
Authorization-Transparent Access Control for XML
under the Non-Truman Model

Yaron Kanza, Alberto O. Mendelzon, Renée J. Miller, and Zheng Zhang

Department of Computer Science
University of Toronto,

Toronto, Canada
{yaron, mendel, miller, zhzhang}@cs.toronto.edu

Abstract. In authorization-transparent access control, users formulate their queries
against the database schema rather than against authorization views that trans-
form and hide data. The Truman and the Non-Truman are two approaches to
authorization transparency where in a Truman model, queries that violate the ac-
cess restrictions are modified transparently by the system to only reveal accessible
data, while in a Non-Truman model, such queries are rejected. The advantage of
a Non-Truman model is that the semantics of user queries is not changed by the
access control mechanism. This work presents an access control mechanism for
XML under the Non-Truman model. Security policies are specified as param-
eterized rules formulated using XPath. The rules specify relationships between
elements that should be concealed from users. Hence, not only elements, but also
edges and paths within an XML document, can be concealed. The access control
mechanism authorizes only valid queries, i.e., queries that do not disclose the
existence of concealed relationships. The additional expressive power, provided
by these rules, over element-based authorization techniques is illustrated and al-
gorithms that check the validity of queries are provided. The proposed access
control mechanism can either serve as a substitute for views or as a layer that
verifies the specific relationships are concealed by a view.

1 Introduction

Access control is a fundamental part of databases systems. The purpose of access con-
trol is to protect private or secret information from unauthorized users. Given the status
of XML as a standard for storing and exchanging data, the need for XML access control
has been recognized and has received a lot of attention [6, 12, 14, 17].

In authorization-transparent access control, users formulate their queries against
the database schema rather than against authorization views that transform and hide
data. Rizvi et al. [24] present two basic approaches to access control in authorization
transparent systems. The first approach is referred to as the Truman model and the
second as the Non-Truman model [24]. In the Truman model, an access control language
(often a view language) is used to specify what data is accessible to a user. User queries
are modified by the system so that the answer includes only accessible data. Let Q be a
user query, D be a database and Du be the part of D that the user is permitted to see,
then query Q is modified to a safe query Qs such that Qs(D) = Q(Du).

Example 1. Consider a database that contains information on courses in a university.
For each course, the system stores information about the students who are enrolled in
a course and the grades that they have received. Suppose that a Truman access control
model is used to specify that each student is permitted to see only her grades (not the
grades of other students). If student Alice poses a query that asks for the highest grade
received in one of the courses she is enrolled in, say Databases 101, the system will
modify the query to return the highest grade that Alice has received in Databases 101.

As Rizvi et al. [24] point out, using a Truman access control model, the answers to
queries may be misleading. A user cannot tell if an answer to a query is correct over
the entire database. In our simple example, Alice may be misled into thinking she is the
best in the class (after all, she asked for the highest grade over all students).

Misleading answers are prevented by the Non-Truman model, an alternative, autho-
rization transparent model. In the Non-Truman model, a query that violates access con-
trol specifications is rejected, rather than modified. Only non-violating, or valid queries
are answered. Hence, query answers are always the result of applying the user query
to the entire database. The Non-Truman model has the desirable property that the se-
mantics of a query is independent of the access control specification. For example, if
in Example 1 the system uses a Non-Truman access control model, then the query of
Alice will be rejected. Alice will only received answers to queries that are valid with
respect to the access control policy.

In Non-Truman access control, a fundamental question is the definition of validity.
Rizvi et al. [24] use a model in which the accessible data is defined using views. Given
a database D, a query Q is validated by checking whether it could be rewritten using
only the authorized views V . The rewritten query needs to be equivalent to Q either
for all possible database states (referred to as unconditional equivalence [30] since it
is independent of the current database state D) or for only those database states D′ for
which V (D) = V (D′) (termed conditional equivalence [30]).

Certainly, such an approach is possible for XML as well. However, results on an-
swering queries using views for small fragments of XML query languages are still
emerging [27], and may be undecidable even for the relational model [24]. Further-
more, a view is a positive statement about what data is accessible and it is up to the
designer of the view to decide what can be put in the view while still hiding the desired
private data. Regardless of the form of the view or access control mechanism, we would
like to be able to make statements about what information is concealed from a user. In
our work, we will specifically consider what it means to conceal a relationship in an
XML document.

Information disclosure has been studied formally. Miklau and Suciu [22], define dis-
closure as exposing information that increases the probability that a user can guess con-
cealed information. There are cases, however, where rejecting a query just because its
answer decreases the user’s uncertainty about the concealed data is too restrictive [28].
If we consider a relationship, it may be sufficient to ensure that a user cannot distin-
guish between the current document and other documents that differ from the current
document only in the concealed relationship.

Example 2. Consider an XML document D that contains information about depart-
ments and employees in a company. There is an edge from each department element

d to an employee element e whenever e works in d. A company may have an access
control policy that permits access to all employees and departments, but that restricts
access to the works-in relationship. That is, a user should be able to ask queries
about employees and departments, but the company may not wish to reveal who works
in which department. Perhaps this information may reveal strategic information about
the direction of the company.

Intuitively, a query conceals a potential relationship if the query answer does not
reveal the presence (or absence) of a relationship in the document. To understand our
semantics, consider the following example.

Example 3. Continuing our example where the relationship between departments and
employees is concealed. Consider a query Q1 that looks for the employees in a spe-
cific department d, and a query Q2 that looks for all the employees in the company,
regardless of their department. Only the answer to Q1 depends on the works-in rela-
tionship.

In this work, we propose a precise semantics for what it means to conceal a re-
lationship. We propose a mechanism for testing whether an XPath query conceals a
relationship or set of relationships. In particular, we can test whether a view, specified
by an XPath query, conceals a relationship.

Our model controls access to relationships. This approach provides a finer granu-
larity than restricting access to elements. On one hand, restricting access to an element
is possible in our approach. This is done by concealing all the relationships (edges
and paths) to that element. On the other hand, in our approach it is possible to con-
ceal a relationship without restricting access to any of the elements in the relationship.
Returning to our example, our rules will permit access to employees and departments
while restricting only access to the works-in relationship.

The main contributions of our work are the following.

– The first authorization-transparent, Non-Truman access-control model for XML.
Our mechanism is fine-grained and enforces access control at the level of ancestor-
descendent relationships among elements.

– A new semantics for concealing relationships in an XML document where a rela-
tionship is defined by an edge or a path in the document. To define relationships,
we use rules, each containing a pair of XPath expressions.

– We define two forms of query validity. A query is locally valid for a document and
a set of rules, if it conceals all relationships defined by the rules. Queries may be
executed only if they are locally valid. For documents conforming to a schema, we
define a stronger form of validity. A query is globally valid for a set of rules and a
schema if the query is locally valid for the rules and each document that conforms
to the schema.

– We consider the problem of testing query validity. Since in our semantics we need
to consider only finitely many possible documents, testing is always decidable (un-
like in previous approaches [24]) and is polynomial (in the size of the document
and the query) for a large class of queries.

– Finally, we show that indeed valid queries do not reveal information about con-
cealed edges.

Student 301

Name

111

DB

Course202

SID

211

Grade 321

Name
204

Department

201

311

98

Course
112

222

22122 93 7812345

root

Name

101

Barbara
Brown

56789

University

102

Course

Department

Course 203

CS EE

212Name

OS

Name

CAD

213 214Name

DSP

Student 302

SID Grade 322312

Student 303

SID Grade 323313

Teacher 223

Bob
Blue

Teacher

Fig. 1. A document that contains information on courses, students and grades in a university.

2 Related Work

Most of the work on XML access control uses non-authorization transparent models.
For example, Miklau and Suciu define access control rules as XQuery expressions [21].
A user is given a modified document (one in which data is encrypted) and queries
are posed on this modified document. They present a new query semantics that per-
mits a user to see only authorized data. An alternative approach proposed by Dami-
ani et al. [12, 13] is to compute a secure view by labeling and pruning secure data.
Fan et al. [14] specify security by extending the document DTD with annotations and
publishing a modified DTD. Similarly, work by Bertino et al. [4–6] and Finance et
al. [15] provides XML-based specification languages for publishing secure XML doc-
ument content, and for specifying role-based access control on XML data [7, 23, 26].
Fundulaki and Marx [16] survey a number of approaches that permit access control
to be specified on nodes within a document. Restricting access to nodes has also been
used in XACML [18] and XACL [19], two proposed industrial standards. Since non-
authorization-transparent models may change the query semantics, other work has fo-
cused on efficient query processing for secure queries [9, 29].

In contrast, we present the first authorization-transparent, Non-Truman model for
XML. Queries are posed on the original document, so we do not present a model for
publishing secure data. Our access control model is a very simple specification of rela-
tionships in a document that should be concealed. Our work extends work on informa-
tion disclosure [3, 28]. In Section 4, we define precisely the relationship with common
models of information disclosure such as k-anonymity. Our main focus is to provide a
test of query validity that ensures that valid queries effectively conceal any secure re-
lationships. Unlike the non-authorization transparent approaches, we do not change the
query semantics.

3 Data Model

In this section, we introduce our data model. We assume that the reader is familiar with
the notion of a rooted labeled directed graph. We present a rooted labeled directed graph
G, over a set L of labels, by a 4-tuple (V, E, r, label-ofG), where V is a set of nodes, E
is a set of edges, r is the root of G and label-ofG is a function that maps each node to
an element of L.
Document Let L be a finite set of labels and A be a finite set of atomic values. An XML
document is a rooted labeled directed tree over L with values of A attached to atomic
nodes (i.e., to nodes that do not have outgoing edges). Formally, a document D is a 5-
tuple (X, ED, rootD, label-ofD, value-ofD), where the tuple (X, ED, rootD, label-ofD)
is a rooted labeled directed tree over L, and value-ofD is a function that maps each
atomic node to a value of A. The nodes in X are called elements. In order to simplify
the model, we do not distinguish between elements and attributes and we assume that
all the values on atomic nodes are of type PCDATA (i.e., String).

Example 4. Figure 1 shows a document that contains information on courses, students
and grades. Elements are represented by circles and are numbered, for easier reference.
Atomic values appear below the atomic nodes and are written with a bold font.

XPath In this work, we use XPath [11] for formulating queries and access control rules.
XPath is a simple language for navigating in an XML document. XPath expressions are
omnipresent in XML applications. In particular, XPath is part of both XSLT [10] and
XQuery [8], the WWW-Consortium standards for querying and transforming XML.
Due to lack of space, we do not present the syntax and the semantics of XPath in this
paper and we refer the reader to the standard [11].

In XPath there are thirteen types of axes that are being used for navigating in a
document. Our focus in this work is on the child axis (/) and the descendent-or-self
axis (//) that are the most commonly used axes in XPath. Our model, however, can
also be applied to queries that include the other axes.

4 Concealing Relationships

Before presenting our techniques, we first consider what it means to conceal a relation-
ship. A relationship in a document is essentially two sets of elements. For example,
consider the university document (shown in Figure 1). The pair (S, G), where S is the
set elements labeled “Student” and G is the set of elements labeled “Grade”, is a re-
lationship between students and grades. Concealing the relationship between students
and grades means that for every grade in the document, the user will not be able to infer
(with certainty), from query answers, below which student the grade is. We will want
this to be true for all authorized queries (i.e., all valid queries).

We also want to have some measure of the uncertainty that is gained by concealing
a relationship. Thus, we use a definition that is a variation of k-anonymity [25] to rela-
tionships in a document. In the k-anonymity model, the goal is to provide a guarantee
that each element cannot be distinguished from at least k − 1 other elements. In our
case, suppose that we want to conceal in a document D the relationship (A, B). Given

an element b ∈ B, we want to have a subset Ak of A such that the following conditions
hold. First, in Ak, there are k elements of A, and no element is an ancestor of another
element. Second, the user will not be able to infer, from answers to valid queries, which
one among the k elements of Ak is an ancestor of b. To make this more precise, we
present a formal definition.

Definition 1 (k-Concealment of a Relationship). Consider a set of valid queries Q,
a document D, and two sets A and B of elements in D. The relationship (A, B) is
k-concealed if for every b ∈ B there exist k elements a1, . . . , ak of A and k document
D1, . . . , Dk over the element set of D, such that the following conditions hold.

1. For every ai and aj among {a1, . . . ak}, ai is not an ancestor of aj .
2. Each element b ∈ B appears in Di below ai.
3. Q(D) = Q(Di), for every valid query Q ∈ Q.

We consider a relationship to be concealed as long as some uncertainty remains
about the ancestor-descendent relationships. Thus, in the rest of this paper, we will use
the phrase “concealing a relationship” for 2-concealment.

Given the definition of concealing relationships, we now turn to the logistics of
specifying sets of relationships over XML documents. We will use pairs of XPath ex-
pressions for this purpose. Each pair will form an access control rule. The two expres-
sions will define a pair of sets, i.e., a relationship, that should be concealed.

5 Access Control Rules

Our approach to access control in XML documents is based on rules rather than views.
While views are normally “positive” in the sense that they specify what the user is
allowed to know, our rules are “negative” and specify what should be concealed from
the user. Our access-control rules specify pairs of elements in the document and by this
designate the relationships between these elements as being restricted. In this section,
we first present the syntax of rules. Then, we explain why we use rules rather than
views. We provide the semantics of rules in our model and define local and global
validity. Finally, we briefly discuss the complexity of testing validity.

5.1 The Syntax of Rules

Rules are formulated using XPath expressions. Each rule consists of two expressions.
The two expressions specify pairs of ancestor and descendent elements that the rela-
tionship between them should not be revealed to users. The syntax of a rule is

for path1 exclude path2

where path1 and path2 are XPath expressions. Notice path2 is a relative XPath ex-
pression w.r.t. path1. In the following, we show how to use rules over the university
document presented in Figure 1.

Example 5. Suppose that we want to prevent queries from disclosing information about
what grades were given to which students. This restriction can be specified by the fol-
lowing rule: for //Student exclude /Grade.

Example 6. Suppose that in the CS department, queries should not disclose information
on grades of students as well as the course grades. To set this restriction, two rules are
used—the rule from the previous example and the following rule:
for /Department[Name=’CS’]/Course exclude //Grade.

In many scenarios, different users have different accessibilities over the same data.
For example, an institution could have a policy that a teacher of some course can have
access to all the grades in the course while students can only see their own course
grades. Access control rules are parameterized with information specific to a session,
such as the user-id, location, date, time, etc., which are instantiated by the system before
access control is performed. Parameters are written with a preceding dollar sign.

Example 7. Suppose that $userid is instantiated to be the current user identification.
Consider a policy that only a course teacher is permitted to see the students’ grades in
her course. This policy is set by the following rule:
for //Course[not(Teacher=$userid)]/Student exclude /Grade.

5.2 Rules versus Views

We now explain why we use rules instead of views for XML access control in the
Non-Truman model. The first reason is that there are many cases where using rules
is simpler and requires a more succinct formulation than using views. The following
example illustrates such a case.

Example 8. Suppose that we only want to prevent users from knowing which stu-
dent (her SID) is enrolled in which course. Obviously, it is required to have the rule
for //Course exclude //SID. However, we need another rule for //Course

exclude //Student to prevent users from inferring the relationship between some
course and some SID from the relationships: course-student and student-SID.

Note that these rules should not prevent evaluation of queries that “jump” over a
restricted edge. For example, a query that returns the grades of a specific course does
not violate the rules. Neither does a query that returns the grades of a specific student.

It is not easy to formulate an XQuery view that preserves all the relationships in
the document except for the course-student and course-SID relationships. One example
for such a view is a query Qcut that reconstructs the whole document with the follow-
ing changes. First, student elements should be moved, with all their content, to be be-
low their department element. This cuts the relationship between students and courses
but keeps the relationships between departments and students. Second, grade elements
should be copied and pasted below their ancestor course elements. We need to duplicate
grades, because we need grades to be related to both courses and students. Note Qcut

would not work if in the original document, courses have an element named “Grade”
as a child. A comprehensive solution [15] is proposed to protect relationships by re-
structuring the document as well as duplicating and renaming elements of the original
document. The resulting view over the document is complicated and cumbersome to
formulate in XQuery. Hence it is more error-prone to define access control policies by
views than rules in many cases.

The second reason why choosing rules instead of views is that when using views it
is difficult to verify that what we want to conceal is indeed concealed.

Example 9. Let us continue Example 8. Suppose the queries asking grades of the courses
or students are allowed and are defined as views. Do these views really conceal all the
relationships between courses and students? Apparently not. Suppose that there is a
grade, say 78, that appears only once in the document. Then, knowing who received
this grade and in which course this grade was given, it is possible to infer a relationship
between a student and a course.

Later in this paper we will present the notion of a coherent set of rules and we will show
that when using a coherent set of rules, we can guarantee that restricted relationships
are indeed concealed.

The third reason for not using authorization views is that in the Non-Truman model,
when using views, testing validity is defined as the problem of answering queries using
views. However, query answering using views is not always decidable and has a very
high time complexity, as explained in the introduction.

5.3 Local Validity

In the Non-Truman model, queries are put through a validity test and evaluated only if
the test is passed. We now define the local validity test for queries, given a document
and a set of rules. We start by providing some necessary definitions and notations.
Document Expansion Consider a document D = (X, ED, rootD, label-ofD, value-ofD).
An expansion of D, denoted as D//, is a labeled directed graph that is created by replac-
ing ED with a new set of edges E ′, and adding to D a set E //

D of new edges. We call the
edges of E′ child edges and the edges of E //

D descendent edges. Formally, the expansion
of D is a tuple ((X, E′, rootD, label-ofD, value-ofD), E //

D), where E′ is a set of child
edges and E //

D is a set of descendent edges. Note that the expansion is not necessarily a
tree and is not even required to be connected.
Transitive Closure The transitive closure of a document D, denoted as D̄, is a docu-
ment expansion (D, E //

D), such that in E //
D there is an edge between every two nodes

that are connected by a directed path in D. The direction of the edge is the same as the
direction of the path. Also, E //

D contains an edge from every node to itself. Note that
the original edge set of D is not being replaced. As an example, Figure 2(b) shows the
transitive closure of the document in Figure 2(a). Child edges are drawn with a solid
lines and descendent edges with dashed lines.

The evaluation of an XPath expression over a document expansion is by following
a child edge whenever a child axis occurs and following a descendent edge whenever a
descendent-or-self axis occurs. We explain this in the following example.

Example 10. Consider the XPath query //Department[Name=’CS’]//Course over
a document expansion D//. This query returns course elements c that satisfy the follow-
ing. There are a department element d and a descendent edge in D // from the root to d.
There is an element n with label “Name”, with value “CS” and there is a child edge in
D from d to n. Finally, there is a descendent edge in D // from d to c. Note that to satisfy
the // axis we require the existence of a descendent edge rather than the existence of a
path between the relevant nodes.

Name

111

DB

211

Department

201

root

Name

101

University

Course

CS

Name

111

DB

211

Department

201

root

Name

101

University

Course

CS

(a) Document D1 (b) The transitive closure of D1 (c) A document expansion

Name

111

DB

211

Department

201

root

Name

101

University

Course

CS

Fig. 2. A document D1, the transitive closure of D1 and a document expansion.

It is easy to see that posing an XPath query Q to a document D is equivalent to evalu-
ating Q over the transitive closure of D. However, when evaluating Q over a document
expansion that is not the transitive closure of D, we may get an answer that is different
from the answer to Q over D.
Pruning of a Document Expansion Given a set R of access control rules, a prun-
ing of a document expansion D// is a new document expansion, denoted pruneR(D//),
that is created by removing from D// all the edges (both child edges and descendent
edges) that connect a restricted pair of nodes. By restricted pair, we mean two nodes
whose relationship should be concealed according to R. For example, the pruning of
D1 (Figure 2(a)) by the rule for //Department exclude //Name is depicted in
Figure 2(c).

We represent a rule ρ of the form for x1 exclude x2 as a pair (x1, x2). By x1x2

we denote the XPath expression that is created by the concatenation of the expressions
x1 and x2. In a document D, ρ specifies as restricted all the pairs (e1, e2) of elements of
D such that e1 ∈ x1(D) (i.e., e1 is in the answer to x1 over D) and e2 ∈ x1x2(D). For
example, the rule for //Student exclude //Grade specifies as restricted all the
pairs of a student element and a grade of the student. A set of rules specify as restricted
all the pairs that are restricted according to at least one of the rules in the set.

Intuitively, given a rule ρ = (x1, x2) we want to conceal whether (or not) there is
a path between any two restricted elements. We can think of the existing paths in D as
defining a subset P of x1(D)×x1x2(D). We will define as valid only those queries that
do not permit a user to distinguish whether D contains the subset P or another possible
subset of x1(D) × x1x2(D). This motivates the following definition.
Universe of Expansions Consider a document D and a set of access control rules R.
Let D̄ be the transitive closure of D and let pruneR(D̄) be the pruning of D̄ using the
rules of R. The universe of expansions (universe, for short) of D under the concealment
of R, is the set of all document expansions D // such that pruneR(D̄) = pruneR(D//).
In other words, the universe contains all the document expansions that are created by

adding to pruneR(D̄) some edges that connect restricted pairs of nodes. We denote the
universe of D by UR(D).

Definition 2 (Local Validity). Given a document D and a set of rules R, a query Q is
locally valid if Q(D) = Q(D//) for any document expansion D// in the universe UR(D).

We now explains why we need to consider, in Definition 2, all the document expan-
sions in the universe UR(D) instead of just considering the single document expansion
pruneR(D̄) (the pruning of the transitive closure of D) that contains only edges be-
tween non-restricted pairs, which we call pseudo-validity. A query Q is pseudo-valid if
Q(D) = Q(pruneR(D̄)). By Definition 2, the condition of pseudo-validity is necessary
but not sufficient for Q to be locally valid. The following example demonstrates a situ-
ation that secure information may be leaked due to authorizing pseudo-valid queries.

Example 11. Consider the courses-grades document D of Figure 1 and the rule ρ in
Example 5 to conceal relationships between students and grades. Suppose we authorize
pseudo-valid queries such as Qi : //Student[SID=’12345’ and Grade=i],
for i = 0, 1, . . . , 100. In all the 100 cases where i 6= 98, the query will be authorized
and return an empty result. For i = 98 (i.e., the grade of the student in the DB course),
the query will not be authorized. This reveals the grade of a student in some course.

Such information leakage does not occur when only locally valid queries are au-
thorized. To see why this is true, consider the document expansion D // constructed as
follows. Let D// be the result of removing two edges and adding two new edges to the
transitive closure D̄. The removed edges are the two Student-Grade edges that con-
nect Node 301 to 321 and Node 302 to 322. The two added edges are Student-Grade
edges that connect Node 301 to 322 and Node 302 to 321. All these added and re-
moved edges are Student-Grade edges and thus, are removed in a pruning w.r.t. ρ. That
is, pruneρ(D̄) = pruneρ(D

//). Yet, evaluating Q93 w.r.t. D// provides a different answer
from the answer to Q93 over D. Thus, Q93 is not valid. Q78 is also not valid by a similar
construction. All the three queries Q78, Q93 and Q98 are rejected. Thus, a user could
only tell the grade of Student ‘12345’ is one of the grades 78, 93, 98; however, this is
what she could have learned from the result of the valid query //Grade.

The definition of local validity has a number of properties that are important in
practice. For example, if two documents are equal (that is, isomorphic) except for their
restricted edges, then a locally valid query will not be able to distinguish them.

Proposition 1. Consider a set of rules R and let D1 and D2 be two documents such
that pruneR(D̄1) = pruneR(D̄2). If a query Q is locally valid w.r.t. D1 and R then Q

is also locally valid w.r.t. D2 and R. Furthermore, Q(D1) = Q(D2).

5.4 Global Validity

For documents conforming to a schema, we define a more restrictive form of validity
called global validity. First, we formally define the notion of a schema.
Schema In our model, a schema is represented as a rooted labeled directed graph. Our
schema representation is a simplification of common XML schema-definition languages

University

Department

Course

Student

Name

Teacher

SID

Grade

Fig. 3. A University schema.

such as DTD [1] and XSchema [2]. A schema can be used to provide a succinct de-
scription of a document structure, or as a constraint on the structure of documents in
a repository. Formally, a schema S, over a finite set of labels L, is a rooted labeled
directed graph (NamesS , ES , rootS , label-ofS) over L, where the nodes are uniquely
labeled. A document conforms to a schema if there exists a homomorphism from the
graph of the document to the schema. An example of a schema is given in Figure 3(c).
The document in Figure 1 conforms to this schema.

Definition 3 (Global Validity). A query Q is globally valid for a set of rules R and a
schema S, if, given R, Q is locally valid for every document D that conforms to S.

Example 12. Let R contain the rule given in Example 5. This rule rejects queries that
use the relationship between students and grades. Suppose a query Q asking for the
grades of the student with id ‘00000’ (i.e., //Student[SID=’00000’]//Grade) is
posed on to the document in Figure 1. If there was a student with id ‘00000’ in the
document, then the query would not be considered locally valid and would not be au-
thorized. Since there is no student with id ‘00000’, there is no edge to prune and the
query is locally valid. Note that the query does not reveal the grade of any existing stu-
dent. Although Q is locally valid, it is not globally valid if we consider the schema S

shown in Figure 3. It is possible to construct a document D′ that conforms to S and
contains a student with id ‘00000’. Hence, the query will not be locally valid for D′ and
R. Thus, Q is not globally valid for schema S.

In some cases, global validity could be too restrictive; however, it does have some
advantages over local validity. Suppose that there is a collection of documents and all
the documents conform to the same schema. In this case, if a query is globally valid,
then we do not need to check the validity of the query over each document. Furthermore,
after a document is updated, if the new document still conforms to the schema, we do
not need to revalidate queries.

5.5 Complexity of Testing Validity

Due to lack of space, presenting algorithms for efficient validity testing is beyond the
scope of this paper. However, it is important to notice that our model has the follow-
ing advantages. First, local validity is always decidable. Secondly, for large classes of

queries, e.g., queries that do not use the logic operator not, local validity can be tested
in polynomial time (in the size of the query, the rules and the document), in a test where
the query is actually evaluated over only two document expansions. Thirdly, in impor-
tant cases such as when queries and rules are conjunctive expressions with a bounded
number of * symbols, it is possible to test global validity in polynomial time in the size
of the query, the rules and the schema. Such a test, which is independent of the data,
has high efficiency. For details, see [20].

6 A Coherent Set of Rules

Our goal is to allow users to conceal relationships between elements and let them be
sure that what they want to conceal is truly concealed. Unfortunately, given an arbitrary
set of relationships to be concealed, it cannot be guaranteed that all the relationships are
really concealed by making them hidden. Sometimes, it is possible to infer an hidden re-
lationship from the relationships that are not concealed. In this section, we characterize
a set of rules whose designated relationships are indeed concealed.

We say a set of rules is coherent if it is impossible to infer any hidden relationships
from the relationships that are not pruned by the rules. Before providing the formal def-
inition for a coherent set of rules, we give an example of two cases where a relationship
can be inferred from a pair of non-concealed relationships.

Example 13. Suppose that in the university document it is known that the CAD course
(Node 203) is given in the EE department (Node 102) and student 56789 (Node 303) is
registered in the CAD course. In this case, the relationship between Node 102 and 303
can be derived from other relationships, thus, there is no point in concealing it alone.

Suppose that it is known Student 12345 (Node 301) studies in the CS department
(Node 101) and is registered in the DB course (Node 211). Knowing that the document
is a tree allows a user to infer that the DB course is given in the CS department (i.e.,
Node 201 and Node 301 are related).

We now define when a set of rules is coherent. Consider a document D and a set
of rules R. The set R has an incomplete concealment in a document D if one of the
following two cases occurs. (1) Lack of transitive: D has three elements e1, e2 and e3

such that pruneR(D̄) (the pruning of the transitive closure of D by R) has an edge from
e1 to e2 and an edge from e2 to e3, but pruneR(D̄) does not have an edge from e1 to e3.
(2) Lack of reverse transitivity: there are three elements e1, e2 and e3 in D, such that
pruneR(D̄) has an edge from e1 to e3 and an edge from e2 to e3; however, pruneR(D̄)
does not have an edge from e1 to e2.

Definition 4 (A Coherent Set of Rules). Given a document D, a set of rules R is
coherent if an incomplete concealment does not occur in D. Given a schema S, a set R

is coherent if R is coherent for every document that conforms to S.

6.1 Coherence for Documents

There is a simple and efficient test for verifying that a set of rules R is coherent for a
document D. The test starts by computing the pruning of the transitive closure of D

according to R, and considering the edge set of pruneR(D̄) as a relation r. There is
a lack of transitivity if and only if the algebraic expression π$1,$4(r./$2=$1r) − r is
not empty. There is a lack of reverse transitivity if and only if the algebraic expression
π$1,$3(r./$2=$2r) − r is not empty.

Furthermore, we can give intuitive conditions for constructing coherent sets of rules.
Our conditions consider how relationships specified by different rules are related. We
say that an edge (e1, e2) in a transitive closure D̄ is encapsulating an edge (e′

1, e
′

2) if
there is a path φ in D̄ that goes through the two edges (e1, e2) and (e′

1, e
′

2) such that
one of the following three cases holds: (1) e1 appears on φ before e′

1 and e′

2 appears
before e2. (2) e1 = e′

1 and e′

2 appears on φ before e2. (3) e1 appears on φ before e′

1 and
e2 = e′

2. The following is a necessary condition for the coherency of a set of rules.

Proposition 2. Given a document D, if a set of rules R is coherent, then the follow-
ing condition holds. For every descendent edge (e1, e2) in D̄, which is removed in the
pruning of D̄ by R, there is an edge (e′

1, e
′

2) in D̄ such that (e′

1, e
′

2) is encapsulated by
(e1, e2) and (e′

1, e
′

2) is also removed in the pruning of D̄.

Consider two edges (e1, e2) and (e1, e
′

2) that are outgoing edges of the same node.
We say that these two edges are parallel in D̄ if either there is a path from e2 to e′

2 or
vice-versa. That is, these two edges do not lead to two disjointed parts of D̄. We will use
this definition in the next proposition to provide a sufficient condition for coherency.

Proposition 3. Let R be a set of rules and D be a document. If the following condition
holds, then R is coherent w.r.t D. For every edge (e1, e2) that is removed in the pruning
of D̄ w.r.t. R, all the edges (e1, e

′

2) that are parallel to (e1, e2) are also removed in the
pruning of D̄.

6.2 Coherence for Schemas

Given a schema, we can generalize, using containment of XPath expressions, the con-
dition presented in Proposition 3 for coherency w.r.t. a document. Since the generalized
condition is technical and does not contribute to the understanding of the paper, we do
not present it here. However, a special case of the generalized condition is that for ev-
ery document D that conforms to the schema, for each element e in D, either all the
outgoing edges of e in D̄ are removed in the pruning or none of them is removed.

A simple way to ensure this condition is to allow only rules that have one of
the following two forms: for path exclude //* or for path exclude /la-
bel[condition]//*, where path can be any XPath expression, label can be any label
and condition can be any XPath condition.

Example 14. Consider the schema S in Figure 3. Suppose we want to conceal informa-
tion of students in courses. We can apply the following two rules. (1) for //Course
exclude /Student and (2) for //Course exclude /Student//*. These
rules are coherent w.r.t. the schema S.

7 Effectiveness of Concealment

In this section, we prove the effectiveness of a coherent set of rules in concealing re-
lationships. The presence of a schema and the fact that documents are trees impose
limitations on the relationships that we are able to conceal. These limitations will be
discussed in the first part of this section.

7.1 The Singleton-Source Disclosure

The singleton-source disclosure occurs when a user can infer that two elements e1 and
e2 are related, from the following two pieces of information. (1) The path from the root
to e2 must go through an element of type T . (2) The only element in the document of
type T is e1. The problem is illustrated by the following three examples.

Example 15. Consider a university document that conforms to the schema in Figure 3
and that contains only a single department element. Consider the rule
for //Department exclude /Course,
which presumably conceals the relationships between departments and courses. A user
that is familiar with the schema of the document and knows that the document contains
only a single department can infer that every course element in the document is below
the only department element.

Example 16. Consider the document in Figure 1 and the rule
for //Department[Name=’CS’] exclude /Course.
Suppose that Q1 is a query that looks for all the courses in the document and Q2 is a
query that looks for all the courses in departments other than “CS”. Both queries are
locally valid w.r.t. the document and the rule. By applying set difference to the answers
to Q1 and to Q2, it is possible to infer what are the courses in the “CS” department.

Example 17. Suppose that there are several departments, in the university document,
but only one department element, denoted d, has course elements below it. In this case,
according to the schema shown in Figure 3, every student in the document must be a
descendent of d.

We use the notion of k-concealment (recall Definition 1) in order to define the
singleton-source disclosure.

Definition 5 (Singleton-source disclosure). Consider a document D and a set of rules
R. A singleton-source disclosure occurs when there is a rule ρ = (x1, x2) in R such
that the relationship (x1(D), x1x2(D)) is not 2-concealed.

7.2 Verifying k-Concealment for a Coherent Set of Rules

We will describe now an algorithm that given a document D and a coherent set of
rules R, tests if a singleton-source disclosure occurs. Essentially, the algorithm com-
putes, for each rule ρ = (x1, x2) in R, the maximal k for which the relationship
(x1(D), x1x2(D)) is k-concealed. If k > 1 for all the rules of R, then a singleton-
source disclosure does not occur. Otherwise, a singleton-source disclosure does occur.

Before presenting the algorithm that computes k, we provide an example that illustrates
part of the work of that algorithm.

Example 18. Consider the document in Figure 1 and a coherent set of rules R. Suppose
R contains the rule ρ, and ρ hides the relationship between courses and students. There
are other rules in R that we do not describe. Suppose R does not hide the relationship
between departments and students. We now discuss the computation of k for ρ.

There are three students and four courses that we need to consider. For each student
s, we need to count the number of courses c for which s might be related to c. There is
a possibility that s is related to c if, and only if, there exists a document Dsc for which
the following conditions hold. (1) The element s is a descendent of the element c, in
Dsc. (2) Every locally valid query Q provides the same answer when posed to Dsc and
when posed to the original university document.

Intuitively, we can think of a document Dsc as a result of moving some subtrees of
the original document from one part of the document to another. Thus, for Node 301,
we can either leave it below Node 201 or move it to be below Node 202. However, we
cannot move Node 301 to be below Node 203. On the conceptual level, this is because
Node 203 is a course that belongs to a different department from the department that
Node 301 is related to. On the technical level, this is because if we move Node 301 to
be below Node 203, we will have two ancestors to Node 301 (Node 101 and Node 102)
that are not on the same path. In a tree this should not happen.

In the computation, we check for each student, how many courses it can be related
to, as was done for Node 301. In our example, each student has two courses that she
can be related to. Thus, in D there is a 2-concealment for ρ.

We present now the algorithm—Compute-k—that for any coherent set of rules R

and a document D, computes a maximal value k for which k-concealment can be guar-
anteed for the relationships that are specified by the rules of R.

Compute k (D, R)
Input: a document D and a coherent set of rules R;
Output: a maximal k such that there is a k-concealment for each rule in R

Initially, we set k = ∞. We iterate over all the rules of R. For each rule ρ = (x1, x2)
in R, we denote by A the set x1(D); and by B the set x1x2(D). We iterate over all the
elements of B. For each element b ∈ B we count the number of nodes a ∈ A such that
we can move b to be below a (shortly, we will explain how). Let kb be this count. Then,
if kb < k, we replace k by kb. At the end of all the iterations, k is returned.

We now explain how we count, for a given b ∈ B, the number of nodes a ∈ A such
that we can move b to be below a. We do that by iterating over the elements of A and
trying to “attach” b below each one of these elements. The test for b and a is as follows.
We start by computing the pruning by R of the transitive closure of D—pruneR(D̄).
We will then try to connect b to a using only edges between restricted pairs, i.e., we
will add only edges that will be removed in the pruning by R. This will produce an
expansion D// of D such that Q(D//) = Q(D), for every query Q that is locally valid
for R and D.

The following observations are important. First, for every a′ ∈ A, in pruneR(D̄)
there does not exist any edge from a′ to b. This is because of the rule ρ. Furthermore,

since R is coherent, in pruneR(D̄), there is no path from a′ to any of the following three:
b, an ancestor of b, or a descendent of b. Hence, there is a subtree Tb in pruneR(D̄) that
contains b and is disconnected from any a′ ∈ A. What we need to test is the possibility
to connect the root of Tb to a or to a descendent of a (using only edges that are removed
in the pruning) and to make sure the following two things. First, we want to make
sure that we will eventually produce a tree or a graph that can be extended to be a
tree. Secondly, we want to make sure that by adding Tb below a we do not create a
relationship (i.e., an ancestor-descendent pair) between two nodes that were not related
in D and do not form a restricted pair.

To ensure that we are able to extend the new graph to be a tree, we need to verify
that the nodes of Tb do not have two ancestors that are not on one path. To that end, we
define φ to be the path, in pruneR(D̄), from the highest ancestor of a to the root of Tb.
The highest ancestor of a can be the root, but is not necessarily the root, e.g., if in the
pruning, a is disconnected from the root. Now, if there are a node n in Tb and a node m

that is neither on φ nor in Tb, then the test fails, i.e., we will not be able to create a tree.
In this case, we do not increase kb.

We describe now the test for verifying whether, by adding Tb below a, we create
a relationship between two nodes that were not related in D and are not a restricted
pair. In the test, we simply check that for every pair of nodes connected by a path, after
moving Tb, either they are connected by an edge in pruneR(D̄) or they are a restricted
pair according to R. If this test fails, we do not increase kb. Otherwise, we increase kb

by one.
The algorithm counts for each b ∈ B all the a ∈ A that are possible ancestors of

b. That is, there exists a document D′, for which the pruning of the transitive closure—
pruneR(D̄′)—is in the universe UR(D), and in D′, b is a descendent of a. When we
count for b ∈ B the elements a ∈ A that are possible ancestors of b, we should not
count twice two elements that are on the same path. This requires a simple modification
to the algorithm, but we did not include this change to the presentation here in order not
to further complicate the description of the algorithm.

Theorem 1. Given a document D and a coherent set of rules R, Algorithm Compute-k
computes a value k such that the followings hold.

1. All the relationships that are defined by rules of R are k-concealed.
2. There is a rule in R that defines a relationship which is not k + 1-concealed.

Theorem 1 shows that when a coherent set of rules is used, it can be tested for
a given document D whether 2-concealment, or even k-concealment for some k >

2, is provided. When k-concealment is provided for D and R, the following holds.
Suppose that e1 and e2 are two elements such that the association between them should
be concealed, i.e., there is a rule in R that specifies the relationship (A, B), where
e1 ∈ A and e2 ∈ B. Then, a user who sees the answers to locally valid queries will not
be able to tell with certainty if the two elements e1 and e2 are connected in D. This is
because 2-concealment guarantees that there are two documents D1 and D2 such that
in D1 the two elements e1 and e2 are connected, while in D2, the two elements e1 and
e2 are not connected. Furthermore, Q(D1) = Q(D2), for any locally valid query.

An important advantage of the algorithm Compute-k is that it has a polynomial time
complexity.

8 Conclusion

We presented an authorization-transparent access control mechanism for XML under
the Non-Truman model. Our mechanism uses rules, which are formulated using XPath
expressions, for specifying element relationships that should be concealed. The pro-
posed access control mechanism has finer granularity than mechanisms that only con-
ceal nodes. We defined the semantics of rules with respect to a document and with
respect to a schema. Coherency of a rule set was defined and discussed. A set of rules
is coherent if concealed relationships cannot be inferred from non-concealed relation-
ships. We showed how to construct a coherent set of rules. Finally, we presented the
notion of k-concealment, which is a modification of k-anonimyty to our model. When
k-concealment is provided (for k > 2), a user cannot reveal certain information on
concealed relationship from the result of merely valid queries. We showed that when
access control is performed using a coherent set of rules, k-concealment can be tested
efficiently.

Future work includes implementing a system that supports our access control rules,
and integrating this system with existing XPath query processors. Implementation should
help develope optimization techniques to our validity tests. An important challenge is
to adapt our mechanism to XQuery and XSLT. Another important issue that we leave
for future work is dealing with queries that include aggregate functions.

References

1. XML. The World Wide Web Consortium (W3C). Available at
http://www.w3c.org/XML.

2. XML Schema. The World Wide Web Consortium (W3C). Available at
http://www.w3c.org/XML/Schema.

3. R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proceed-
ings of the 21st ICDE, pages 217–228, 2005.

4. E. Bertino, S. Castano, and E. Ferrari. On specifying security policies for web documents
with an xml-based language. In Proceedings of the 6th SACMAT, pages 57–65, 2001.

5. E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specifying and enforcing access control
policies for xml document sources. 3:139–151, 2000.

6. E. Bertino and E. Ferrari. Secure and selective dissemination of XML documents. ACM
TISSEC, 5(3):290–331, 2002.

7. R. Bhatti, E. Bertino, A. Ghafoor, and J. Joshi. Xml-based specification for web services
document security. In IEEE Computer, volume 4 of 37, pages 41–49, 2004.

8. D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu.
XQuery version 1.0: An XML query language, June 2001. Available at
http://www.w3.org/TR/xquery.

9. SungRan Cho, S. Amer-Yahia, L. V.S. Lakshmanan, and D. Srivastava. Optimizing the se-
cure evaluation of twig queries. In Proceedings of the 28th VLDB, pages 490–501, 2002.

10. J. Clark. XSL Transformations (XSLT) version 1.0. Available at
http://www.w3.org/TR/xslt, 1999.

11. J. Clark and S. DeRose. XML Path Language (XPath) version 1.0. Available at
http://www.w3.org/TR/xpath, 1999.

12. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained
access control system for XML documents. ACM TISSEC, 5(3):169–202, 2002.

13. E. Damiani, S. Samarati, S. di Vimercati, and S. Paraboschi. Controlling access to xml
documents. IEEE Internet Computing, 5(6):18–28, 2001.

14. W. Fan, C. Chan, and M. Garofalakis. Secure XML querying with security views. In Pro-
ceedings of the 23rd ACM SIGMOD, pages 587–598, 2004.

15. B. Finance, S. Medjdoub, and P. Pucheral. The case for access control on
xml relationships. Technical report, INRIA, 2005. Available from http://www-
smis.inria.fr/dataFiles/FMP05a.pdf.

16. I. Fundulaki and M. Marx. Specifying access control policies for XML documents with
XPath. In Proceedings of the 9th ACM SACMAT, pages 61–69, 2004.

17. A. Gabillon and E. Bruno. Regulating access to xml documents. In Proceedings of the 15th
IFIP WG11.3, pages 299–314, 2001.

18. S. Godik and T. Moses. eXtesible Access Control Markup Language (XACML) Version 1.0.
Available at http://www.oasis-open.org/committees/xacml, 2003. OASIS
Standard.

19. S. Hada and M. Kudo. XML Access Control Language: provisional authorization for XML
documents. Available at http://www.trl.ibm.com/projects/xml/xacl.

20. Y. Kanza, A. O. Mendelzon, R. J. Miller, and Z. Zhang. Authorization-Based Access Control
for XML. Technical Report CSRG-527, University of Toronto, Department of Computer
Science, 2005. Available from ftp://ftp.cs.toronto.edu/csrg-technical-reports.

21. G. Miklau and D. Suciu. Controlling access to published data using cryptography. In Pro-
ceedings of the 29th VLDB, pages 898–909, 2003.

22. G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. In
Proceedings of the 23rd ACM SIGMOD, pages 575–586, 2004.

23. S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM TISSEC, 3(2):85–106, 2000.

24. S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting techniques
for fine-grained access control. In Proceedings of the 23rd ACM SIGMOD, pages 551–562,
2004.

25. L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncer-
tainty, Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

26. J. Wang and S. L. Osborn. A role-based approach to access control for XML databases. In
Proceedings of the 9th ACM SACMAT, pages 70–77, 2004.

27. Wanhong Xu and Z. M. Özsoyoglu. Rewriting xpath queries using materialized views. In
Proceedings of the 31st VLDB, pages 121–132, 2005.

28. C. Yao, X. S. Wang, and S. Jajodia. Checking for k-anonymity violation by views. In
Proceedings of the 31st VLDB, pages 910–921, 2005.

29. T. Yu, D. Srivastava, L. V.S. Lakshmanan, and H. V. Jagadish. Compressed accessibility
map: efficient access control for xml. In Proceedings of the 28th VLDB, pages 363–402,
2002.

30. Z. Zhang and A. O. Mendelzon. Authorization views and conditional query containment. In
Proceedings of the 10th ICDT, pages 259–273, 2005.

