papers for Week 5 posted

e Volunteers?
« 5% bonus

* Next week:

 Three paper presentations
o Please read before class
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Today

* Networks and Machine Learning
* Data Center Network Transport

* Network-Application Integration
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In the Beginning ...

* Main Design Objective: today’s networks were
designed to grow rapidly.

* Design Decisions: any design choices were side-
effects of this objective:

e Best-effort service model

——————————————————————————————————

e End-to-end principle . Allthese design
. decisions are based on
" the "rapid growth”

objective.

—_ e e =T T T T T e e e T T e e ———-———

e Simplicity (ease of growth)
e Packet-based design
e Distributed control model
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New Needs

* Question: Do principles/design of current
networks match our current and future needs?

* Examples:

e Smart cities, loT, ...
e Self-driving cars
e Remote surgery

e Exascale ML training ﬁ

* Can we rely on today’s networks?

e Delay, bandwidth, availability, reliability, scale, ...
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The Mismatch

Current and Future Needs Past Design

e Need performance guarantees * No performance guarantees
e Bandwidth, latency, ... e Best-effort service design
o At scale e Scale — performance

degradation
* Need optimality * Ad hoc optimization solutions

e Minimize cost, and energy, ... e Not generalizable/automated

* Need manageability e No built-in management
e Network, individual primitives
components, services, ... e Simplicity, end-to-end design
e Need for change ° l\lo.p.lan.for change -
ossification

e New services, protocols, ... e Short-term focus on growth
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Networks for Machine Learning

* Data Center Networks have evolved significantly
e To accommodate demands for modern applications.
e Example: SDN and programmable switches

e Example: many novel congestion control algorithms in recent years:
- Swift, timely, HPCC, DCQCN, ...

 Enablers: more accurate information from network (exact queue
occupancy), assumptions about start rate (start at line rate), etc.

* Machine learning applications have grown significantly as well.
e Used more in various domains, solving a wide range of problems.

e At the same time, ML applications have higher demands from the
underlying network

* Question: are existing DCN solutions enough?

e l.e., can they provide the high-performance connectivity needed for
ML applications?

CSC2229 — Computer Networks for Machine Learning University of Toronto — Winter 2026



What Makes ML Different: Challenges

* ML workloads can be extremely large: l High
e E.g., Training of Large-Language Models (LLMs) Dependegc(i):sl Bandwidth
A 2

e Need various forms of parallelism N Needs
« Data parallelism {@}
«  Model parallelism g )
- Hybrid Nc?de @ Low f_atencg
Scaling Requirements

* ML workloads have extremely high requirements from the underlying network:
e High bandwidth
e Low latency
e Low jitter (variations in delay)

———————————————————————————————————————————————————————————————————————————————————————————————

Moore's Law: the nomber of transistors on a microchip will dovble approximately every two years.
* For years, Moore's law meant we could easily grow compute power according to growth in demand.

End of Moore's Law: recently, we have hit a wall and cannot continve growing compote per node as
predicted by the Moore's Law.

* However, the demand keeps growing ...
» For ML even faster than what Moore's law coold handle.

——— . e e e e == - =

All of this leads to significant pressure on the network (throvghpot, latency, reliability, ...)
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What Makes ML Different: Challenges

Handling many independent flows in a network makes many network
problems easy (easier) to solve

e Random arrivals, each flow has a small share of bandwidth
e Why?

In ML, we have few flows
e Having few flows means each flow can have a large fraction of link bandwidth
« = Any interaction between flows can lead to significant performance degradation

In ML flows have direct/indirect dependencies
e Dependence between compute and communication

« = flows directly or indirectly depend on each other
« = Performance degradation in one flow can impact the performance of the entire job

Providing high-performance connectivity for ML workloads is extremely
challenging.

e Due to scale, high-performance requirements (bandwidth, latency, ...), larger flows,
dependencies, ...

Example: load balancing in ML
e Even two flows sharing a path can significantly reduce the overall performance.
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What Makes ML Different: Opportunities

* ML workloads are more more predictable

e Repeating patterns of communication
. . . Update model
e Collective Communications: scatter, gather, all- "
reduce, ... R j
* Knowing communication patterns = “ “ “ “
Opportunltles for . Worker 0 Worker 1 Worker 2 Worker 3
o BUIIdlng specialized hardware ~$ ~$ ~$ ~$
- E.g., topology that matches the flow - e -

requirements

 Today’s most successful ML networking
solutions — —

e Build network solutions that adapt based on ‘ | - ‘ - I
application requirements ‘

« Application-aware scheduling e e e
« Reconfigurable topology I

- Adaptive routing, ... ‘:

e Access to “Collective Communication — e

Libraries” can provide significant opportunities
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Network Topology

* DCN topology: fat-tree, leaf-spine, ...
e Static and uniform

e Needs to work with a wide range of workloads
» Tuned for average workload

* Distributed ML application have high demand which
is not necessarily uniform

e More demand for certain paths

* Two options to deal with extra traffic

e Add extra capacity and over-provision; or
e Use existing capacity better:

« Measurement studies show there is extra capacity
available, it just needs to be used effectively
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Adapt Network Topology to Demand

* Needs to adapt topology to workload

e Even more important when you share
the infrastructure

» Cloud-based ML training, or various Fecttonics packet switching
ML jobs sharing the network

Core Switch

Aggregate Switch Aggregate Switch

* How can we adapt the topology to
match demand? Two paradigms:

e Customize the topology fOr SpeCifiC ToR Switch [l ToR Swi\tch ToR Switch [l ToR Switch
classes of traffic N o
« Special-purpose design e
- Can be optimal, but very expensive
- What happens if new i crait swching dowto
communication patterns emerge? ey e
e Dynamically rearrange the topology
« How?
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Reconfigurable DCN Topology

e Optical Circuit Switching:
e Reconfigure input/output connectivity of switch ports
e Avoids electronic-optic-electronic conversion

e Various technologies:
«  MEMS-based Switching: mechanically rearrange mirrors to change
connectivity of ports

- Arrayed Wave Guide (AWG) Switching: change wavelength to
connect to different output ports

Input 1 Input2  Input3 Output T Output 2 Output 3

|
|
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
/

e Benefit: shifting capacity to where it is needed on demand (R MirorsonMotors

e Challenge: reconfiguration might take some time
e Not ideal for typical packet switching scenarios

*  What if we know the demand and it is fairly stable?

\\ ~ - ~ -
e Google’s Jupiter: estimate demand matrix, adapt topology SN T ~o =
using a fast control plane ~_ >

~N
' 3

* ML Workloads are predictable = opportunity to change the switch
connectivity to meet demand in real time

e RDCN performance improvements:

e High bandwidth (1.6-4x increased in available bandwidth),
70-80% lower power, micro to nano-second scale delay
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Some Examples

» Optical interconnect for ML

e Nvidia GPU Clusters: DGX-H100 = DGX
SuperPOD

e SiP-ML: Hybrid data and model parallelism
e TPUV4: OCS for interconnection

e Communication pattern supported efficiently on the
network

e Task partitioning/placement based on degree and
network latency
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Transport in Data Center Networks
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TCP “Sawtooth”
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Congestion Window Evolution

Only W packets
may be outstanding

W=1 l
b | 4
util = 0%
/N
W
N,
Vd
time
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Congestion Window Evolution

util = 0%

time
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Transport in Data Center Networks

* Data center network properties:
e Extremely short RTTs
e Extremely high bandwidth links

e Extremely large transfer
e Single authority (typically)

* Leads to new challenges and opportunities

e Can you think of any challenges for providing good
transport solutions?

e How about opportunities?
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Explicit Congestion Notification

7 A

maxP

» Avglen

minTh  maxTh

e Explicit Congestion Notification
e Router marks the packet with an ECN bit

e Receiver reflects the ECN bit in the ACK
e ... and sending host interprets as a sign of congestion

* Sender can use this as congestion signal
e [nstead of packet loss
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DCTCP

e Easier to ensure ECN is enabled on all devices in DCN
e Single authority

e Use ECN marks as congestion signal — reduced packet loss

e Congestion measured based on fraction of packets marked with
ECN (called o).

e a is the moving average of the observed fractions (like
estimatedRTT)

* Adjust congestion window based on the extent of congestion:
cwnd < cwnd x (1- a/2)

e Instead of halving the window in case of congestion.

* More responsive and less aggressive to network conditions
compared to traditional TCP

» Keeps queue lengths shorter (as reacts faster) — low latency
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Link Layer Flow Control

Flow control mechanism used to create lossless networks.

e Not to be confused with flow control in transport layer which is end-to-end.

e Setup: two nodes (end-hosts or switches) connected via a link.
« Both have buffer (transmitter queue and receive buffer).

e Goal: ensure the receiver can handle the traffic injected on the link — no
packet loss

Transmit Queue Receive Buffer

Two prominent techniques:
e Credit-based
e Pause-based

Pause
Frames

Allocates | &5y )
transmission e
credits based on

capacity

Used to temporarily
halt transmission to
prevent congestion
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Credit-Based Link-Level Flow Control

Transmit Queue Receive Buffer
Credit

* Receiver provides credits to the sender when it has room
e Credit unit: bytes or packets

e Credit allocation:

e At the beginning certain (fixed) credit is allocated.
+ Question: how much credit should be allocated initially?

e Transmitter uses credit when transmitting.
» Pauses if there is no more credit available.

e Receiver replenishes transmitter credits as receiver buffer becomes available.

* Note: we also can have credit-based congestion control. This is not what
we are covering here. The concepts are similar, but at different layers.
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Pause-based Link-Level Flow Control

pavse
threshold

Transmit Queue Receive Buffer

Pause frame
[ NNNNNNR- TN

e Transmitter does not need permission to start.

* Receiver signals the transmitter when it is running out of buffer
space.

e When buffer occupancy goes above a fixed pause-threshold.
e Pause-frame sent to transmitter
e Transmitter halts transmission

* Once the receiver buffer has sufficient space ...

e Receiver sends a resume frame to the transmitter
e The transmitter can resume sending.
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Priority-based Flow Control (PFC)

Allows multiple priority-
queues.

Pause individual queues not
all traffic
 Allows other priority queues
to continue transmitting
even if a single queue Is
paused.

Improves impact of pause on
non-congested traffic to
some extent

Still, we might pause non-
congested flows
e Why?

e |s there an easy way to solve
this problem?

Known issues: head-of-line
blocking (deadlock), PFC
storm

PO

P1

P4

P5

P6

CSC2229 — Computer Networks for Machine Learning

Transmit Queue

Receive Buffer

Data Packets

PFC Pause [I]]]]]]

jiEY

University of Toronto — Winter 2026

32



Remote Direct Memory Access

* Directly write to remote server’s memory
e Both sides register memory regions to give RDMA direct access permission and

mapping
e Need trust/cooperation between two ends

* RDMA-capable NIC (RNIC) handles data transfer entirely in hardware

e No need to involve CPU for transfer

* Queue Pairs (QPs): a send queue and a receive queue.
e Supports various operations like send, receive, read, and write.

a N a )
User Space User Space
APP [ sutter | APP [ Teutter )
I\
0S TCP/IP Butfer ’ [OS — ] %
Driver [ Buffer 3
D,
V. V
' NIC Buffer RNIC Buffer j
g ) \_ —/
RDMA Mode

Traditional Mode



Benefits of RDMA

* Low Latency
e Minimizes delays by avoiding CPU intervention.
e Ideal for applications requiring real-time data processing.

e High Throughput
e Enables faster data transfer rates.
e Suitable for high-performance computing and large data sets.

e Reduced CPU Load

e Frees up CPU resources for other tasks.
e Improves overall system efficiency.

* Zero-copy data transfer.
e Eliminate (or minimize data copies)

e Applications: High-Performance Computing (HPC), Storage, ...
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From Proprietary to Commodity

e Original technology InfiniBand

e Touching physical layer, link layer, and transport layer in the stack.

e Small number of vendors

e Later RDMA enabled over Ethernet
e RoCE: RDMA over Converged Ethernet
e With and without PFC support (RoCE v1 vs. v2)

e And even in WAN

e iWARP (Internet Wide-Area RDMA Protocol)
e Implemented over TCP/IP, no need for lossless network

e Significant challenges here, especially over long distances

\ /-—\ — \
~( ]

CPU

.
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Detour: OpenTCP

* Network can impact congestion control by using
AQM schemes.

* Finding the optimal value by probing
e Costly, and not very efficient

* What if the network could help?

e Two extremes: end-to-end vs. centralized

e How about a solution in the middle?

e Network guides the flows without creating
dependency.

CSC2229 — Computer Networks for Machine Learning University of Toronto — Winter 2026
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Detour:

OpenTCP in Software-Defined Networks

Congestion

Hints . — - _

'/
-* Network
Statistics |

' . - | Edge Switch
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Cumulative Fraction

OpenTCP: Performance Improvements
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Adapting Other Network Functions

* Topology is only one dimension

* What about: routing, prioritization, scheduling,
R4

* How can we optimize network behavior based on
application requirements?

CSC2229 — Computer Networks for Machine Learning University of Toronto — Winter 2026

39



Application-Aware Networking

To optimize network behavior, we need to provide information about
application requirements.

e Application-Aware Networking
e Today’s networks lack this information

Main Question: how can we provide information from applications to the
network?

Naive approach:
e Create new interfaces between network and applications.
e Allow application developers provide more information about the requirements
- E.g., I need 10Gb/s bandwidth for 2 seconds.

This is not very practical
e Putting the burden on application developer
e She/he might not even know the requirements

Alternative: create tools/mechanisms to automatically generate signals that can
help network adjust itself based on application requirements, or state.
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Example: Incast Problem

* Consider a simple multi-get request from a
distributed storage.

e Get some content from several servers

* The request can trigger large number of flows.

e Quickly fill up the buffer at switch — lots of
packet drops

e This is called the incast problem
e Very challenging problem in DCNs

e Network does not know when incast will

happen
e Cannot react in a timely manner.

e Over-provisioning seams to be the only viable
solution.

Resgonse

e Applications, however, have information that
can be used to predict incast.

e E.g., multi-get request can be seen as a hint.
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Networks and Applications’

* Imagine, we have a system that S . l
observes network events, and etz I

e E.g., incast in switches e B I 1 il

rpc_sync I -0.0

shutdown
o o o o o o o o o o
wn o wn o o 0 o 0 [=]
— - N (2} ™ < < e}

=250

lag (ms)

* Also, it can observe certain events | |
. . . Correlation between selected fonction calls and
N app l Ications micro-bursts for a distributed ML application.

e E.g., when each function is called
N
* We correlate these events find out 821
triggers on the end-host side for i I
network events "o o5 1o 15 20
e |l.e., which application events lead Provebifyofneastin otore
to network problems 80 -
e E.g., each incast event in the 260
network is preceded by a multi-get g 40-
request 1 RTT before 20 -
0

I I I
* Mortazavi, S.H., Munir, A., Bahnasy, M.M., Dong, H., Wang, S. and Ganjali, Y. 2022. EarlyBird: automating application 0.0 0.2 0.4
signalling for network application integration in datacenters. Proceedings of the ACM SIGCOMM Workshop on Network- e .
Application Integration (New York, NY, USA, Aug. 2022), 40-45. Incost prObabllltH with SYYIOLY‘J(TOLQ 42



SmartTags

* We can use this information to generate
messages on the end-host to notify the
network of future network events.

e We call these SmartTags.

* We can use SmartTags to change the
behavior of the network

e Example. To alleviate incase we can
reroute traffic, delay certain flows, ...

* (Can lead to significant improvements in
network behavior.

e Improvements that are not possible in
today’s networks.

* Can be very effective for ML applications.

o Automatically predict flow arrivals to
change topology, reroute traffic, adjust
flow priorities, etc.

e Many more opportunities ...

SmartTog
—_—

Resgomse

SmartTags are indicators of future events:
opportonity to prepare network.

600
a 500
© 400 —e--SmartTags
a
+5 300
S 200
©
a 100

—4—State of Art

Number of Servers

Packet Drops with and withoot SmartTags

* Munir, A., Mortazavi, S.H., Bahnasy, M.M., Baniamerian, A., Wang, S., Guan, S. and Ganjali, Y. 2022. SmartTags: bridging applications and network for proactive performance
management. Proceedings of the ACM SIGCOMM Workshop on Network-Application Integration (New York, NY, USA, Aug. 2022), 46-52. 43



Network Aware Applications

* Application-Aware Networking:
e Adapt network based on application requirements, signals,

 Given tighter integration of applications and network why
not use network information to help applications?

e Adapt application to network state.

* Example: scheduling ML jobs based on network state

e Each application is aware of its own requirements at best.

- But not network state (e.g., available bandwidth): application
must estimate network state by probing

e Network can provide information about its state

» Help application-level scheduling
» As well as state of other applications
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Cassini: Network-Aware Job Scheduling

e CASSINI is a network-aware job scheduler for

ML clusters
e Goal: schedule ML jobs based on network state
and other jobs in the system to ensure smooth
operation

e Step 1. Profile individual jobs
e |dentify communication patterns
e Why can we do this here?

Step 2. Convert to a geometric abstraction that
represents the network demand

e Perimeter of the circle: job's iteration time

e Arcs of the circle: job’s up and down phases.

* Question. How can we use this geometric
abstraction to find good job schedules?

 Rotating the circle is equivalent to shifting the
job in time.

>

A Backprop. and AllReduce Phases
~A— ~A— ~A—
c
©
——
IS
N . . .
= | lteratign 1 Iteratign 2 Iteratign 3
—
Sl e
'f_f Fwd. Fwd. Fwd.
7| pass pass pass
Time

Data Parallelism Communication Patterns

1

N

Similar, bot more compley,
patterns for other type of
parallelism

* Rajasekaran, S., Ghobadi, M. and Akella, A. 2024. CASSINI: Network-Aware Job Scheduling in Machine Learning Clusters. (2024), 1403-1420.
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Cassini: Network-Aware Job Scheduling

e CASSINI is a network-aware job scheduler for
I A Backprop. and AllReduce Phases
ML clusters A A A
e Goal: schedule ML jobs based on network state 5
and other jobs in the system to ensure smooth < | | |
Opera’[lon % <_Itira_tl_ n_1+<_lte_zra_t|_ n_2+<_lteira_tl_ n_3+
'f_f Fwd. Fwd. Fwd.
e Step 1. Profile individual jobs ~1" o o
. . . >
e |dentify communication patterns Time
° Why can we do this here? Data Parallelism Communication Patterns
» Step 2. Convert to a geometric abstraction that
represents the network demand

e Perimeter of the circle: job's iteration time

e Arcs of the circle: job’s up and down phases. Convert to a new

geometric abstraction

* Question. How can we use this geometric i
abstraction to find good job schedules?
 Rotating the circle is equivalent to shifting the @
job in time. How much shoold
we rotate each circle? \J
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Cassini: Network-Aware Job Scheduling

@ \_/_ £
Step 3. For each link in the network:
e Overlays the circles of jobs going through the link and rotates them

e Find a configuration that minimizes the total bandwidth demand
e This gives us a set of relative shifts in time

Step 4. Extend link-level compatibility to cluster level
e Start with job 1, set time to O.

e For each job that shares a bottleneck, use the method above to find the required
shift in time.

If there is no loop the output would be a job schedule
e |.e., when each job should start

Question 1: what if jobs have different iteration periods? */ J + f ;

Question 2: can we have a loop in the graph above?

CSC2229 — Computer Networks for Machine Learning University of Toronto — Winter 2026



ML for Networks

* So far, we have focus on how to enhance networks
to meet the stringent requirements of ML
applications.

* Given the advances in ML, a natural question is:
how can we use ML to enhance computer
networks?

* Any suggestions?
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ML for Networks

* Traffic Prediction and Forecasting

* Congestion Control

CSC2229 — Computer Networks for Machine Learning
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ML for Networks Examples - Part 1

Traffic Prediction and Forecasting:

e We saw how knowing the Eattern of traffic in ML workloads can
help us make the network better.

e How about using ML to predict network traffic patterns
- To optimize resource allocation, ...

e We can use time-series models (e.g., ARIMA, LSTMs, etc.).
- Analyze historical traffic data to anticipate congestion.

Congestion Control:

e We have seen some examples of how congestion control can be

enhanced for certain environments (DCN, wireless, ...) and
workloads

e We can use ML to dynamically adjust flow rates
« Minimize packet loss, delay, ...
« Also, use ML-based prediction of queue lengths or latency

e Train reinforcement learning (RL) models for real-time congestion-
mitigation

e Examples: Orca, PCC-Vivace, ...

* Abbasloo, S., Yen, C.-Y. and Chao, H.J. 2020. Classic Meets Modern: a Pragmatic Learning-Based Congestion Control for the Internet. Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (Virtual Event USA, Jul. 2020), 632-647.

** Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael Schapira. 2018. PCC -Vivace: Online-Learning Congestion Control. In 15th USENIX 51
Symposium on Networked Systems Design and Implementation (NSDI'18). 343-356.



ML for Networks Examples — Part 2

Network Routing and Load Balancing:
e Typically, rely on static routes

» Shortest path based on fixed costs and randomized load balancing

e |f information about link loads are available, we can use
reinforcement learning for adaptive path selection.

- Distribute load evenly across servers in data centers.

e E.g., apply graph neural networks (GNNs) to analyze network
topologies, and find optimal routers.

Network Configuration Automation:
e Configuring switch/routers a tedious task, typically done manually

e We can use ML to automate switch/router configurations.

 Use natural language processing (NLP) to translate operator
requirements to device configuration.

- Train models on historical configuration logs to predict optimal
settings.

e Avoid misconfigurations (that can lead to outages) and optimize
network performance.
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ML for Networks Examples — Part 3

Network Management and Troubleshooting:
e Automatic configuration is done when the network is setup.
« We can also think of more dynamic scenarios.
e How can we manage the network?
« Ensure optimized behavior
e We have talked about SDN control applications.
« Routing, access control, load balancing, ...

e A management layer above can help make high-level decisions on
resource allocations, adapting control applications, etc.

o Ideally, use natural language to describe the intent of network
operators, called intent-based networking

e ML can provide the tools needed to convert operator intent to rules,
and policies
» Push to the network through SDN control and management plane.
- Also, optimize behavior based on operator intent.

e ML can also provide mechanisms for automated interaction with
customers
 E.g., troubleshooting customer systems in real-time.
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Final Comments

e Largescale machine learning (training and
inference) has led to significant pressure on
computer networks.

* Major challenges for computer networks
e Latency, throughput, loss, ... requirements

* Opportunities to enhance networks
e Take advantage of ML workload properties
e Ability to integrate with existing solutions
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