
Interconnection Semantics for Keyword Search in XML

Sara Cohen∗

Technion—Israel Institute of
Technology

Haifa 32000, Israel

sarac@ie.technion.ac.il

Yaron Kanza
University of Toronto

Toronto, Canada

yaron@cs.toronto.edu

Benny Kimelfeld†

Yehoshua Sagiv†

The Hebrew University
Jerusalem 91904, Israel

{bennyk,sagiv}@cs.huji.ac.il

ABSTRACT
A framework for describing semantic relationships among
nodes in XML documents is presented. In contrast to earlier
work, the XML documents may have ID references (i.e., they
correspond to graphs and not just trees). A specific inter-
connection semantics in this framework can be defined ex-
plicitly or derived automatically. The main advantage of
interconnection semantics is the ability to pose queries on
XML data in the style of keyword search. Several meth-
ods for automatically deriving interconnection semantics are
presented. The complexity of the evaluation and the satis-
fiability problems under the derived semantics is analyzed.
For many important cases, the complexity is tractable and
hence, the proposed interconnection semantics can be effi-
ciently applied to real-world XML documents.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2 [Database Management]: Lan-
guages

General Terms
Algorithms

Keywords
Interconnection semantics, keyword search, XML

1. INTRODUCTION
XML facilitates the incorporation of semantic considera-

tions into information-retrieval. The goal of this paper is to
investigate how the labels (i.e., tags) of XML documents can
be used for determining whether occurrences of keywords are

∗The work of this author was supported by the Israel Science
Foundation (Grant No. 1032/05).
†The work of these authors was supported by the Israel Sci-
ence Foundation (Grant No. 96/01).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

semantically related. We are motivated by the need to de-
velop techniques for keyword search that hide from the user
the complexity of the underneath document and, yet, take
into account the semantic structure when ranking results.
For example, if the keyword Harris is labeled with Employee

and the keyword Jones is labeled with Manager, one might
want to determine whether Jones is the manager of Harris.
In most systems that incorporate keyword search into rela-
tional or XML data (e.g., [1, 3, 8, 9, 10]), the sole criterion
is proximity (e.g., Jones is deemed the manager of Harris if
these keywords appear in a small subtree of the given XML
document). In [5], it is argued that in a tree document,
the keywords are semantically related if they appear in a
uniquely-labeled subtree of the document. This approach is
extended in [4] by incorporating information-retrieval tech-
niques. In [17], the work of [4, 5] is improved by introducing
an approach that avoids some cases of incorrect results.

We generalize and improve all of the above work in two
ways. First, we consider XML documents that form arbi-
trary graphs, due to ID references. Earlier work [4, 5, 17]
considered only trees, which are easier to deal with, since a
tree document has only one minimal subtree that contains
a given set of nodes. Second, we propose several different
semantics to overcome the problem of wrong answers. Our
approach to solving this problem takes the schema into ac-
count and, consequently, can handle gracefully missing in-
formation. In comparison, the solution of [17] ignores the
schema and applies only to tree documents.

We investigate the problem of semantic relationships in
XML documents from several perspectives. First, we pro-
pose a framework that allows either users or creators of XML
documents to define explicitly interconnection semantics for
the purpose of specifying how objects (i.e., elements) are se-
mantically related. Second, we explore various types of in-
terconnection semantics that can be derived automatically.
Third, we analyze the complexity of two problems. One is
the evaluation problem, that is, enumerating all the answers
to a given query. The second is the satisfiability problem,
namely, testing whether some given objects are semantically
related. Algorithms for the latter problem can improve key-
word search by incorporating into ranking techniques a test
of whether occurrences of keywords are semantically related.

Our complexity analysis considers two measures: data
complexity and query-and-data complexity. Since queries
are usually of a small size, data complexity is commonly
used. However, analyzing the complexity under the assump-
tion that the query has an unbounded size may lead to bet-
ter, more efficient algorithms; in particular, algorithms that

D1

rick@abc.gov

1.Departments

2.Department

9.ID
27

$12,400
14.Budget

Econometric
11.Name

Analysis

Harris
5.Name

859432
7.Phone−Number

6.Email
harris@abc.gov

http://abc.gov/~harris
8.URL

eanalysis2003@abc.gov
13.Email

15.Department

16.ID
14

Rickman
19.Name

22.Office

30.ID
3

12
23.Number

853389
24.Phone−Number

10.Project

12.Contact

3.Manager

4.Personal−Info

17.Manager

18.Personal−Info

20.Email

21.URL

25.Department

26.Employee

27.Maintains

28.Personal−Info

29.Name
Smith

http://abc.gov/~rick

Figure 1: A document D1

generate quickly the first few answers—an important feature
in keyword search.

The main contributions of this paper are as follows. First,
we give a wide spectrum of interconnection semantics that
apply to XML documents with ID references. In practi-
cal terms, these interconnection semantics differ in their ef-
ficiency and recall-precision tradeoff. Second, we provide
an exhaustive complexity analysis, including algorithms for
the tractable cases. We envision that these algorithms can
be combined with information-retrieval techniques to yield
powerful systems for keyword search in XML documents.

2. PRELIMINARIES

2.1 Graphs and Trees
A graph is a pair G = (V, E), where V is a set of nodes

and E ⊆ V × V is a set of edges. A graph is either directed
or undirected. We always denote an edge as (v1, v2). If the
edge is directed, then (v1, v2) is an ordered pair; otherwise,
it is an unordered pair (i.e., (v1, v2) is the same as (v2, v1)).

A rooted graph is a directed graph that has a designated
node r, called the root, such that every node v is reachable
from r by a directed path.

We use two types of trees. A rooted tree is a rooted graph,
such that for every node v, there is a unique directed path
from the root to v. An undirected tree is a connected undi-
rected graph without cycles (and without a root). Note that
when we say “tree,” we simultaneously refer to both types.

G′ = (V ′, E′) is a subgraph of G = (V, E), denoted G′ ⊆
G, if V ′ ⊆ V and E′ ⊆ E∩ (V ′×V ′). A rooted subgraph G′

of a rooted graph G need not have the same root as G. A
rooted subtree is a special case of a rooted subgraph. We also
consider undirected subtrees of rooted graphs by ignoring the
directions of the edges.

If G1 and G2 are subgraphs of G, we use G1 ∪ G2 to
denote the subgraph that consists of all the nodes and edges
of either G1 or G2.

A rooted tree (respectively, undirected tree) T = (V, E)
is reduced with respect to (abbr., w.r.t.) a subset U ⊆ V

if it has no proper rooted subtree (respectively, undirected
subtree) that includes all the nodes of U .

2.2 O-Graphs and L-Graphs
An o-graph (and an o-tree) has objects as nodes. An object

has an object identifier (abbr. oid) and is assigned a label
and, possibly, a value. Figure 1 shows a rooted o-graph D1,
where integers are used for oid’s, each node has a label, and
all the leaves have values. If o is an object, then l(o) denotes
the label of o. Similarly, if O is a set of objects, then l(O)
denotes the set {l(o)|o ∈ O}. An o-tree is uniquely labeled if
distinct objects do not have the same label.

An l-graph (and an l-tree) has labels as nodes. Figure 2
shows a rooted l-graph S1, two rooted l-trees C1 and C2 and
an undirected l-tree C3. The l-trees C1 and C2 are reduced
w.r.t. the set of labels {Email, Name}, and the l-tree C3 is
reduced w.r.t. {Employee, Name} (and also w.r.t. some other
sets of labels, e.g., {Employee, Name, Maintains}). Note that
a label occurs (at most) once in an l-graph, but may have
multiple occurrences in an o-graph.

A rooted o-graph D conforms to a rooted l-graph S if the
following two conditions hold:

• l(r) is the root of S, where r is the root of D, and

• If (o1, o2) is an edge of D, then (l(o1), l(o2)) is an edge
of S.

For example, the rooted o-graph D1 of Figure 1 conforms to
the rooted l-graph S1 of Figure 2.

A rooted o-tree T is isomorphic to a rooted l-tree C if T is
uniquely labeled, the labels of T are exactly the nodes in C,
and T conforms to C. For example, the rooted subtree of D1

(Figure 1) that comprises objects 4, 5 and 6 is isomorphic
to the rooted l-tree C1 (Figure 2).

For undirected trees, the condition about the roots is re-
moved from the definition of isomorphism. That is, an undi-
rected o-tree T is isomorphic to an undirected l-tree C if T

is uniquely labeled, the labels of T are exactly the nodes in
C, and for every edge (o1, o2) of T , the edge (l(o1), l(o2)) is
in C.

2.3 Documents and Schemas
A document is a rooted o-graph and a schema is a rooted

l-graph. Figure 1 shows a document D1 and Figure 2 shows
a schema S1.

C3C2

1S

C1

Phone−Number

Project

Contact

URL Name

Budget

Personal−Info

Departments

Employee

Name

ID

Email

Department

Employee

Maintains Personal−Info

Name

Contact

Maintains

Email

Name

Personal−Info

Office

Office

Project

Manager

Number

Email

Figure 2: A schema S1, rooted l-trees C1 and C2, and an
undirected l-tree C3

A document D may have a user-supplied schema. Al-
ternatively, we can use the derived schema of D, denoted
SD, that consists of the following. The root l(r), where r is
the root of D, the labels of D as nodes, and all the edges
(l(o1), l(o2)), where (o1, o2) is an edge of D. Note that SD

is the minimal schema that D conforms to; that is, if D

conforms to S, then SD is a rooted subgraph of S and both
have the same root. As an example, the derived schema for
D1 (Figure 1) is obtained from the schema S1 (Figure 2) by
removing the edge from the label Project to the label URL
(since D1 has no edge from a node labeled with Project to
a node labeled with URL).

In the remainder of this paper, when we consider a doc-
ument D with a schema S, we implicitly assume that D

conforms to S.

3. INTERCONNECTION SEMANTICS

3.1 Patterns
Informally, an interconnection semantics is a collection P

of queries. We refer to these queries as patterns and they will
be formally defined shortly. A set of nodes O, in a given doc-
ument D, is interconnected if it is in the result of applying
some pattern of P to D. We follow the principle that pat-
terns of P should represent only the basic semantic relation-
ships that exist in D, as opposed to relationships that can
be obtained from the basic ones by composition, additional
processing, etc. In the parlance of relational databases, it
means two things. First, a pattern of P should not have
self joins, e.g., it should not represent the manager of the
manager of an employee. Second, a pattern of P should not
join a pair of attributes in two distinct ways, e.g., the pat-

tern could join an employee and a manager by using either
the relationship between employees and project managers or
the relationship between employees and departments man-
agers, but not by using both relationships. Translating these
requirements to documents means that a subgraph of a doc-
ument D represents a basic semantic relationship if it is a
uniquely labeled subtree of D.

Formally, a rooted (respectively, undirected) pattern is a
pair p = (L, C), where L is a set of labels and C is a rooted
(respectively, undirected) l-tree that is reduced w.r.t. L.
Note that L includes (at least) all the leaves of C.

Intuitively, a pattern describes when objects having the
labels of L are semantically related. For example, the rooted
patterns ({Name,Email}, C1) and ({Name,Email}, C2), where
C1 and C2 are shown in Figure 2, describe when two objects
labeled with Name and Email are interconnected in the doc-
ument D1 (shown in Figure 1).

Formally, let O be a set of objects appearing in a docu-
ment D. A rooted (respectively, undirected) pattern p =
(L, C) interconnects O in D, denoted p |=D O, if l(O) = L

and D has a rooted (respectively, undirected) subtree T ,
such that T includes all the objects of O and is isomor-
phic to C. Note that a pattern can only interconnect a set
of uniquely-labeled objects (and, furthermore, T must be
uniquely labeled).

As an example, consider again D1, C1 and C2. The rooted
pattern ({Name,Email}, C1) interconnects the pair of objects
(5, 6) and also the pair (19, 20), while the rooted pattern
({Name,Email}, C2) interconnects the pair (11, 13).

Some relationships cannot be captured by any rooted pat-
tern. For example, in document D1, object 19 and ob-
ject 26 might be deemed meaningfully related, since they
are the name of a manager and the employee that main-
tains the office of that manager, respectively. Yet, there
is no uniquely-labeled rooted subtree of D1 that contains
both objects 19 and 26; therefore, these two objects are
not interconnected by any rooted pattern. Objects 19 and
26, however, are interconnected by the undirected pattern
({Name,Employee}, C3), where C3 is the undirected l-tree
shown in Figure 2.

An interconnection semantics is a set P of patterns. We
say that P is rooted (respectively, undirected) if all its pat-
terns are rooted (respectively, undirected). In principle, an
interconnection semantics can also be mixed, i.e., have both
rooted and undirected patterns.

Let D be a document, O be a subset of the objects of D,
and P be an interconnection semantics. We say that O is
P-interconnected, denoted P |=D O, if P contains a pattern
p, such that p |=D O.

3.2 Queries and Their Complexity
In our framework, a query is a set L of labels. Given a

document D and an interconnection semantics P, an answer
to a query L is a set O of objects, such that l(O) = L

and P |=D O. The evaluation problem is essentially an
enumeration problem, that is, all the answers to a given
query have to be generated successively. The satisfiability
problem is that of deciding whether a given set O of objects
is interconnected, i.e., whether P |=D O.

Usually, efficiency of query evaluation is measured in terms
of data complexity [20]; that is, the query is assumed to be of
a fixed size. The measure of query-and-data complexity [20]
means that the query (as well as the document) has an un-

bounded size. Consequently, the number of answers could
be exponential in the input size and therefore, the running
time should take into consideration both the input size and
the output size.

Three complexity classes for enumeration problems are
proposed in [12]. Polynomial total time means that the run-
ning time is polynomial in the combined size of the input
and the output. Incremental polynomial time means that
the time needed to generate the ith answer, after the first
i − 1 answers have already been produced, is polynomial in
the combined size of the input and the first i − 1 answers.
The most efficient notion is enumeration with polynomial
delay, that is, the running time between the generation of
two consecutive answers is polynomial in the input size.

In this paper, we analyze the complexity of both the eval-
uation problem and the satisfiability problem under the two
measures mentioned above. Data complexity means that
the set O, in the satisfiability problem, and the query L, in
the evaluation problem, are of a fixed size. Query-and-data
complexity means that the sizes of O and L are unbounded.
Note that under data complexity, if the satisfiability prob-
lem is in polynomial time, then so is the evaluation problem.
Also note that the evaluation problem cannot be in polyno-
mial total time if the non-emptiness problem is intractable,
where the latter is the problem of deciding whether a given
query has at least one answer.

If the interconnection semantics P is given explicitly, then
it is part of the input. Since patterns are essentially projec-
tions of acyclic joins, the following proposition follows from
the work of [21].

Proposition 3.1. Let P be an explicit interconnection
semantics that is part of the input. The following results hold
under query-and-data complexity. The satisfiability problem
is in polynomial time. The evaluation problem is in polyno-
mial delay if P has (at most) one pattern for L; otherwise,
it is in incremental polynomial time.

4. DERIVED SEMANTICS
Expressing explicitly all the patterns of an interconnection

semantics is not always convenient or practical. As an al-
ternative, we present several interconnection semantics that
can be derived automatically from the schema S of the given
document D. These semantics may depend on the specific
schema S that is used for D. Note that S can be any schema
that D conforms to, including the derived schema SD.

There are two approaches for solving the satisfiability and
the evaluation problems when the interconnection semantics
is derived from the schema. One is to generate all the pat-
terns that are relevant to the set of labels at hand, thereby
obtaining an explicit semantics. This approach is discussed
in Section 5. The second approach is to find algorithms that
can accept, as part of the input, the schema S rather than
the derived semantics itself. In this section, we define the
derived interconnection semantics and explore the second
approach. Specifically, we give algorithms for the tractable
cases. Lower bounds for the intractable cases are summa-
rized in Section 7.

4.1 The Semantics P
r

all(S) and P
u

all(S)

Given a document D conforming to a schema S, the inter-
connection semantics Pr

all(S) comprises all rooted patterns
(L, C), such that L is a set of labels appearing in S and C

Pr
all-Array(D, k)

1: let l1, . . . , lm be the labels of SD, sorted
in any topological order

2: let o1, . . . , on be the objects of D, sorted
in the order implied on their labels

3: for all O ⊆ {o1, . . . , on} s.t. |O| ≤ k do
4: if |O| = 1 then I[O] := 0
5: else I[O] := ∞
6: for i := 2, . . . , n do
7: for all O ⊆ {o1, . . . , oi−1} such that

1 ≤ |O| < k do
8: O′ := O ∪ {oi}
9: if O′ is uniquely labeled then

10: for all parents o of oi in D do
11: I[O′] = min(I[O′], I[O ∪ {o}] + 1)
12: return I

Figure 3: Enumerating results under the semantics Pr
all

is a rooted subtree of S that is reduced w.r.t. L. It is easy
to show that a set O of objects is Pr

all(S)-interconnected in
D if and only if D has a uniquely-labeled rooted subtree T

that contains O. Thus, determining interconnectivity does
not depend on the specific schema that is used for D; that
is, Pr

all(S) |=D O if and only if Pr
all(SD) |=D O. Hence, by a

slight abuse of notation, we may sometimes write Pr
all instead

of Pr
all(S).

The interconnection semantics Pu
all(S) is the set of all undi-

rected patterns (L, C), such that L is a set of labels ap-
pearing in S and C is an undirected subtree of S that is
reduced w.r.t. L. If Pr

all(S) |=D O, then Pu
all(S) |=D O.

The advantage of Pu
all(S) is the ability to interconnect ob-

jects even when they are not part of a rooted hierarchy, as
shown earlier for document D1 using the undirected pattern
({Name,Employee}, C3).

We now show that the satisfiability problem for Pr
all(SD) is

in polynomial time under data complexity if SD is acyclic.
The algorithm of Figure 3 uses dynamic programming in
order to decide whether Pr

all(SD) |=D O, for all sets O of
objects in a given document D, such that |O| ≤ k. The
output is given by the array I. Upon termination, the value
of I[O] is the size of a minimal rooted subtree C ⊆ SD, such
that (l(O), C) |=D O; if Pr

all(SD) 6|=D O, then I[O] = ∞.
Note that the values of I[O] could be used for ranking the
results based on proximity, since a smaller value means that
the objects of O are included in a smaller subtree of D.
Furthermore, the algorithm could be extended to take into
account an arbitrary weight function on the edges, thereby
enabling a wider range of ranking functions.

In Lines 3–5, I[O] is initialized either to ∞, if 1 < |O| ≤ k,
or to 0, if |O| = 1. In Lines 6–11, the objects of D are
traversed according to a topological order on their labels, as
implied by SD. Let o1, . . . , on be the objects of D, sorted
in that order. When object oi is visited, we consider all
I[O∪{oi}], where O ⊆ {o1, . . . , oi−1} and |O| < k. If O∪{oi}
has a repeated label, then I[O ∪ {oi}] is left unchanged.
Otherwise, I[O ∪ {oi}] is assigned the minimal value among
all I[O ∪ {o}] + 1, where o is some parent of oi in D. Note
that all the parents of an object precede that object in the
order o1, . . . , on. Hence, for every parent o of oi, the value
of I[O ∪ {o}] is already determined when oi is visited.

Theorem 4.1. Let D be a document with an acyclic SD,
and let O be a set of objects of D, such that |O| ≤ k. If
Pr

all(SD) |=D O, then the final value of I[O] is the size of a
minimal rooted subtree of D that contains O and is uniquely-
labeled; otherwise, I[O] = ∞. The running time of Pr

all-

Array(D, k) is O(mnk−1), where n and m are the number
of objects and edges of D, respectively.

Corollary 4.2. For the semantics Pr
all(S), the satisfia-

bility and the evaluation problems are solvable in polynomial
time, under data complexity, if SD is acyclic.

4.2 The Semantics P
r

min(S) and P
u

min(S)

The semantics Pr
all and Pu

all occasionally interconnect ob-
jects that are rather weakly related to each other. For ex-
ample, in document D1 (Figure 1), object 11 (the name of a
project) and object 8 (the URL of a manager) are Pr

all(S1)-
interconnected, where S1 is given in Figure 2.

The above problem can be avoided by adopting the com-
mon assumption (e.g., [2]) that meaningfully-related objects
must be close to each other. Thus, for a given schema S, we
define the notion of minimal patterns as follows. A rooted
(respectively, undirected) pattern p = (L, C) is minimal
w.r.t. S if C is a minimal-size rooted (respectively, undi-
rected) subtree of S that includes all the labels of L. Note
that since C is minimal, it is also reduced w.r.t. L.

For example, consider S1, C1 and C2 from Figure 2. The
pattern ({Name,Email}, C1) is minimal w.r.t. S1, but the
pattern ({Name,Email}, C2) is not.

Formally, given a schema S, the interconnection semantics
Pr

min(S) is the set of all rooted patterns that are minimal
w.r.t. S. Note that defining Pr

min(S) in terms of a schema S

is not a limitation, because the derived schema can always
be used if no schema is explicitly given.

The semantics Pr
min(S) gracefully handles missing infor-

mation. Consider, for example, document D1 (Figure 1)
and schema S1 (Figure 2). The fact that S1 has an edge
from Project to URL implies that the URL of object 10 is
missing from D1. This is realized by the semantics Pr

min(S1)
that does not interconnect object 10 with any object labeled
with URL, because the only minimal rooted pattern for the
set of labels {Project,URL} is ({Project,URL}, C), where C

is the l-tree comprising the single edge from Project to URL.
The interconnection semantics Pu

min(S) is defined simi-
larly to Pr

min(S); that is, Pu
min(S) is the set of all undi-

rected patterns that are minimal w.r.t. S. The semantics
Pr

min(S) and Pu
min(S) are incomparable; that is, for some

documents and schemas, there are sets of objects that are
Pr

min(S)-interconnected but not Pu
min(S)-interconnected and

vice-versa. Unlike Pr
all(S) and Pu

all(S), both Pr
min(S) and

Pu
min(S) have a tractable data complexity (even if S is cyclic).
Testing Pr

min(S) |=D O is done by computing the sizes n1

and n2 of the minimal rooted subtree of D that contains
O and the minimal rooted subtree of S that contains l(O),
respectively. It is easy to show that Pr

min(S) |=D O if and
only if n1 = n2. The numbers n1 and n2 can be computed
by adapting a known algorithm [6] for finding Steiner trees
to directed graphs. Testing Pu

min(S) |=D O is similar.

Theorem 4.3. Pr
min(S) |=D O and Pu

min(S) |=D O can be

tested in O
`

nsms + ndmd + (ns + nd)32|O| + (ns + nd)3
|O|

´

time, where ns and ms are the number of labels and edges
of S, respectively, and nd and md are the number of objects
and edges of D, respectively.

uP all
rP

min
rP

uca
all P

min
uP

r

Figure 4: A Venn diagram for the derived semantics

Corollary 4.4. For the semantics Pr
min(S) and Pu

min(S),
the satisfiability and the evaluation problems are solvable in
polynomial time under data complexity.

4.3 The Semantics P
r

uca(S)

The semantics Pr
min(S) and Pu

min(S) may occasionally miss
meaningfully related objects just because they are slightly
too far away from each other. For example, consider doc-
ument D1 (Figure 1), schema S1 and the rooted l-trees C1

and C2 (Figure 2). The semantics Pr
min(S1) does not in-

clude the pair (11, 13) as an answer for the set of labels
{Name,Email}, because the pattern ({Name,Email}, C2) is
not minimal w.r.t. S1. Dealing with this problem requires a
different notion of minimal rooted subtrees—one that allows
to define both ({Name,Email}, C1) and ({Name,Email}, C2)
as minimal patterns. This is done as follows.

Consider an acyclic schema S and a set of labels L. A node
l of S is a common ancestor of L in S if every label of L is
reachable from l via a directed path in S. A rooted pattern
p = (L, C), where C is a rooted subtree of S, is structurally
minimal w.r.t. S if the following holds. C does not have any
node, other than the root, that is a common ancestor of L

in S. For example, the rooted patterns ({Name,Email}, C1)
and ({Name,Email}, C2) are structurally minimal w.r.t. the
schema S1 (Figure 2); in fact, these are the only two rooted
patterns for the set of labels {Name,Email} that are struc-
turally minimal w.r.t. S1.

Given an acyclic schema S, the interconnection semantics
Pr

uca(S) (where uca stands for unique common ancestor) is
the set of all rooted patterns that are structurally minimal
w.r.t. S. Note that this semantics is only defined for acyclic
schemas, since it may yield rather strange results when the
schema is cyclic. Clearly, the interconnection semantics Pr

uca

does not have an analogous undirected semantics.
For document D1 (Figure 1) and schema S1 (Figure 2),

the answers to the query {Name,Email}, under the semantics
Pr

uca(S1), are the pairs (5, 6), (19, 20) and (11, 13).
To show that Pr

uca has a polynomial data complexity, we
reduce Pr

uca-interconnectivity to Pr
all-interconnectivity as fol-

lows. Let D be a document that conforms to an acyclic
schema S. Given an instance Pr

uca(S) |=D O of the satisfi-
ability problem, let A be the set of all common ancestors
of l(O) in S. For a label l ∈ A, document Dl is obtained
from D by deleting all objects o, such that l(o) ∈ A and
l(o) 6= l; in addition, a new root may have to be added to
Dl. It can be shown that Pr

uca(S) |=D O if and only if there
is an l ∈ A, such that Pr

all |=Dl
O. The following is therefore

a consequence of Theorem 4.1.

Corollary 4.5. Let S be an acyclic schema. For the
semantics Pr

uca(S), the satisfiability and the evaluation prob-
lems are solvable in polynomial time under data complexity.

SteinerTrees(G,U)

1: if no rooted subtree of G contains U then
2: return ∅
3: for all minimal topologies τ of U do
4: MaterializeTopology(G, τ)

MaterializeTopology(G, τ)

1: if τ contains only one node v then
2: return ({v}, ∅)
3: arbitrarily choose a leaf v and an edge (u, v) of τ

4: T1 := MaterializeTopology(G, τ − v)
5: T2 := MinimalPaths(G, u, v)
6: T := ∅
7: for all T1 ∈ T1 do
8: for all T2 ∈ T2 do
9: T := T ∪ {T1 ∪ T2}

10: return T

Figure 5: Enumerating Steiner trees

4.4 Comparing the Derived Semantics
Figure 4 shows when an interconnection under one seman-

tics is implied by an interconnection under another seman-
tics. Note that the semantics Pr

min(S), Pu
min(S) and Pr

uca(S)
are pairwise incomparable. For tree documents, Pr

min(S)-
interconnectivity is implied by Pu

min(S)-interconnectivity. In
a case study we conducted, Pr

uca(S)-interconnectivity was
usually implied by Pr

min(S)-interconnectivity.
A special case is when the schema (but not necessarily the

document) is a tree. Given a tree schema S and any subset
L of the labels of S, there is exactly one rooted subtree of S

that is reduced w.r.t. L. Moreover, that rooted subtree coin-
cides with the only undirected subtree of S that is reduced
w.r.t. L. Therefore, for all the interconnection semantics
considered earlier in this section, the same set of patterns is
derived from S. This observation and Proposition 3.1 lead
to the following.

Corollary 4.6. Let D be a document with a tree schema
S. For a set O of an unbounded size, the following are
equivalent and can be tested in polynomial time: Pr

all(S) |=D

O, Pu
all(S) |=D O, Pr

min(S) |=D O, Pu
min(S) |=D O and

Pr
uca(S) |=D O. Moreover, under query-and-data complexity,

the evaluation problem is solvable with polynomial delay.

5. ENUMERATING PATTERNS
We conducted a case study of several well-known XML

documents and their DTDs (e.g., RSS, DBLP, Mondial and
Shakespeare Plays) and concluded that the number of pat-
terns, for a given set of labels, is usually not large (although
in some cases this number could be very large). This obser-
vation has led us to an alternative approach to solving the
satisfiability and the evaluation problems. In this approach,
we first generate the patterns that correspond to the labels
of the given query (or the given objects) and then employ
Proposition 3.1. To make this approach practical, we need
efficient algorithms for enumerating the relevant patterns.

In general, we are given a document D that conforms to
a schema S and a set of labels L, where L is either a query
or comprises the labels of a given set of objects. The goal
is to generate all the patterns of the form (L, C), such that
(L, C) is in a given derived interconnection semantics P.

1

a

c

2

v

u

G

5

2

1

3

w

b

bu

1

w

2

v

τ2

3
v

5

u

w

τ3a

v

1τ

u

1

1

a

w

3 5

131

1

Figure 6: A graph G1 and three topologies τ1, τ2 and τ3

We start with the semantics Pr
min. The problem at hand is

to enumerate all the minimal-size rooted subtrees of S that
contain L; these subtrees are known as the Steiner trees of
L. Traditionally, the Steiner-tree problem [11] is to find one
such tree. We show how to enumerate all Steiner trees of L

in polynomial total time, assuming that L has a fixed size.
The input is a weighted, directed graph G = (V, E, w) and

a subset U ⊆ V , where U is of a fixed size (note that w is
a positive weight function defined on E). First, we define a
key notion as follows. A topology of U in G is a weighted,
rooted tree τ = (Vτ , Eτ , wτ), such that (1) U ⊆ Vτ ⊆ V ,
(2) every node v ∈ Vτ \ U has at least two outgoing edges
in τ , and (3) for all edges e = (u, v) ∈ Eτ , the weight wτ (e)
is equal to the weight of a minimal path of G from u to v; if
there is no such path, then wτ (e) = ∞. The topology τ of U

is minimal if its weight is the minimum among all topologies
of U . For example, Figure 6 depicts a graph G1 and three
topologies of {u, v, w}. The topology τ1 is minimal.

It can be shown that a topology of U has at most 2|U |−1
nodes. Therefore, all the topologies of U in G can be found
in polynomial time, since U has a fixed size. The algorithm
SteinerTrees(G,U) of Figure 5 enumerates the Steiner
trees of U in G by considering each minimal topology τ of U

and replacing every edge e = (u, v) of τ with some minimal-
weight path of G from u to v. The replacements are done by
calling MaterializeTopology(G, τ). Note that, in Line 4,
MaterializeTopology calls itself recursively, on a smaller
topology, i.e., a leaf v is removed from τ . For every mate-
rialized topology T1 that is returned by the recursive call,
Lines 7–9 perform all possible replacements of the edge (u, v)
with some minimal path T2. The result of each replacement
is a Steiner tree T1∪T2, comprising the nodes and edges of T1

and T2, and it is added to T . Due to its simplicity, we omit
the description of the algorithm MinimalPaths(G, u, v) for
enumerating minimal-weight paths.

Theorem 5.1. The algorithm SteinerTrees(G,U) enu-
merates all Steiner trees of U in G in polynomial total time.

The running time can be improved to polynomial delay
by using coroutines, as done in [16]. Essentially, the same
algorithm applies also to undirected graphs. Thus, for both
Pr

min(S) and Pu
min(S), all patterns (L, C), for a given L, can

be enumerated with polynomial delay.
Patterns can be enumerated with polynomial delay also

in the case of Pr
all(S), Pu

all(S) and Pr
uca(S) by using enumera-

tion algorithms described in [16] and, in the case of Pr
uca(S),

combining an algorithm of [16] with the reduction of Pr
uca(S)

to Pr
all(S) that is described in Section 4.3. Note that the al-

gorithms for enumerating patterns of Pr
all(S), Pu

all(S) and
Pr

uca(S) do not assume that L has a fixed size (in contrast
to the enumeration algorithms for Pr

min(S) and Pu
min(S)).

There are also algorithms that enumerate patterns of Pr
all(S),

Pu
all(S) and Pr

uca(S) in increasing weight and with polynomial

delay, provided that the size of L is fixed. Therefore, if rank-
ing is based on proximity, one can use these algorithms in
order to generate query results in a ranked order. See [15] for
more details, including the notion of enumerating patterns
in an approximate order.

In summary, patterns can be enumerated quickly if there
are not too many of them. In any case, since the enumer-
ation is with polynomial delay (in the schema size), the
stream of enumerated patterns has a fast flow and the pat-
terns can be used to compute query answers as soon as they
are generated. Another advantage is the ability to translate
patterns to an XML query language, such as XQuery.

6. UNIVERSAL INTERCONNECTIONS
Interconnections semantics have been applied thus far in

an existential manner; that is, one evidence for interconnec-
tion is sufficient. It is also possible to apply interconnec-
tion semantics universally by requiring that there will be an
evidence of interconnection in every context implied by the
document. For example, in document D1 (Figure 1), objects
5 and 13 are Pr

all-interconnected, because there is a rooted
subtree of D1 (with object 2 as its root) that is uniquely la-
beled and reduced w.r.t. the set of objects {5, 13}. There is
also a second rooted subtree (with object 1 as its root) that
is reduced w.r.t. {5, 13}. In the context of the second sub-
tree, however, there is no evidence that objects 5 and 13 are
Pr

all-interconnected, because that subtree has two objects, 2
and 15, that are labeled with Department.

A universal application of an interconnection semantics
P depends on how we define the possible contexts of a set
O of objects in a document D. Formally, contextsD(O) is
a nonempty set of subtrees of D that are reduced w.r.t. O

(it is natural to consider only reduced subtrees as possible
contexts, since they have no redundant parts as far as the
set O is concerned). The exact definition of contextsD(O)
may depend on P. Intuitively, O is universally intercon-
nected if every subtree in contextsD(O) is an evidence of
interconnection. Formally, we say that O is universally P-
interconnected in D, denoted P |=∀,D O, if for every subtree
T ∈ contextsD(O), there is a pattern (l(O), C) ∈ P, such
that T is isomorphic to C. Note that this definition cannot
be satisfied vacuously, since contextsD(O) is nonempty.

In this section, we discuss universal interconnectivity un-
der the semantics Pr

all and Pu
all, and we use the following

definition of contextsD(O). For a rooted (respectively, undi-
rected) interconnection semantics P, we define contextsD(O)
to be the set of all rooted (respectively, undirected) sub-
trees of D that are reduced w.r.t. O. This definition implies
that O is universally Pr

all-interconnected (respectively, Pu
all-

interconnected) in D if and only if there is no rooted (respec-
tively, undirected) subtree T of D, such that T is reduced
w.r.t. O but not uniquely labeled. Hence, Pr

all, P
u
all and their

universal versions are all equivalent on tree documents (but
not on documents conforming to tree schemas).

Consider document D1 of Figure 1 and let L be the set
of labels {Name,Email}. The set {(5, 6), (19, 20), (11, 13)}
comprises all pairs of objects for L that are universally Pr

all-
interconnected. This set also comprises all pairs of objects
for L that are universally Pu

all-interconnected in D1. As an-
other example, objects 15 (a department) and object 10 (a
project) are not universally Pr

all-interconnected, because the
project belongs to more than one department.

The following important property is instrumental in devel-

TSEnumeration(D,L,P)

1: let τ be the minimal topology of L in SD

2: let V̂ be the set of all objects in D with labels from τ

3: Ê := {(o1, o2) | o1, o2 ∈ V̂ , (l(o1), l(o2)) is an edge in
τ and P |=∀,D {o1, o2}}

4: let Ĝ be the o-graph (V̂ , Ê)
5: let lτ be the root of τ

6: add to Ĝ a new object r that has a new label
7: add to Ĝ edges from r to all objects labeled with lτ
8: let D̂ be the subgraph of Ĝ that is induced by all the

objects that are reachable from the root r

9: enumerate all sets O s.t. l(O) = L and (L, τ) |=D̂ O

Figure 7: Enumerating results under universal semantics

oping efficient algorithms for testing universal interconnec-
tivity. A set of objects O is universally Pu

all-interconnected
if and only if every pair of objects from O is universally
Pu

all-interconnected. Interestingly, a similar result for uni-
versal Pr

all-interconnectivity holds only if the document is
acyclic. The next theorem shows that for the interconnec-
tion semantics Pr

all and Pu
all, universal interconnectivity is

more tractable than interconnectivity.

Theorem 6.1. The satisfiability problem is in polynomial
time under query-and-data complexity in the following two
cases. First, the semantics is universal Pu

all. Second, the
semantics is universal Pr

all and the document is acyclic.

Obviously, the proof uses the above property. However, it
also needs algorithms for testing universal interconnectivity
under Pr

all and Pu
all when O has only two objects. The details

of these algorithms are rather intricate and follow from a
close connection between our problems and the subgraph
homeomorphism problem [7, 13, 19]. Interestingly, if SD

is acyclic and D has n objects and m edges, then all the
pairs of objects that are universally Pr

all-interconnected can
be found in O(nm)-time. Thus, after this preprocessing,
Pr

all |=∀,D O can be tested in O(|O|2) time.
For documents that conform to tree schemas and for the

universal version of either Pr
all or Pu

all, all the answers to a
query L can be enumerated with polynomial delay. The al-
gorithm TSEnumeration(D, L,P) of Figure 7 enumerates
all subsets O of the objects of D, such that l(O) = L and
P |=∀,D O, where P is either Pr

all or Pu
all. It is assumed that

the derived schema SD is a tree. Furthermore, the labels of
L appear in SD (otherwise, the result is empty).

The algorithm is a reduction to the evaluation problem
under ordinary (i.e., existential) P-interconnectivity. The
first step of the algorithm is to create the minimal topol-
ogy τ of L in SD (based on the definition of a topology in
Section 5). Note that since SD is a tree, the minimal topol-

ogy is unique and can be found efficiently. Next, Ĝ is the
o-graph consisting of all objects o of D, such that the label
of o appears in τ . A pair of objects o1 and o2 is connected
by an edge in Ĝ if there is an edge between their labels in
τ and {o1, o2} is universally P-interconnected in D. The

document D̂ is obtained from Ĝ by adding a new root r

with a new label lr. There are edges from r to all the ob-
jects that have the root of τ as their label. If D̂ has objects
that are not reachable from the new root, then they are re-
moved. Line 9 enumerates all subsets O of the objects of

D is D is S is S is
problem gen. acyc. a tree acyc. a tree

The set of objects O has a fixed size

Pr
all

(S) |=D O NPc NPc P P P
Pu

all
(S) |=D O NPc NPc P NPc P

Pr
min

(S) |=D O P P P P P
Pu

min
(S) |=D O P P P P P

Pr
uca(S) |=D O N/A N/A N/A P P

Pr
all

(S) |=∀,D O coNPc P P P P
Pu

all
(S) |=∀,D O P P P P P

The set of objects O has an unbounded size

Pr
all

(S) |=D O NPc NPc P NPc P
Pu

all
(S) |=D O NPc NPc P NPc P

Pr
min

(S) |=D O Π
p
2

Π
p
2

coNPc Π
p
2

P

Pu
min

(S) |=D O Π
p
2

Π
p
2

coNPc Π
p
2

P

Pr
uca(S) |=D O N/A N/A N/A NPc P

Pr
all

(S) |=∀,D O coNPc P P P P
Pu

all
(S) |=∀,D O P P P P P

Table 1: Complexity of the satisfiability problem

D̂, such that l(O) = L and O is interconnected according to
the pattern (L, τ).

In fact, the algorithm is correct not just for Pr
all and Pu

all,
but also for other interconnection semantics, provided that
some conditions are satisfied. Consequently, we get the fol-
lowing theorem.

Theorem 6.2. Consider a query L and a document D,
such that SD is a tree. Suppose that P is either a rooted or
an undirected interconnection semantics that contains a pat-
tern (L, C), such that C ⊆ SD. All the answers to the query
L, under universal P-interconnectivity, can be enumerated
with polynomial delay.

7. COMPLEXITY
Table 1 summarizes the complexity of the satisfiability

problem for the different types of derived interconnection
semantics. The input consists of a schema S, a document
D that conforms to S and a subset O of the objects of D.
The top part of Table 1 gives the data complexity and the
bottom part—the query-and-data complexity. Note that the
problems that are in Πp

2
are also both NP-hard and coNP-

hard (and in Σp
2
). Proofs of the intractability results are

given in [14]. The tractable cases were discussed earlier.
For the derived interconnection semantics considered in

this paper, the data complexity of the evaluation problem
is similar to that of the corresponding satisfiability prob-
lem. That is, when the satisfiability problem is in polyno-
mial time, then so is the corresponding evaluation problem.
When the satisfiability problem is intractable, then so is the
corresponding non-emptiness problem, and both problems
are in the same complexity class.

If the schema is a tree, the query-and-data complexity
of the evaluation problem is in polynomial delay. However,
if the schema is not a tree, then the evaluation problem
is intractable, under query-and-data complexity, for all the
types of interconnection semantics.

8. CONCLUSION AND RELATED WORK
We have presented a framework for deciding when objects

of an XML document are semantically related. Our frame-

work includes a wide spectrum of interconnection semantics
that apply to XML documents with ID references. Earlier
work [4, 5, 17] considered only tree documents. Another ad-
vantage of our approach is using the schema for deriving in-
terconnection semantics. Note that the derived schema can
be used if none is given explicitly. The solution proposed
in [17] for avoiding incorrect answers in tree documents is
similar to our Pr

uca semantics. However, in [17] only the
document is taken into account and hence, their approach
cannot detect missing information. The work of [18] on au-
tomatically inferring the structure of documents can also be
modeled in our framework, under the reasonable assump-
tion that a subtree of a document indicates a meaningful
relationship only if it is uniquely labeled. Future work in-
cludes experimentation with our semantics and algorithms,
and incorporation of information-retrieval techniques.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system

for keyword-based search over relational databases. In ICDE,
pages 5–16, 2002.

[2] M. Barg and R. Wong. Structural proximity searching for large
collections of semi-structured data. In CIKM, pages 175–182,
2001.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using BANKS. In ICDE, pages 431–440, 2002.

[4] S. Cohen, Y. Kanza, J. Mamou, and Y. Sagiv. XSEarch: a
semantic search engine for XML. In VLDB, pages 45–56, 2003.

[5] S. Cohen, Y. Kanza, and Y. Sagiv. Generating relations from
XML documents. In ICDT, pages 285–299, 2003.

[6] S. Dreyfus and R. Wagner. The Steiner problem in graphs.
Networks, 1:195–207, 1972.

[7] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph
homeomorphism problem. Theoretical Computer Science,
10:11–121, 1980.

[8] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity search in databases. In VLDB,
pages 26–37, 1998.

[9] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword
search in relational databases. In VLDB, pages 670–681, 2002.

[10] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
proximity search on XML graphs. In ICDE, pages 367–378,
2003.

[11] F. Hwang, D. Richards, and P. Winter. The Steiner Tree
Problem, volume 53 of Annals of Discrete Mathematics.
North-Holland, 1992.

[12] D. Johnson, M. Yannakakis, and C. Papadimitriou. On
generating all maximal independent sets. Information
Processing Letters, 27:119–123, March 1988.

[13] R. Karp. On the complexity of combinatorial problems.
Networks, 5:44–68, 1975.

[14] B. Kimelfeld. Interconnection semantics for XML. Master’s
thesis, The Hebrew University of Jerusalem, 2004. Available at
the author’s home page (http://www.cs.huji.ac.il/~bennyk).

[15] B. Kimelfeld and Y. Sagiv. Efficient engines for keyword
proximity search. In WebDB, pages 67–72, 2005.

[16] B. Kimelfeld and Y. Sagiv. Efficiently enumerating results of
keyword search. In DBPL, 2005.

[17] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In
VLDB, 2004.

[18] A. Rajaraman and J. Ullman. Querying websites using compact
skeletons. In PODS, pages 16–27, 2001.

[19] N. Robertson and P. Seymour. Graph minors. XIII. The
disjoint paths problem. Journal of Combinatorial Theory
Series B, 63(1):65–110, 1995.

[20] M. Y. Vardi. The complexity of relational query languages. In
STOC, pages 137–146, 1982.

[21] M. Yannakakis. Algorithms for acyclic database schemas. In
VLDB, pages 82–94, 1981.

