
APS101- Midterm Sample Questions

Note: Java API descriptions similar to the following will be provided in the
midterm.

Short Java API descriptions (all methods are public):
class Integer:
Integer(int i) // An Integer with value i
static int parseInt(String s) // = s’s value, as an int.

class Double:
Double(double d) // A Double with value d
static double parseDouble(String s) // = s’s value, as a double.

class String:
String substring(int i, int j) // = the letters between i (inclusive) and j (non-inclusive).
String substring(int i) // = the letters from i (inclusive) to the end.
char charAt(int i) // = the character at index i (starting from 0)
int indexOf(String s) // = the index of s in this String; -1 if s is not a substring.
int indexOf(String s, int i) // = index of s in this String after index i; -1 if s not found.
int length() // = the number of characters in this String.

class System:
static PrintStream out //standard output stream

class PrintStream:
print(String s) //print string s to the output
println(String s) //print string s to the output and terminates the line

class Math:
min(int a, int b) // = the smaller of the given int values
max(int a, int b) // = the larger of the given int values
min(double a, double b) // = the smaller of the given double values
max(double a, double b) // = the larger of the given double values

1



Question 1. [15 marks]

1. Given an int variable price and a double variable discount, write an expression that divides
price by discount using integer division. Assume that discount is not zero.

2. Write an expression that evaluates to true if the variables myKitchen and yourKitchen are
referencing the same object, and evaluates to false otherwise.

3. Given two double variables: dog and cat. Without using if-statements, write a single state-
ment that returns true when dog has at least triple the value of cat, and returns false
otherwise.

4. Write a method calculatePrice, which has two double parameters basePrice and overHead
and returns their sum.

5. Write a class Dog, which has an instance variable that is a reference to an Owner object. It
also has a constructor, which has one Owner parameter. Assume class Owner has already
been defined.

6. Write a method called getDimensions, which has one parameter, a JFrame, and returns
a String containing the JFrames height and width, separated by a colon (:). Assume all
necessary packages have been imported.

2



Question 2. [15 marks]

Write a class called MoneyBag in the space below, which stores money in terms of dollars and cents.
The MoneyBag class has the following specifications:

Variable Type Variable Description
int The dollars contained in this MoneyBag.
int The cents contained in this MoneyBag.
double The largest amount stored in any MoneyBag so far.

Method Method Description
MoneyBag(int, int) The constructor for this MoneyBag, which takes in its dollar and cent amounts.
add(MoneyBag) Adds the contents of this MoneyBag to the contents of the MoneyBag parameter.

Returns the combined result in new MoneyBag object (as a MoneyBag).
getRichest() Returns largest amount stored in a MoneyBag (as a double).

Some things to consider:

• The dollars parameter will be positive, and the cents parameter will be between 0 and 99.

• You may not use any if-statements.

• Comments are not necessary unless you feel that your code is not entirely clear.

• You should decide whether any of the variables or methods need to be made static.

3



Question 3. [15 marks]

Consider the following two classes.

/** A musician in a band. */ | /** A band made up of three musicians.*/
public class Musician { | public class Band {

|
private String firstName; | private Musician member1;
private String lastName; | private Musician member2;
private double salary; | private Musician member3;
public static int total; | private String name;

| private int salary;
public Musician(String f, String l) { |

firstName = f; | public Band(Musician m1, Musician m2,
lastName = l; | Musician m3) {
total++; | member1 = m1;

} | member2 = m2;
| member3 = m3;

public void setSalary(double r) { | setSalary();
salary = r; | }

} | public Band() {
public int getSalary() { | member1 = new Musician("N1", "F1");

return (int) salary; | member2 = new Musician("N2", "F2");
} | member3 = new Musician("N3", "F3");
public String getName() { | }

return lastName + ’,’ + firstName; | public Musician getMember1() {
} | return member1;
public static int getTotal() { | }

return total; | public void setName(String n) {
} | name = n;
public static boolean isSameMusician( | }

Musician m1, Musician m2) { | public String getName() {
return m1 == m2; | return name;

} | }
public String toString() { | public void setSalary() {
return getName() + ", " + salary; | salary = member1.getSalary()

} | + member2.getSalary()
} | + member3.getSalary();

| }
| public int getSalary() {
| return salary;
| }
|}

On the next page is a TestCase subclass that tests these classes. In the space provided, for each
assertEquals call write: P if the assertEquals passes, and F if the assertEquals fails. Assume
all assert statements in each test are evaluated even if some early asserts fail.

To the right of each failure, write the actual value of the 2nd parameter in the space provided.

4



import junit.framework.TestCase; Result If failed,

public class Tester extends TestCase { (P/F) value returned
by 2nd argument?

public void test1() {
Musician m = new Musician("N1", "F1");
Band b = new Band();
assertEquals(m.toString(), b.getMember1().toString()); ____ ____________________

}

public void test2() {
int x = Musician.getTotal();
Band b = new Band();
assertEquals(x + 3, Musician.getTotal()); ____ ____________________

}

public void test3() {
Musician m1 = new Musician("N1", "F1");
assertEquals("N1 F1", m1.getName()); ____ ____________________

public void test4() {
Musician m1 = new Musician("AName", "ALastName");
assertEquals("ALas", m1.getName().substring(1,4)); ____ ____________________

}

public void test5() {
Musician m1 = new Musician("N2", "F2");
m1.setSalary(40.99);
Band b = new Band(m1, m1, m1);
assertEquals(123, b.getSalary()); ____ ____________________

}

public void test6() {
Musician m1 = new Musician("N3", "F3");
Musician m2 = new Musician("N3", "F3");
assertEquals(true, Musician.isSameMusician(m1, m2)); ____ ____________________

}

public void test7() {
Band b = new Band();
assertEquals("", b.getName()); ____ ____________________

}

public void test8() {
Musician m1 = new Musician("N3", "F3");
m1.setSalary(50);
Band b = new Band();
assertEquals(Integer.parseInt("0"), b.getSalary()); ____ ____________________

}
}

5


