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Abstract

Children face the problem of extending a limited spatial lex-
icon to potentially infinite spatial situations. Previous work
has examined how spatial semantic categories may be formed
in child development, but it is unclear how children extend
these categories to novel situations over the developmental
time course. Drawing on cognitive linguistic theories of cate-
gory extension, we present a framework that models the incre-
mental extension of spatial relational words to novel situations
through time. We describe a longitudinal dataset and com-
putational analyses for investigating the extension of spatial
word meanings in a developmental setting. Our preliminary
results suggest that the formation of spatial categories takes
place through an exemplar-based process of chaining, similar
to the process underlying the growth of linguistic categories in
history. Our work offers opportunities to explore the connec-
tion between ontogeny and phylogeny in the process of word
meaning extension.
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Introduction
Spatial cognition is fundamental to survival for many species.
One feature of spatial cognition unique to humans is our abil-
ity to describe space using language. While spatial language
is limited by a finite lexicon (Landau & Jackendoff, 1993), the
continuity of space entails a potentially infinite set of spatial
situations. This tension of extending a finite spatial lexicon to
unbounded novel spatial situations is prominent in children’s
language development, since young learners do not possess
adult-like spatial language yet have the need to communicate
novel spatial scenes. Here we explore in a formal framework
how children incrementally extend spatial categories to novel
spatial situations over the developmental time course.

In English and many other languages, spatial relations are
commonly expressed in a closed class of words known as spa-
tial adpositions (e.g., on and in). A salient property of these
spatial categories is that they can extend to describe a diverse
set of scenes. For instance, English on may be used to de-
scribe scenes such as picture on wall, cup on table, or spider
on ceiling. Previous research has suggested that the forma-
tion of spatial semantic categories such as on and in relies
on the linguistic input that children receive in their environ-
ment (Bowerman & Choi, 2003; Levinson, Meira, Language,
& Group, 2003). Existing work has also shown that spatial
categories can be learned from stored exemplars of spatial
word usages (Bowerman & Choi, 2001) or co-occurrences

with verb predicates (Johannes, Wilson, & Landau, 2016;
Landau, 2018). We extend these studies to examine how chil-
dren incrementally adapt spatial categories toward novel situ-
ations when the mappings between the spatial words and the
novel spatial scenes have not yet been established.

Our starting point is the view by Vygotsky (1962) sug-
gesting that one strategy in children’s conceptual formation
is through “chain complexes”. In a chain complex, a new ob-
ject is added to a category if it is similar to existing objects
in the category, such that this new member, just like the other
pre-existing members, acts as a “magnet” for a series of other
objects (Vygotsky, 1962). This idea of chaining has been
independently discussed in cognitive linguistics as a mecha-
nism for linguistic category extension, best known as radial
categories (Lakoff, 1987). Starting from a core meaning or
sense, a category extends by adding novel referents related to
existing members, and hence forming a chain-like structure
over time. As a classic example, Brugman and Lakoff (1988)
analyzed how the spatial word over may extend to a variety
of scenarios through the process of chaining. We believe that
chaining might explain how spatial categories like on and in
get extended incrementally to express a diverse set of spa-
tial scenes. To our knowledge no existing work has formally
explored and evaluated this idea in the formation of spatial
semantic categories through childhood.

We present a computational framework that formulates the
formation of spatial semantic categories as chaining. At a
specific time during the developmental time course, we model
the categorization of a novel spatial situation based on its sim-
ilarity with existing exemplars of spatial words in semantic
space; a spatial word is chosen when the situation is more
similar to its category members than to other competing cate-
gories. Throughout the time course, spatial categories are up-
dated incrementally with exemplars observed from children’s
linguistic input. Figure 1 illustrates our framework.

Previous work has applied computational models of chain-
ing to predict the historical growth of semantic and gram-
matical categories (Xu, Regier, & Malt, 2016; Ramiro, Srini-
vasan, Malt, & Xu, 2018; Habibi, Kemp, & Xu, 2020) and
children’s overextension in a cross-sectional setting (Ferreira
Pinto Jr. & Xu, 2019). In these cases, it has been suggested
that the process of chaining can be best understood as an ex-
emplar model of categorization (Nosofsky, 1986). Our work
extends these studies by examining the relation of chaining



Time = t-1

you might have a crown
in the other room

Time = t

Figure 1: Illustration of chaining in a developmental setting: at time t−1, an adult produces an utterance describing the spatial
situation crown in room, which the child stores as an exemplar for the category in; at a future time t when the child categorizes
a novel spatial situation circle in triangle, stored exemplars similar to the situation attract it to the category in. Each purple dot
represents a stored exemplar for a spatial situation observed in the past, and each brown dot represents a novel spatial situation.

and children’s spatial language development. Our proposal
is consistent with recent work suggesting that language ac-
quisition relies on an exemplar-based mechanism as opposed
to stored abstractions (Ambridge, 2020). In our analyses, we
contrast an exemplar model with a prototype model that ex-
tends spatial categories using stored abstractions for the cat-
egories. Our work also relates to other computational studies
that learn from labelled data to classify spatial situations with
spatial words (e.g., Regier, 1996; Golland, Liang, & Klein,
2010; Xu & Kemp, 2010; Beekhuizen, Fazly, & Stevenson,
2014), but it differs critically in that it captures the incremen-
tal process in which spatial words extend to novel situations
as they emerge in child development.

Computational framework

Our computational framework involves two main compo-
nents: 1) a class of models that capture the process of chain-
ing and category extension, and 2) a mechanism for updating
the models under new observations of spatial word usage. We
assume a finite spatial lexicon w ∈W and model a spatial sit-
uation s as a real-valued vector in some semantic space S.

Models of chaining

We formulate the extension of spatial words to novel situ-
ations as probabilistic inference over a finite set of known
spatial words. At a future time t, the model has access to pre-
viously observed usages of spatial words. Let xi = (wi,si) be
the i-th word-situation pair, and suppose the model has ac-
cess to n > 0 such pairs prior to time t. Further suppose a
novel situation s∗ has not been observed in x1, ...,xn. Then,
the problem can be formulated as selecting the most likely w
describing s∗ incrementally at each future time t, given past

observations prior to t:

argmax
w

p(w|s∗,x1,x2, ...,xn) (1)

To model this process, we draw on recent work of chain-
ing models (Ramiro et al., 2018; Habibi et al., 2020; Grewal
& Xu, 2020) that are based on formal models of categoriza-
tion (Reed, 1972; Nosofsky, 1986; Ashby & Alfonso-Reese,
1995). In particular, this class of models can be derived by
applying Bayes rule to Equation 1:

p(w|s∗,x1, ...,xn) ∝ p(s∗|w,x1, ...,xn)p(w|x1, ...,xn) (2)

Here the left-hand side is the category posterior, and terms on
the right-hand side correspond to the likelihood and the cate-
gory prior, respectively. Intuitively, Equation 2 says the most
likely word can be inferred by computing the likelihood of s∗

given w and stored exemplars, in joint consideration with the
prior probability of using w.

Exemplar model. Exemplar models of categorization as-
sign category labels to stimuli by computing their similarity
with the exemplars of a category (Nosofsky, 1986). The ex-
emplar model can be reformulated in terms of Equation 2
when the likelihood is given by a specific kernel density es-
timator (Ashby & Alfonso-Reese, 1995), such that the like-
lihood of s∗ given w is estimated using a weighted sum of
distances between s∗ and previous situations described by w:

p(s∗|w,x1, ...,xn) =
1

nw
∑

i:wi=w
Kh(s∗− si) (3)

Here K(·) is the kernel function and h is its kernel width.
We drew on the generalized context model with a Gaussian
similarity function (Nosofsky, 1986), which corresponds to a



Gaussian kernel function:

Kh(s∗− si) ∝
1

hm exp(−d(s∗,si)
2

2h2 ) (4)

Here d(·, ·) is the Euclidean distance between two situations
of dimension m. In the original general context model, h cor-
responds to a sensitivity parameter that determines the degree
to which the model generalizes from exemplars: a large h im-
plies broad generalization, and vice versa. Originally, h is the
same for all categories. We also consider a variation where h
differs by category, following related work in machine learn-
ing (John & Langley, 1995). We will refer to the original
model as the exemplar approach, and the variation as the ex-
tended exemplar approach. In both cases, the parameter h is
estimated from previous observations.

Prototype model. An alternative to exemplar-based chain-
ing models is based on the central tendency of a category,
specifically the category prototypes. Prototype models of
categorization assign category labels to stimuli by comput-
ing their distances from category prototypes in some feature
space (Reed, 1972). This can be reformulated in terms of
Equation 2 when we assume the category prior is uniform and
the likelihood is a certain Gaussian (Ashby & Alfonso-Reese,
1995). Following established work in machine learning (John
& Langley, 1995), we considered a variation of classic pro-
totype models such that the prior is not uniform (see Equa-
tion 7). This yields a Gaussian likelihood for each spatial
word w:

p(s∗|w,x1, ...,xn) ∝
1

σm
w

exp(−d(s∗,µw)
2

2σ2
w

) (5)

where σw is the standard deviation of the Gaussian, and
µw is the prototype of the category. Following previous
work (Reed, 1972; Habibi et al., 2020), we also define µw
as the average of exemplar situations described by w:

µw =
1

nw
∑

i:wi=w
si (6)

Similar to h in Equation 4, σw determines the degree to which
the model generalizes from the category prototype. Like the
exemplar models, σw was estimated from previous observa-
tions. We will refer to this model as the prototype approach.

Category prior and baseline model. Similar to existing
work (Beekhuizen et al., 2014; Ferreira Pinto Jr. & Xu, 2021;
Habibi et al., 2020; Grewal & Xu, 2020), we define the prior
distribution based on word frequency. Specifically, we com-
pute the prior probability of word w as the proportion of its
occurrences over past observations:

p(w|x1, ...,xn) =
nw

n
(7)

Here nw = ∑
n
i=11(wi = w) is the number of past observations

described by w, and 1(·) is the indicator function.
For comparison with our models of chaining, we consid-

ered a simple baseline model where category extension is

only based on the frequency of stored usages of spatial words.
Specifically, this baseline models category extension for any
novel situation s∗ by simply selecting the most likely spatial
word w computed using Equation 7. We will refer to this
model as the frequency baseline.

Model update
Over time, more usages of spatial words are observed, which
need to be incrementally integrated into the chaining models
we described. Following previous exemplar models (Estes,
1986; Ashby & Alfonso-Reese, 1995), we assumed each new
observation x∗i is stored in memory with a fixed probability
p, independently of other exemplars. Thus the number of
new exemplars stored at emerging time t, denoted k, follows
a binomial distribution:

k ∼ B(c, p) (8)

When a novel scene s∗ needs to be referred to at t, the model
simply computes Equation 1 using the updated list of stored
exemplars x1, ...,xn,xn+1, ...,nn+k. Although c− k observa-
tions are not stored in memory, we hypothesized that they still
potentially influence future inference to some extent (e.g., af-
fecting the kernel width parameter).

Data
In our computational formulation, each instance of observa-
tion or extension made by a child at a specific time t is a word-
situation pair, (w,s)∈W×S. To obtain these instances, we 1)
selected a subset of common spatial words W from the litera-
ture, 2) collected usages of these words and the co-occurring
figure ( f ) and ground (g) objects from time-stamped text data,
and 3) used semantic representation of these objects to con-
struct a semantic space S.

Spatial words. We focused on two most common spatial
prepositions, in and on, as they are among the earliest spa-
tial categories children encounter (Baillargeon, Needham, &
DeVos, 1992; Casasola & Cohen, 2002) and acquire (Clark,
1973; Bowerman & Choi, 2003). We treated each preposition
as a relational predicate, such that it takes two arguments: a
figure object (e.g., cup) and a ground object (e.g., table).

Objects. To obtain naturalistic usages of spatial words,
we collected their co-occurrence with figure and ground ob-
jects (i.e., nouns). We grounded our data in early linguis-
tic environments using North American English data from
CHILDES (MacWhinney, 2000), a large collection of tran-
scribed child speech (CS) and child-directed speech (CDS).
The collection includes 6,647 conversations involving 690
children, each containing a sequence of sentences and a
record of the age of the child involved. Each sentence is la-
belled by the identity of the speaker and is annotated with its
dependency parse tree and part of speech tags.

For a spatial word w ∈W in a sentence, we set f as the
rightmost noun to the left of w, and we set g as the child of w if
it is a noun, or otherwise we selected the leftmost noun to the
right of w. We discarded cases where at least one of the two



Sentence Spatial word Figure object Ground object
do you have a scratch on your arm on scratch arm
because she always put the nipple in into her mouth in nipple mouth
you help me put the clothes in the dryer in clothes dryer
I want bread and butter and jelly on my bread on jelly bread
she has spider on her arm on spider arm
having sugar in her meat in sugar meat

Table 1: Examples of word-figure-ground triples extracted from CHILDES. The top three sentences are examples of child-
directed speech, and the bottom three are examples of child speech.

objects is missing. We further filtered the objects to exclude
idioms (e.g., in case, on time) using multi-word entries from
the Historical Thesaurus of English (Kay, Roberts, Samuels,
& Wotherspoon, 2017). All entities were lemmatized by the
WordNet lemmatizer in NLTK (Loper & Bird, 2002). Across
all corpora, this provided us with 23,012 unique triples of
(w, f ,g) from CDS and 6,296 unique triples from CS.

Visual semantic space. We approximated the semantic
representation of situation s described by w using vector rep-
resentations of the figure and ground objects that co-occur
with w. Since the geometry of the objects are relevant to the
semantics of spatial words to some extent (Landau & Jack-
endoff, 1993), we used visual embeddings from a convolution
neural network, VGG-19 (Simonyan & Zisserman, 2015),
which is pretrained on the ImageNet database (Deng et al.,
2009). We mapped each object to a 4096-dimension vector
following procedures in existing work (Ferreira Pinto Jr. &
Xu, 2021). To obtain a single vector for situation s, we con-
catenated the vectors of f and g; the semantic representation
of each situation s is thus m = 8182-dimensional. In Discus-
sion, we outline the merits and limitations of this approach.

We intersected our set of (w, f ,g) triples with ImageNet
which provides images for sets of synonyms (synsets) based
on WordNet (Fellbaum, 1998). Specifically, we only kept
triples where the figure and ground exist in WordNet and
the majority of their synsets are nouns. This yielded 3,886
unique word-situation pairs from CDS and 975 unique pairs
from CS. Table 1 shows examples of the extracted triples af-
ter intersection. Note that our concatenation method implies
all situations sharing the same figure and ground (e.g., hand
on mouth and hand in mouth) had the same representation s;
these situations covered 3.2% (n = 112) of the CDS pairs and
0.62% (n = 6) of the CS pairs.

Results
We first describe computational analyses to predict the ex-
tension of spatial words observed in child language develop-
ment. We then interpret the results of our analyses.

Computational analyses. Assuming all samples of spatial
word usages are drawn from the same real-world distribution,
we constructed an early linguistic environment from which
a child observes examples of spatial word usage by pooling
word-situation pairs across CDS in CHILDES. We then ob-
tained 6 sets of data from CS, where 4 sets corresponded to in-

dividuals and 2 sets were pooled from multiple children to ap-
proximate the extended, fine-grained developmental trajecto-
ries. In the CDS set and in each CS set, every word-situation
pair was time-stamped based on its earliest occurrence in the
set. Pairs in CS sets were removed if they occurred earlier in
the CDS set, since our analyses focused on children’s exten-
sion of spatial categories to novel situations. Note although
word-situation pairs are unique in each set, they may still par-
tially overlap (e.g., pillow on bed and jammies on bed).

Over the developmental time course, each of our models
was evaluated based on its ability to predict the extension of
spatial words in CS (child production) given observations in
CDS (child input). At time t, by maintaining a list of stored
exemplars up to t, we evaluated every model as follows: if a
data point (w,s∗) appears at t, we used the stored exemplars
and s∗ as inputs to compute a prediction w′ from Equation 1,
which was compared against w. Then, we updated the stored
exemplars following a simplified version of Equation 8: if c
observations were made at t, we randomly added a fixed 80%
of them to the list.1 We repeated these steps over the entire
developmental time course; the length of the time course was
determined by the CS set being used. Due to the randomness
in storing exemplars, we repeated the procedure 10 times.

To predict spatial word choice at each time t (Equation 1),
we also need to estimate model parameters using observations
prior to time t. For the two exemplar models, we estimate the
kernel width h by maximizing the following log likelihood
function:

logL(h) = ∑
(w,s∗)∈Xt

log p(w|s∗,x1, ...,xn;h) (9)

Here Xt is the set of discarded observations complemen-
tary to the exemplars x1, ...,xn stored prior to time t. Since
h > 0, we optimized with respect to the log transforma-
tion of h, using mini-batch gradient descent and the Adam
optimizer (Kingma & Ba, 2015) with the following set-
tings: batch size N = 64, learning rate α = 0.01, decay rates
(β1,β2) = (0.9,0.999). For tractable computation, we ap-
plied early stopping after 20 epochs, and the parameters were
updated only if the total number of stored exemplars changed
by 100 since the last estimate. For the prototype approach,
we estimated σw using the same method.

1We chose 80% to ensure the model has a sufficient number of
exemplars to use for prediction.



Child data Frequency baseline Exemplar Exemplar extended Prototype N
Pooled 0.629 0.737 (0.009) 0.748 (0.007) 0.672 (0.008) 975
Target Child (HSLLD) 0.651 0.712 (0.015) 0.714 (0.011) 0.644 (0.013) 146
Nina (Suppes) 0.517 0.697 (0.016) 0.710 (0.013) 0.646 (0.013) 145
Abe (Kuczaj) 0.538 0.740 (0.018) 0.762 (0.016) 0.635 (0.011) 91
Adam (Brown) 0.583 0.781 (0.015) 0.771 (0.011) 0.688 (0.009) 72
Mark (MacWhinney) 0.583 0.697 (0.025) 0.699 (0.021) 0.611 (0.022) 72

Table 2: Summary of model predictive accuracy. The first column shows the name of each child and the relevant corpus in
brackets. The last columns shows the size of each CS set. Each other cell shows the average accuracy and its standard deviation
over 10 runs of experiment; bold font indicates the best performing model for each instance of child data.

Figure 2: Summary of model predictive accuracy over time.
Each point at age t shows the accuracy of the model for test
cases between the t−0.5 and t, averaged over 10 runs of our
experiment. Ribbons indicate standard deviation.

Interpretation of results. Table 2 summarizes the perfor-
mance of our models. Across all CS sets, we observe that the
exemplar models outperform the frequency baseline and the
prototype alternative. This is consistent with previous work
which finds the exemplar model of chaining to best predict
how numeral classifiers and adjectives apply to novel nouns
over time (Habibi et al., 2020; Grewal & Xu, 2020). We hy-
pothesize the inferior performance of our prototype approach
is because a single prototype is unable to capture polysemous
usages of spatial words. For example, the spatial word on in
cup on table describes support, but it describes surface attach-
ment in picture on wall; a single prototype is unlikely to be
prototypical for both support and attachment. However, un-
der an exemplar model, separate clusters of exemplars enable
a category to occupy distinct subsets of the semantic space,
thus providing a more fine-grained representation of the cate-
gory. We also observe the extended exemplar model tends to
provide more accurate predictions than the original version,
but the difference is marginal.

Figure 2 provides a detailed temporal perspective on the

Figure 3: Changes in the value of optimal kernel parameters
over time. Values for h were from the exemplar model, and
those for hin, hon were from the extended exemplar model.
Each point is an average kernel value over 10 runs of our
experiments, which was estimated at a certain age of the child
(measured in days).

results summarized in Table 2. There is some degree of ran-
dom fluctuation in model performance, which seems to be
the result of small sample sizes (see Table 2) as the fluc-
tuations are stronger in the 3 CS sets with fewer test cases
than the others. Nonetheless, in both pooled CS sets and in-
dividual cases, we observe the patterns we saw for the aggre-
gate results—with the exemplar model best accounts for the
data—hold over time. This provides evidence that children’s
formation of spatial relational categories can be explained by
an exemplar-based process of chaining.

Since the kernel width of our exemplar models were re-
estimated over time, we assess the temporal trend in how the
models generalize from stored exemplars. Figure 3 shows
that the kernel width became smaller over time. To quan-
tify this trend, we fitted linear mixed models that regress ker-
nel widths on instants of the developmental time course t (in
days); for each CS set, the model considers a random inter-
cept for each run of our experiments to control for multiple



measurements. Table 3 summarizes the results for the exem-
plar model (and the results for the extended exemplar model
were similar). We observe that across all CS sets, the regres-
sion coefficient βtime is significantly negative, which suggests
that the model learned not to over-generalize over time, mim-
icking the process in which children learn from overextension
(large h) to narrowing (small h) in the usage of spatial words
such as in, on, and off (Clark, 1978; Bowerman, 1978).

Child data βtime p N
Pooled -1.1e-5 < 0.001 3,990
Target Child (HSLLD) -5e-6 < 0.001 940
Nina (Suppes) -4.5e-5 < 0.001 450
Abe (Kuczaj) -1e-5 < 0.001 650
Adam (Brown) -1e-5 < 0.001 390
Mark (Macwhinney) -1.2e-5 < 0.001 260

Table 3: Regression statistics between kernel values and time.

Discussion and conclusion
The continuity of space presents children with the problem of
extending a limited spatial lexicon to an infinite set of spatial
situations. Synthesizing work on spatial semantic categories
and category extension, we have presented a framework of
chaining based on stored exemplars that captures the incre-
mental extension of spatial words to novel spatial situations.
To test our models of chaining, we reconstructed develop-
mental trajectories using linguistic data from CHILDES and
we described a method to construct the semantic representa-
tions of observed exemplars. Our results provide preliminary
evidence that the formation of early spatial categories takes
place through a process of chaining that resembles the histor-
ical process of category growth.

In our work, we represented spatial situations using visual
embeddings for the figure and ground objects involved. The
motivation for our construction scheme was that it facilitates
the link between linguistic signals and visual representations.
In practice, it allowed us to approximate spatial situations
in a child’s environment directly using linguistic data from
CHILDES. In theory, we only had to assume the child under-
stands the visual properties of the figure and ground objects
in usages of spatial words, and we did not have to assume
the situation was visible when they were observing spatial
word usages. Spatial situations described by spatial words
are not always visible; for example, consider the exemplar
from CHILDES, you might have a crown in the other room.

However, since our vector representation of spatial situ-
ations was a concatenation of object embeddings, the vec-
tor for the situation did not encode any relation between the
two objects. This stands in contrast with previous compu-
tational work where spatial relations were encoded in repre-
sentations of spatial situations (Regier, 1996; Xu & Kemp,
2010; Beekhuizen et al., 2014). One consequence of figure-
ground independence is any pair of distinct situations that
happen to contain the same figure and ground would be rep-

resented identically by our approximation. For example, let
vhand ,vmouth be the visual embeddings for hand and mouth,
respectively, then hand on mouth and hand in mouth will be
encoded identically as (vhand ,vmouth). Although they seem
relatively rare at least for in and on (see Data), it was im-
possible for our models to predict all such CS utterances cor-
rectly since they only had information on figure and ground.
In future work, we would like to test if our models can be
improved by using exemplars of full visual scenes beyond in-
dependent objects.

Here we focused on analyzing spatial adpositions and their
spatial semantic categories. Thus, we sought to exclude non-
spatial usages of these adpositions from our analyses by in-
tersecting the extracted figure and ground objects with Ima-
geNet. Although this excluded non-spatial usages where the
objects are not physical (e.g., dream in mind), it still left us
with false negatives where the objects are physical (e.g., book
on animal, where on means about). In future work, one way
to address this limitation is to further intersect our dataset
with figure-ground-preposition triples grounded in real spa-
tial situations, such as annotated naturalistic images. Another
potential future direction would be to extend our framework
to non-spatial usages of adpositions, where our current vi-
sual embeddings would likely be insufficient for modelling
abstract usages.

Our computational framework is inspired by previous com-
putational formalisms of chaining, but it differs from previ-
ous approaches in two main aspects. First, our framework
formalizes the process of chaining at the agent level over a
developmental trajectory, whereas previous frameworks have
either formalized chaining as a (population-level) historical
process (Ramiro et al., 2018; Habibi et al., 2020; Grewal &
Xu, 2020) or not yet described how chaining is updated by
linguistic inputs over the developmental time course (Ferreira
Pinto Jr. & Xu, 2019). Second, our framework extends pre-
vious work by enabling chaining models to vary the degree
to which they generalize from exemplars across different cat-
egories. We might expect children to overextend or under-
extend unfamiliar words more often than familiar ones. This
extension offers the possibility to examine varying degrees of
overextension and underextension across different words in
the framework of chaining.
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