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Announcements
• List of papers for Week 4 are posted.

• 10% bonus for Week 4 (Jan 31st) volunteers. 
• Volunteers for Week 5?

• 5% bonus 
• Next week 0%
• The week after …. J

• Each presentation is 20 minutes.
• Followed by 10 minutes of discussion and Q&A.

• Please read the papers before each class.
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Final Project
� List of suggested projects posted on class web site.

� Very brief and high level. 

� Start choosing your team members
� Use Piazza if needed

� Final Project Topic
� Consult with the instructor to choose a problem

� Choose 1-2 problems from the offered list
� Replicate & Improve

� Choose a paper related to the course topic, replicate existing solution, and improve 
(bonus) 

� Survey of existing solutions
� Create new insights by looking at certain problems/solutions from different 

perspectives
� Apply your background/ideas

� Identify challenges and opportunities in the areas covered in the course to apply your 
own ideas.

� Please discuss your ideas with me before submitting a proposal.



Outline
� Data-Center Networks

� Design
� Architecture

� Programming Computer Networks
� Software-Defined Networking
� Programmable Switches

� Next week: 
� DCN Transport
� DCN and ML
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Data Center Network (DCN)
� A network of computing and storage 

resources
� Proximity of components (within the data 

center) facilitates communication, i.e., high-
performance

� Can lead to reduced cost and overheads
� Major cost upfront but less cost in long run.

� Functions
� Data Storage and Management: 

� Security, efficiency, reliability
� Application Hosting

� End-users and business applications, cloud 
computing and SaaS models

� Data Processing:
� Large volumes of data for analytics and 

processing, big data and AI workloads
� And more …
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� Early Data Centers (1960s-1980s)
� Mainframes 
� Centralized computing: limited networking
� Point-to-point and proprietary connections

� Client-Server Model (1990s)
� Distributed computing
� Ethernet, TCP/IP

� Rise of Virtualization (2000s)
� Virtual machines 
� Efficiency and scalability
� VLANs, network segmentation

� Cloud Computing Era (2010s)
� Cloud services
� SDN: Scalability and automation

� Edge Computing and IoT (2020s)
� Demand for low-latency, distributed network architectures
� Micro data centers closer to data sources

� Machine Learning and AI (2010s-Present)
� Exascale high-performance computing
� Network as the bottleneck: stringent performance requirements

Evolution of DCN
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DCN Design Dimensions
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Three-Tier Architecture
Hierarchical tree network 
topology
� Commonly used in traditional 

DCNs

Three layers: 
� Core: 

� Layer 3 (network layer)
� Fully connected high-speed mesh 

of multiple routers
� Connect to the external networks

� Aggregation:
� Layer 3 and 2 (network and link 

layers)
� Connect to core with few high-

speed links (e.g., 100 Gb/s links), 
to access with many low-speed 
links (e.g., 10Gb/s) → simplify 
cabling

� Middleboxes sit here (firewall, 
load balancer, …)

� Access: layer 2 (link)
� Connect to each server in the rack 

(e.g., through one or two 10Gb/s 
links) 

� VLANs used to limit broadcast

Modular design
� Easy to expand

Servers

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Access
Layer

Aggregation /
Distribution 

Layer

Core Layer

Rack 0 Rack 1 Rack 2 Rack 3
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Traffic Direction in 3-Tier Architecture

Servers

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Access
Layer

Aggregation /
Distribution 

Layer

Core Layer

Rack 0 Rack 1 Rack 2 Rack 3

Within a rackTo/From
Internet

Switching and Routing:
� Communication within a rack 

or within the same 
aggregation switch happens at 
link layer (switching).

� Traffic going through core 
(between aggregation 
switches and to/from external 
networks/Internet) happens at 
network layer (routing).

� Different flows might have 
different RTTs (even within 
DCN)

Total Link Capacities at Each 
Layer Might Be:
� Equal to lower layers, or
� Less (over-subscription)
� Reason: 

� Cost-saving: less bandwidth → 
lower cost

� Locality: most communication 
within the same rack, or within 
the same cluster.

Between racks

To/from Internet

Between racks
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Fat-Tree Architecture
Core

Aggregation 

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Switch

Server

Server

Server

Pod

Edge

Properties of Fat-Tree Architecture:
� Scalable: easily expandable
� Low latency, high throughput
� Cost-effective

� Commodity hardware
� Lower operational costs

Reliability and Improved Performance:
� Edge and aggregation switches are grouped into “pods”.

� Multiple-paths (choice of aggregation and core)
� Automatic failover

� Leads to better load balance, redundancy, and thus
� Reliability and high availability, and 
� Improved performance
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Other DCN Architectures/Topologies
� Mesh: every node is connected to every other node

� Direct communication, costly, but high performance

� Leaf-Spine topology: two-tier structure, servers and 
storage node connect directly to leaf switches
� Switched environment, VLANs to limit broadcasts

� Hyper-cube: multi-dimensional cube structure
� Used in high-performance computing and ML 

solutions

� ToR (Top-of-Rack) vs. EoR (End-of-Row)

� Hybrid: combine two or more topologies
� Tailored to specific requirements of DCNs

� And many more …

� Question: what are the properties of each of these 
topologies?
� End-to-end latency?
� Simplicity? 
� Scalability?
� …
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Programming Data Center Networks
� DCN Primary Objective: 

� Transfer Packets

� Also, provide high performance (bandwidth, latency, 
loss requirements)
� As well as new functions (e.g., network virtual functions 

or NFV, …), 

� Traditionally, forwarding, routing, load balancing, … 
implemented in a combination of hardware, software 
running on network devices
� Extremely difficult to change
� New functions take years 
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Million of lines

of source code
9,000 RFCs

Billions of gates Bloated Power Hungry

• Vertically integrated, complex, closed, proprietary
• Networking industry with “mainframe” mind-set

Custom Hardware

OS

Routing, management, mobility management, 

access control, VPNs, …

Feature Feature

Traditional Networks
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Operating System

Reality is Even Worse

App

App
App

Specialized Packet 
Forwarding Hardware

Specialized Packet 
Forwarding 
Hardware

Operating
System

App App App

• Lack of competition means glacial innovation
• Closed architecture means blurry, closed interfaces 
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Vertically integrated
Closed, proprietary

Slow innovation

AppAppAppAppAppAppAppAppAppAppApp

Horizontal
Open interfaces
Rapid innovation

Control
Plane

Control
Plane

Control
Plane or or

Open Interface

Specialized
Control
Plane

Specialized
Hardware

Specialized
Features

Open Interface

Merchant
Switching Chips
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Ethernet Switch

Traditional Switch
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Traditional Switch

Data Path (Hardware)

Control PathControl Path (Software)

CSC2229 – Computer Networks for Machine Learning University of Toronto – Winter 2025 17



Feature Feature

Network OS

1. Open interface to packet forwarding

3. Consistent, up-to-date global network view 2. At least one Network OS
probably many.

Open- and closed-source

Software Defined Network (SDN)
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Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 



OpenFlow Protocol 
(SSL)

Data Path (Hardware)

Control Path OpenFlowEthernet Switch

Network OS

Control Program A Control Program B

OpenFlow Switch
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Consequences
� More innovation in network services

� Owners, operators, 3rd party developers, 
researchers can improve the network

� E.g. energy management, data center management, 
policy routing, access control, denial of service, 
mobility

� Lower barrier to entry for competition
� Healthier marketplace, new players 

� Lower cost
� Infrastructure
� Management
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Example: New Data Center
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Cost
200,000 servers
Fanout of 20 a 10,000 switches
$5k commercial switch a $50M
$1k custom-built switch a $10M

Savings in 10 data centers = $400M

Control

1. Optimize for features needed
2. Customize for services & apps
3. Quickly improve and innovate

SDN can significantly reduce the CapEx and OpEx of data center 

networks.



Example: Routing
� OSPF

� RFC 2328: 245 pages

� Distributed System
� Builds consistent, up-to-date map of the network: 

101 pages

� Dijkstra’s Algorithm
� Operates on map: 4 pages
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Example: Routing
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OSPF = Dijkstra IS-IS

Network OS

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Distributed or Centralized System;
 Centralized View

Custom Hardware

OS

OSPF IS-IS

Distributed
System

Distributed
System
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Back to the story …



Control Program A Control Program B

Network OS

Software Defined Network (SDN)
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Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 



Network OS
� Network OS: distributed system that creates a 

consistent, up-to-date network view
� Runs on servers (controllers) in the network
� NOX, ONIX, HyperFlow, Kandoo, Floodlight, 

Trema, Beacon, Maestro, Beehive, OpenDayLight, 
ONOS, … + more

� Uses forwarding abstraction to:
� Get state information from forwarding elements
� Give control directives to forwarding elements
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Control Program A Control Program B

Network OS

Software Defined Network (SDN)
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Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 



Control Program
� Control program operates on view of network

� Input: global network view (graph/database)
� Output: configuration of each network device

� Control program is not necessarily a distributed 
system
� Ideally, the abstraction hides details of distributed 

state
� Lots of practical challenges though.
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OpenFlow
�                          

� Started as open standard to run experimental 
protocols in production networks
� API between the forwarding elements and the network 

OS

� Started in Stanford, later Open Network Foundation 
(ONF)
� Various companies (Cisco, Juniper, HP, NEC, …)

� Later, many similar (sometimes proprietary) 
interfaces used by various companies
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Control Program A Control Program B

Network OS

OpenFlow Rules
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Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Flow
Table(s)

“If header = p, send to port 4”

“If header = ?, send to me”

“If header = q, overwrite header with r, 
   add header s, and send to ports 5,6”



Plumbing Primitives
� <Match, Action>
� Match arbitrary bits in headers:

� Match on any header, or new header
� Allows any flow granularity

� Action
� Forward to port(s), drop, send to controller
� Overwrite header with mask, push or pop
� Forward at specific bit-rate 
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Header Data

Match: 1000x01xx0101001x
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OpenFlow Rules – Cont’d

� Exploit the flow table in switches, routers, and 
chipsets
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Rule
(exact & wildcard)

Action Statistics

Rule
(exact & wildcard)

Action Statistics

Rule
(exact & wildcard)

Action Statistics

Rule
(exact & wildcard)

Default Action Statistics

Flow 1.

Flow 2.

Flow 3.

Flow N.



Flow Table Entry
� OpenFlow Protocol Version 1.0
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Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

+ mask what fields to match

Packet + byte counters



Examples

Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

00:2e.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Forward

* * * * * * * * 22 drop

CSC2229 – Computer Networks for Machine Learning University of Toronto – Winter 2025 34



Examples
Routing

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * * *
5.6.7.
8

* * * port6

VLAN

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * vlan1 * * * * *

port6, 
port7,
port9
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Data Plane Functionalities
� So far, we have focused on control plane

� It distinguishes SDN from traditional networks
� Source of many (perceived) challenges …
� … and opportunities 

� What about the data plane?
� Which features should be provided in the data 

plane?

� What defines the boundary between control and 
data planes?
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OpenFlow and Data Plane
� Historically, OpenFlow defined data plane’s role 

as forwarding.
� Other functions are left to middleboxes and edge 

nodes in this model.

� Question. Why only forwarding?
� Other data path functionalities exist in today’s 

routers/switches too. 
� What distinguishes forwarding from other 

functions?
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Adding New Functionalities
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� Consider a new functionality we want to 
implement in a software-defined network.

� Where is the best place to add that function?
� Controller?
� Switches?
� Middleboxes?
� Endhosts?

EndHost

Switch

MiddleBox

Controller

Switch

On the Controller

In Forwarding Silicone

At Network Edge

In Middleboxes

?
?

? 

? 



Adding New Functionalities
� What metrics/criteria do we have to decide where 

new functionalities should be implemented?

� Example: Elephant flow detection
� Data plane: change forwarding elements (e.g., 

DevoFlow)
� Control plane: push functionality close to the path 

(e.g., Kandoo)

� What does the development process look like? 
� Changing ASIC expensive and time-consuming
� Changing software fast
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Alternative View
� Decouple based on development cycle

� Fast: mostly software
� Slow: mostly hardware

� Development process
� Start in software
� As function matures, move towards hardware

� Not a new idea
� Model has been used for a long-time in industry.
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Changing the Control Plane 
I can tailor my network to meet my needs ...

1.Quickly deploy new protocols. 
2.Monitor precisely what my forwarding plane is 

doing.
3.Fold expensive middlebox functions into the 

network, for free.
4.Try out beautiful new ideas. Tailor my network to 

meet my needs.
5.Differentiate. Now I own my intellectual 

property.
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But wait a minute…
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New

Switch	OS

Driver

OSPF BGP etc.
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Network	
Equipment	
Vendor

Network	
Owner

ASIC
Team

Software
Team

Feature

Week
s

YearsYears

Fea
tur

e

Feature
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When you need a new feature…
1. Equipment vendor can’t just send you a software 

upgrade 

2. New forwarding features take years to develop 

3. By then, you’ve figured out a kludge to work 
around it

4. Your network gets more complicated, more brittle

5. Eventually, when the upgrade is available, it either 
� No longer solves your problem, or 

� You need a fork-lift upgrade, at huge expense.
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Network Systems Are Built “Bottom-up”

Switch	OS

Fixed-function	switch

Driver

“This	is	how	I	process	packets	…”	
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“Top-Down” Network Programming
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Programmable	Switch

Driver

Switch	OS“This	is	precisely	how	you	must	
process	packets”	



Domain Specific Processors

CPU

Computers

Java

Compiler

GPU

Graphics

OpenCL

Compiler

DSP

Signal	
Processing

Matlab

Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

Networking

?

Language

Compiler>>>
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Domain Specific Processors

CPU

Computers

Java

Compiler

GPU

Graphics

OpenCL

Compiler

DSP

Signal	
Processing

Matlab

Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

PISA

Networking

P4

Compiler>>>
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50

Match+Action
Stage

Memory ALU

Programmable
Parser Programmable	Match-Action	Pipeline

PISA: Protocol Independent Switch Architecture



PISA: Protocol Independent Switch Architecture
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Example P4 Program

52

Memory ALU

Programmable
Parser Programmable	Match-Action	Pipeline

header_type  ethernet_t    { … }
header_type  l2_metadata_t { … }

header    ethernet_t    ethernet;
header    vlan_tag_t    vlan_tag[2];
metadata l2_metadata_t l2_meta;

Header	and	Data	DeclarationsParser	Program
parser parse_ethernet {
   extract(ethernet);
   return switch(ethernet.ethertype) {
      0x8100 : parse_vlan_tag;
      0x0800 : parse_ipv4;
      0x8847 : parse_mpls;
      default: ingress;
}

Tables	and	Control	Flow
table port_table { … }

control ingress {
    apply(port_table);
    if (l2_meta.vlan_tags == 0) {
        process_assign_vlan();
    }
}



Example: Barefoot Tofino 6.5Tb/s 
Switch

Forwarding	defined	in	software	(P4).
Programs	always	run	at	line-rate.	

Same	power.
		Same	cost.
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Network Programmability: Consequences

Reducing Complexity1
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Compiler

Reducing Complexity

Programmable	Switch

Driver

Switch	OSswitch.p4

IPv4	and	IPv6	routing
			-	Unicast	Routing
							-	Routed	Ports	&	SVI
							-	VRF
			-	Unicast	RPF
						-	Strict	and	Loose
			-	Multicast
						-	PIM-SM/DM	&	PIM-Bidir

Ethernet	switching	
			-	VLAN	Flooding
			-	MAC	Learning	&	Aging
			-	STP	state	
			-	VLAN	Translation

Load	balancing
			-	LAG
			-	ECMP	&	WCMP
			-	Resilient	Hashing	
			-	Flowlet	Switching

Fast	Failover
–		LAG	&	ECMP

Tunneling
			-	IPv4	and	IPv6	Routing	&	Switching
									-	IP-in-IP	(6in4,	4in4)
									-	VXLAN,	NVGRE,	GENEVE	&	GRE
									-	Segment	Routing,	ILA

						MPLS
								-	LER	and	LSR
								-	IPv4/v6	routing	(L3VPN)
								-	L2	switching	(EoMPLS,	VPLS)
								-	MPLS	over	UDP/GRE

						ACL
								-	MAC	ACL,	IPv4/v6	ACL,	RACL	
								-	QoS	ACL,	System	ACL,	PBR
								-	Port	Range	lookups	in	ACLs	
			
					QOS
									-	QoS	Classification	&	marking
									-	Drop	profiles/WRED
									-	RoCE	v2	&	FCoE
									-	CoPP	(Control	plane	policing)

NAT	and	L4	Load	Balancing

Security	Features
-	Storm	Control,	IP	Source	Guard

Monitoring	&	Telemetry
- Ingress	Mirroring	and	Egress	Mirroring
-Negative	Mirroring
-Sflow
- INT

Counters
-Route	Table	Entry	Counters
-VLAN/Bridge	Domain	Counters
-Port/Interface	Counters

Protocol	Offload
-	BFD,	OAM

Multi-chip	Fabric	Support
-	Forwarding,	QOS
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Compiler

Driver

Switch	OS

Reducing Complexity

My	
switch.p4

Programmable	Switch
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Network Programmability: Consequences

Adding New Features2
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Protocol Complexity 30 Years Ago

Ethernet

IPv4 IPX

ethtype ethtype
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Programmable DCN Switch Switch.p4
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Adding Features: Some Examples
1. New encapsulations and tunnels

2. New ways to tag packets for special treatment

3. New approaches to routing: e.g. source routing in MSDCs

4. New approaches to congestion control

5. New ways to process packets: e.g. processing ticker-

symbols

CSC2229 – Computer Networks for Machine Learning University of Toronto – Winter 2025 60



New applications: Some Examples
1. Layer-4 Load Balancer1

§ Replace 100 servers or 10 dedicated boxes with one 
programmable switch

§ Track and maintain mapping for 5-10 million http flows

2. Fast stateless firewall

§ Add/delete and track 100s of thousands of new 

connections per second

3. Cache for Key-value store2

§Memcache in-network cache for 100 servers
§ 1-2 billion operations per second

61
[1] “SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs.” Rui Miao et al. SIGCOMM 2017.  

[2] “NetCache: Balancing Key-Value Stores with Fast In-Network Caching”, Xin Jin et al. SOSP 2017



Network Programmability: Consequences

Network Telemetry3

CSC2229 – Computer Networks for Machine Learning University of Toronto – Winter 2025 62



“Which	path	did	my	packet	take?”1
“I	visited	Switch	1	@780ns,	

Switch	9	@1.3µs,	Switch	12	@2.4µs”

“Which	rules	did	my	packet	follow?”2

“In	Switch	1,	I	followed	rules	75	and	
250.	In	Switch	9,	I	followed	rules	3	and	

80.	”

# Rule

1

2

3

…

75 192.168.0/24

…
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“How	long	did	my	packet	queue	at	each	switch?”3 “Delay:	100ns,	200ns,	19740ns”

Time

Queue

“Who	did	my	packet	share	the	queue	with?”4
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“How	long	did	my	packet	queue	at	each	switch?”3 “Delay:	100ns,	200ns,	19740ns”

Time

Queue

“Who	did	my	packet	share	the	queue	with?”4

Aggressor	flow!
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We’d like the network to answer these questions

1. “Which path did my packet take?”
2. “Which rules did my packet follow?”
3. “How long did it queue at each switch?”
4. “Who did it share the queues with?”

A PISA device programmed using P4 can answer all four questions at line rate, 

for the first time. Without generating additional packets.
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Log,	Analyze
Replay

INT: Inband Network Telemetry

Add:	SwitchID,	Arrival	Time,	
Queue	Delay,	Matched	Rules,	…

Original	Packet

Visualize
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Log, Analyze

Replay

Visualize

/* INT: add switch id */
action int_set_header_0() {    
  add_header(int_switch_id_header);    
  modify_field(int_switch_id_header.switch_id, 
              global_config_metadata.switch_id);
}

/* INT: add ingress timestamp */
action int_set_header_1() {   
  add_header(int_ingress_tstamp_header);
  modify_field(int_ingress_tstamp_header.ingress_tstamp, 
i2e_metadata.ingress_tstamp);
}

/* INT: add egress timestamp */
action int_set_header_2() {    
  add_header(int_egress_tstamp_header);    
  modify_field(int_egress_tstamp_header.egress_tstamp,      
               eg_intr_md_from_parser_aux.egress_global_tstamp);
}

P4 code snippet: Insert switch ID, ingress and egress timestamp
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Network Programmability: Consequences

3
2

Reducing Complexity
Adding New Features
Network Telemetry

1
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Final Comments
� Network programmability:

� Significantly powerful, makes change feasible
� Innovation in “control plane” and “data path”

� Academia vs. industry
� Programmability allows development and testing of new 

ideas.
� Has had a major impact in academic research

� Creating proof-of-concept solutions in days/weeks
� Opens doors for innovation and high impact research
� Programmable switches in production: limited use cases

� Programmable core vs. edge: which one do you think is 
more useful?
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