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Characterizing global statistical
significance of spatiotemporal hot spots
in magnetoencephalography/
electroencephalography source space via
excursion algorithms
Yang Xu,a*† Gustavo P. Sudre,a Wei Wang,b
Douglas J. Weberb and Robert E. Kassa

Identifying brain regions with high differential response under multiple experimental conditions is a fundamen-
tal goal of functional imaging. In many studies, regions of interest (ROIs) are not determined a priori but are
instead discovered from the data, a process that requires care because of the great potential for false discovery.
An additional challenge is that magnetoencephalography/electroencephalography sensor signals are very noisy,
and brain source images are usually produced by averaging sensor signals across trials. As a consequence, for
a given subject, there is only one source data vector for each condition, making it impossible to apply testing
methods such as analysis of variance. We solve these problems in several steps. (1) To obtain within-condition
uncertainty, we apply the bootstrap across trials, producing many bootstrap source images. To discover ‘hot
spots’ in space and time that could become ROIs, (2) we find source locations where likelihood ratio statistics
take unusually large values. We are not interested in isolated brain locations where a test statistic might happen
to be large. Instead, (3) we apply a clustering algorithm to identify sources that are contiguous in space and
time where the test statistic takes an ‘excursion’ above some threshold. Having identified possible spatiotem-
poral ROIs, (4) we evaluate global statistical significance of ROIs by using a permutation test. After these
steps, we check performance via simulation, and then illustrate their application in a magnetoencephalography
study of four-direction center-out wrist movement, showing that this approach identifies statistically significant
spatiotemporal ROIs in the motor and visual cortices of individual subjects. Copyright © 2011 John Wiley &
Sons, Ltd.
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1. Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) are non-invasive techniques that
record effects of brain activity with millisecond precision. They provide brain activity images when
signals recorded from sensors are mapped to activation levels on a grid of possible source locations
in selected parts of the brain. There are typically many more source locations than sensor signals,
which makes source localization an ill-posed inverse problem. Common methods of solving this inverse
problem apply L1 and L2 constrained linear regression [1, 2]. MEG and EEG experiments typically
involve two or more alternative experimental conditions, with the goal of identifying brain regions
having strong differential activation levels. Such ‘hot spots’ of differential activity are often called
regions of interest (ROIs). Sometimes, ROIs are determined a priori from substantive scientific hypothe-
ses, but it is often desirable to identify them empirically. Because there are usually hundreds or thousands
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of possible source locations over hundreds or thousands of time points in MEG and EEG, there are
substantial opportunities to find spurious ROIs because of chance alone. This paper presents a new
method of discovering ROIs in space and time simultaneously by using an excursion algorithm via spa-
tiotemporal clustering, and global significance tests (p-values) for discovered ROIs. The method may be
applied to source images of individual subjects.

There are three main components of our work. First, because MEG and EEG signals are extremely
noisy, source localization requires averaging across many experimental trials. With only a single trial in
each experimental condition, the usual methods of comparing responses across treatments (analysis of
variance (ANOVA) or multivariate analysis of variance) cannot be applied in source space. To overcome
this limitation, we apply the bootstrap [3], repeatedly resampling from the trials in the sensor space,
thereby generating multiple images that reflect variability of the source localization procedure. Second,
complex brain activities during continuous recording yield high variability in brain modulations across
space and time. To become candidate ROIs, hot spots of differential rates of activity should consist of
many source locations that are contiguous in space and time. We apply a likelihood ratio test to the boot-
strapped images, computing the test statistic at every location in both space and time, and then threshold
the test statistics and cluster the results in terms of both test statistic values and space–time coordinates.
As we show, this identifies candidate regions of modulated activity. Finally, to overcome problems with
multiple comparisons, we apply a permutation test, repeatedly permuting the resampled images across
conditions while computing the likelihood ratio test and performing clustering for each set of permuted
images. This provides a valid global p-value. Figure 1 summarizes the methodology in six steps. For
the clustering step, we apply Bayesian hierarchical clustering (BHC) [4] because, from our previous
experience, we have found it an effective method that automatically determines the number of clusters
to examine.

In Section 2, we describe our procedures. In Section 3, we evaluate our algorithms in simulation stud-
ies and then illustrate the methodology in the context of a MEG study of hand movement, in which
brain activities of human subjects were recorded while they performed a visually cued four-direction
center-out wrist movement task [5, 6]. In this case, we had four alternative experimental conditions cor-
responding to four movement directions, and the goal was to identify regions on the cortical surface
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Figure 1. Flow diagram of methodology. The data for condition c consist of M sensor signals at each of T time
points across R replications (trials). In step 1, we average the sensor signals across trials and then localize (see
text) to N sources in the brain. Step 2 repeats this process for bootstrapped set of trials. At step 3, we perform
hypothesis tests at every source and time point to test the null hypothesis that the mean source activities are
equal across conditions. We threshold these test statistics at step 4 and then identify spatiotemporal neighbors as

clusters, representing potential ‘hot spots’ at step 5. We carry out a global significance test in step 6.
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containing neural activity exhibiting differential modulations across the movement directions. By using
the discovered ROI, we show highly distinguishable patterns among the directions. In Section 4, we
discuss further issues and draw conclusions.

2. Methods

Suppose we have MEG or EEG recordings from M sensors at T time points for R trials under C con-
ditions. If we index time by t D 1; :::; T; trial by r D 1; :::; R, condition by c D 1; :::; C and let Ycr be a
M � T matrix representing recordings at trial r under condition c, then the ensemble recordings Y can
be represented as follows:

YD

0
BBB@

Y11 � � � Y1R
Y21 � � � Y2R
:::

: : :
:::

YC1 � � � YCR

1
CCCA : (1)

To map these sensor recordings to the cortical surface, MEG source localization algorithms such as min-
imum current estimate (MCE) [2] typically average sensor signals across many trials and then solve the
inverse problem via constrained optimization

Yc D AXc CE (2)

where Yc D 1
R

PR
rD1 Ycr (i.e., row averages of Y in Equation (1)) is the sensor trial mean under condi-

tion c, A is specified by the forward model from the quasi-static solution to Maxwell’s equations [1], Xc
(N � T , assuming there are N sources indexed by n) is the transformed source currents on the cortical
surface where each row in Xc is the time course of a source, and E is the additive noise. Because the
number of sources far exceeds that of the sensors, the inverse problem is ill posed [1] (it is a p � n

problem). MCE offers a sparse solution to the inverse problem via weighted L1 regularization, effec-
tively assuming that there are only a few sources that are activated at one time point (e.g., an image of
the cortex with very few hot spots).

Solving the inverse problem based on averaged trials yields only a single trial under each experi-
mental condition; hence, it is difficult to carry out statistical analysis on these sparse data. To resolve this
issue, we use bootstrap to generate multiple samples of source images under each condition. We utilize
these bootstrap samples as our data and apply hypothesis tests in the brain source space. We then apply
an excursion algorithm to find statistically significant and nearby spatiotemporal points (hot spots)—it
turns out that the excursion can be implemented in terms of a clustering algorithm. Finally, we use a
permutation test to evaluate the significance of these ROIs. In the following sections, we describe each
of these procedures in detail.

2.1. Bootstrapped source images

To produce multiple ‘copies’ of trials in the source space, we resample the trials under condition c by B
times. For bootstrap sample b with b D 1; :::; B , we then let Ycrb be the resulting sensor signal vector,
take Ycb D 1

R

PR
rD1 Ycrb and write

Ycb D AXcb CE: (3)

By bootstrapping, we generate uncertainty under each experimental condition—each of these samples
is a slight variant of the original source image based on trial averages. By solving the inverse problem
(Equation (3)), we obtain OXcb as an estimate of Xcs and thereby obtain the ensemble of source signals
(or time-varying source images)

OXD

0
BBB@

OX11 � � � OX1B
OX21 � � � OX2B
:::

: : :
:::

OXC1 � � � OXCB

1
CCCA : (4)
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2.2. Likelihood ratio test

To examine whether any individual brain regions are modulated under differing experimental condi-
tions, we perform hypothesis tests making use of the bootstrapped source data (Section 2.1). It should be
emphasized that in reality, any standard testing methods such as ANOVA would be applicable, although
here, we choose to use a likelihood ratio test similar to that described in [7], which does not assume
that the conditions have equal variance and explicitly takes that variability into account. We write the
likelihood ratio test in extension to bootstrapped data following [7]. A likelihood ratio test has the form

LRD
sup�2�0f .xj�/

sup�2�f .xj�/
(5)

where f .xj�/ is the likelihood parameterized by � , and�0 and� are the parameter space under the null
and in the unrestricted hypothesis, respectively. Following Equation (4), we denote the signal from a
source at a single time t from bootstrapped source trials in all conditions as xD Œx11; :::; x1B ; :::; xC1; :::;
xCB �

T , where xcb is the signal strength in trial b under condition c. Assuming that the mean signal under
condition c, xc D 1

B

P
b xcb , is normally distributed xc �N .�c ; �2c / and under the null hypothesis H0

that the source current has equal mean strength under all conditions, we construct the following test:

LRD

Q
c.2��

2
c /
� 12 exp

�
�.xc��0

�/2

2�2c

�
Q
c.2��

2
c /
� 12 exp

�
�.xc��c�/2

2�2c

� (6)

where it can be easily shown that the following is the maximum likelihood estimate under H0:

�0
� D

P
c
xc
�2cP

c
1

�2c

(7)

where �2c is the variance of x estimated from the bootstrapped data. It also follows that �c� D xc is the
maximum likelihood estimate in the unrestricted parameter space. Equation (6) can thus be simplified to

� 2 logLRD
X
c

�
xc ��0

�c

�
�2
; (8)

which, if all �c were known, would follow a �2 with C � 1 degrees of freedom. We perform this likeli-
hood ratio test for each source at each time point and repeat across time. Assuming there are T

0

points
after smoothing, we write the logLR test statistic for source n at time t as snt with n D 1; :::; N and
t D 1; :::; T 0. In practice, we can smooth the signals by averaging them over a small window every few
time points to reduce the number of tests. We then obtain a matrix of smoothed logLR statistics for
every source across time. We then collect these into the following matrix:

SD

0
BBB@
s11 � � � s1T 0

s21 � � � s2T 0
:::

: : :
:::

sN1 � � � sNT 0

1
CCCA : (9)

We also obtain a corresponding matrix of p-values (P), based on the �2 distribution.

2.3. Spatiotemporal excursion algorithm

After obtaining the logLR statistical map S (Equation (9)) from the likelihood ratio tests, we wish to
locate ROIs by identifying spatiotemporal clusters that have significant modulations. In this section, we
describe a spatiotemporal excursion (STE) algorithm that achieves this.

The STE algorithm finds the peaks in the spatiotemporal map of the logLR statistics defined in
Equation (9). Because peaks of interest occur across contiguous points in time and space, we cluster
and threshold these spatiotemporal events. The STE follows three main steps. (1) We prune ‘insignif-
icant’ cortical sources at a pre-defined ˛thresh level (e.g., ˛thresh D 0:01) based on the likelihood ratio
test statistics. (2) We partition the rest of the sources via a clustering algorithm where the inputs are
four-dimensional vectors (3-D for spatial source coordinates and 1-D for a specific time instance). (3)
We locate the hot spots by finding large aggregated source statistics within the obtained clusters. We
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illustrate our algorithm in a simplified 3-D example shown in Figure 2. The height on L-axis indicates
the magnitude of the test statistic, and theX and Y axes represent space and time. In step 1, we threshold
using a sectioning plane atLD 0:5 and prune those points that are under the threshold. In step 2, we par-
tition the remaining areas into contiguous clusters (i.e., the two peaks in Figure 2). In step 3, we localize
ROIs by finding spatiotemporal clusters that have large statistics summed over the individual sources
(i.e., the cluster with the larger area in this particular example). As a result, we obtain a spatiotemporal
representation of ROIs where significant activities may take place. We summarize the STE algorithm
as Algorithm 1. Specifically, the STE algorithm calls three subroutines, which are fully described in
Algorithms 2–4.

It turns out that the excursion procedure can be implemented in the vehicle of a clustering algorithm.
Specifically, if we treat the spatial and temporal coordinates of individual sources as the input, then a
clustering algorithm defined with some measure of similarity metric would serve the purpose of group-
ing these sources based on their spatiotemporal ‘closeness’. To cluster the spatiotemporal sources, we
use an algorithm (Algorithm 3) that partitions the sources based on their spatial and temporal coordi-
nates. In our analysis, we use BHC [4]. It is worth mentioning that in principle, any clustering method
(e.g., K-means, spectral-clustering) would work for excursion, and BHC is only one of these methods.
The strength of BHC, however, is that it automatically determines the number of clusters in the data and
has been proven to perform well in general. In the following section, we describe the BHC algorithm
following [4].

2.3.1. Bayesian hierarchical clustering. Consider a data set D D fx.1/; : : : ; x.n/g and tree T where
Di � D is the set of data points at the leaves of the subtree Ti of T . In our context, each data point
corresponds to a four-element vector containing the spatial coordinates of a source and its time instance.
BHC is similar to traditional agglomerative clustering in that it is a bottom-up agglomerative method
that initializes n clusters (leaves of the hierarchy), each containing a single data point Di D fx.i/g.
It then iteratively merges pairs of clusters to construct a hierarchical binary tree. The main difference
between BHC and traditional hierarchical clustering methods is that BHC uses a statistical hypothesis
test to choose which clusters to merge based on the odds ratio of posterior probabilities [8], instead of a
distance metric.

In considering each merge, we compare two hypotheses. The first hypothesis (Hk
0 ) is that all the data

in Dk were generated independently and identically from the same probabilistic model (i.e., the merged
hypothesis), p.xj�/ with unknown parameters � (e.g., a Gaussian with � D .�;˙/). We compute the
probability of data Dk under Hk

0 by specifying a prior over the parameters of the model (if we use
conjugate priors, the following integral is tractable):
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Figure 2. Illustration of the excursion algorithm in a 2-D space. The curved surface represents the magnitude
of statistic from the hypothesis tests.The sectioning plane prunes insignificant sources at a pre-defined threshold
level. We subsequently grouped the remaining two peaks into two distinct clusters based on their neighboring

profiles.
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p.DkjHk
0/D

Z
p.Dkj�/p.� jˇ/d� D

Z h Y
x.i/2Dk

p.x.i/j�/
i
p.� jˇ/d�

The alternative hypothesis (Hk
1 ) would be that Dk has two or more clusters in it (i.e., the split hypoth-

esis). Summing over the exponentially many possible ways of dividing Dk into two or more clusters is
intractable. However, if we consider only clusterings that partition the data consistent with the subtrees
Ti and Tj , which are built from the agglomerative bottom-up process, we can efficiently sum over expo-
nentially many alternative clusterings by using recursion. The probability of the data under the alternative
hypothesis is then simply p.DkjHk

1/D p.Di jTi /p.Dj jTj /. The marginal probability of the data in any
subtree Tk is computed as follows:

p.DkjTk/D �kp.DkjH0
1/C .1� �k/p.Di jTi /p.Dj jTj / (10)

where �k
def
D p.Hk

1/. Note that this equation is defined recursively, where the first term considers the
hypothesis that there is a single cluster in Dk and the second term efficiently sums over all other cluster-
ings in Dk , which are consistent with the tree structure. At each iteration, BHC merges the two clusters

that have the highest posterior probability of the merged hypothesis rk
def
D p.Hk

1 jDk/, which is defined
by the Bayes rule:

rk D
�kp.DkjHk

0/

p.DkjTk/
(11)

The quantity �k , which can also be computed bottom up as the tree is built, is defined to be the relative
prior mass in a Dirichlet process mixture (DPM) model with hyperparameter ˛, of the partition where
all data points are in one cluster, versus all the other partitions consistent with the subtrees. As shown in
[4], �k D

˛� .nk/
dk

where dk D ˛	 .nk/Cdleftk drightk , right (left) refer to the children of internal node k,
and at the leaves, di D ˛, �i D 1. BHC automatically infers the number of clusters by cutting the tree at
rk < 0:5. We summarize the BHC in Algorithm 3.

Although BHC is a greedy algorithm (i.e., it iteratively merges the two most probabilistically similar
clusters), at each iteration, it performs model selection by evaluating the odds ratio of the marginal like-
lihoods under the merged and the split hypotheses (i.e., Bayes factor of the two hypotheses). Because the
algorithm is recursive, the marginal likelihood sums over configurations that are consistent with the tree
structure, which takes into account a large space of partitioning of the data (the resulting hierarchical
tree is a rich mixture model). The algorithm can be understood as performing iterative hypothesis tests
that evaluate the odds of merging or splitting the pair of clusters as it builds up the tree, and the number
of clusters is determined where the merged odds is lower than the split odds that cuts the tree. Work in
[4,9] relates BHC with DPMs, a clustering model that considers the space of all possible partitions of the
data yet is computationally intractable, by proving that BHC provides a theoretical lower bound on the
marginal likelihood of DPM. The work also empirically demonstrates that BHC offers superior cluster-
ing performance and tighter bound compared with other alternative approximate methods to DPM. It is
worth mentioning, however, that because BHC outputs a single binary tree, it is possible that it may not
capture fully the uncertainty associated with alternative clusterings. Xu et al. [9] show how BHC can be
modified to consider alternative clusterings, although the gain of incorporating uncertainty seems only
marginal, suggesting that BHC generally yields good clustering results. We demonstrate the algorithm
in Section 3.1.1. It is worth mentioning that the computational complexity of BHC is quadratic in the
number of data points; hence, the algorithm can be computationally demanding with very large data sets.
In such cases, simpler algorithms such as K-means might serve as an alternative for practical purposes.

2.3.2. Computing the region of interest statistic. Within each of the partitioned cortical areas clustered
by BHC, we compute the cluster statistics by summing over time and space, and assign the clusters that
have large statistics as the ROI. Suppose BHC partitions the sources into K clusters (including those
pruned by thresholding, which have zero integral) and let AD ŒA1; :::; AK �, then ROI can be defined as

ROI  argmax
k

int.Ak/D

Z
n2Ak

Z
t2Ak

sntdndt (12)

where snt is the logLR statistic for source n at time t . Intuitively, this means that ROI is the region that
contains contiguous sources that have the largest statistics summed over time and space. We summarize
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the algorithm in Algorithm 4. It should be noted that there are a variety of choices for ROI statistic, for
example, mean or median of the clustered sources, and the aggregated statistic defined in Equation (12)
is only one possibility. In the case of single-point sources, for example, using maximal or mean statistic
within the clusters may be more appropriate than aggregated statistics. Our method, however, uses a
modular approach that potentially allows different choices of statistic to be plugged into the algorithm
for studying the ROIs.

Algorithm 1 Spatial–temporal excursion algorithm
input: threshold, averaging window, source signals and coordinates

run likelihood ratio test and threshold (Algorithm 2 – Hyptest)
cluster spatiotemporal sources (Algorithm 3 – BHC)
compute ROI statistics (Algorithm 4 – ROIstats)

output: ROI coordinates, time points and statistics

Algorithm 2 Routine Hyptest
input: signals X (N sources) and coordinates POS (N � 3), threshold level ˛thresh, averaging window
ı

for nD 1 to N do
run likelihood ratio test on source n in time step ı (T steps)
compute statistics sn D Œsn1; :::; snT � and corresponding p-values pn D Œpn1; :::; pnT �
for t D 1 to T do

if pnt < ˛thresh then
obtain 3-D coordinates POSn D Œx; y; ´�n
store cnt D Œt;POSn� in C
store n and t in N � and T �, respectively

end if
t  t C 1

end for
n nC 1

end for
output: 4-D spatiotemporal coordinates CD fcnt jn 2N �; t 2 T �g

Algorithm 3 Routine BHC
input: spatiotemporal source coordinates CD fcnt jn 2N �; t 2 T �g
initialize: number of clusters m D jN �j � jT �j where each cluster contains a single 4-D coordinate
cnt in C
while m> 1 do

Merge pair of coordinates with the highest probability of the merged hypothesis (see Section 2.3.1)
end while
output: clustered coordinates in space and time AD ŒA1; :::; AK �

2.4. Computing global statistical significance

The likelihood ratio test described in Section 2.2 involves testing at a large number of source locations
and time instances. To account for multiple comparisons, we use a permutation test that characterizes
the statistical significance globally. Nichols and Holmes [10] first introduced permutation test in ROI
analysis in fMRI. Here, we apply the idea to spatiotemporal events in MEG/EEG.

In standard ANOVA permutation tests, we test the null hypothesis that the data distributions are the
same across conditions. Here, we consider the analogous null hypothesis that the multivariate source
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Algorithm 4 Routine ROIstats
input: partitioned spatiotemporal source coordinates AD ŒA1; :::; AK �
for k D 1 to K do

compute cluster statistic int.Ak/D
R
n2Ak

R
t2Ak

sntdndt

k kC 1
end for
ROI arg maxk� int.Ak/ and Sobs D arg maxk� int.Ak/
output: ROI topography fPOSnjn 2 Ak�g, time points ft jt 2 Ak�g and statistic Sobs

distributions across conditions are identical. In our context, once we find an ROI by using the STE algo-
rithm (Algorithm 1), we compute a p-value that quantifies the global significance by considering the
sources in the ROI clusters as a whole. To do this, we use a permutation test where the null hypothesis
is that the trials are identically distributed across conditions. In other words, we compute the ROI statis-
tic (Equation (12)) for each set of permuted trials and compute the number of permutations where that
statistic exceeds the observed ROI statistic calculated from the original data. Specifically, we reject the
null at level ˛thresh D

J�

Np
if in J � out ofNp permutations, the ROI statistic found by permuting the trials

across conditions is larger than that of the observed ROI. If we denote the statistic of observed ROI as
Sobs and that of permuted trials j where j D f1; :::; J g as Sj , we can approximate the global p-value

p D
1

J

JX
jD1

I.Sj > Sobs/ (13)

where each Sj can be calculated from the STE algorithm (Section 2.3). We summarize the complete
procedures for computing the global p-value in Algorithm 5.

Algorithm 5 Global p-value of ROI
input: MEG/EEG sensor signals Y
bootstrap Y under each condition
store source-localized bootstrapped signals in X
run STE (Algorithm 1) on X and compute ROI statistic Sobs

for j D 1 to J do
permute source signals across conditions and obtain Xperm

j

run STE on Xperm
j and tally I.Sj > Sobs/

j  j C 1
end for
compute p-value p D 1

J

P
j I.Sj > Sobs/

output: approximate global p-value

3. Results

In this section, we first evaluate our algorithms in three separate simulation studies. We then apply our
method to a MEG study of center-out wrist movement where we discover statistically significant spa-
tiotemporal ROIs in the motor and visual areas of cortex. Finally, we use the discovered ROIs to visualize
the within and between condition variability based on the bootstrap.

3.1. Simulation

3.1.1. Clustering spatiotemporal events. We simulated a 3-D space (two spatial dimensions (x; y) and
one temporal dimension (t )) with contiguous spatiotemporal ‘hot spots’ and used BHC to automatically
group these events based on their coordinates. Figure 3a shows the true events in symbols of different
shapes. The cluster of squares has eight points that lie at 4 W 5, 1 W 2 and 10 W 11 in x, y and t axes. The
cluster of stars consists of nine points and occurs at a single time point, lying at 6 W 8 and 1 W 3 in x and
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Figure 3. Demonstration of spatiotemporal clustering in a 3-D space. a) We set up four ‘hot spots’ in different
shapes that extend through space and time (see text for details). b) Clustering in the hierarchical tree. The algo-
rithm prunes the tree where the odds ratio of the merged hypothesis falls below the split hypothesis, identifying

four distinct clusters.

y axes. The cluster of triangles has 18 points that lie at 4 W 6, 1 W 3 and 1 W 2 in x, y and t axes. Finally,
the cluster of circles contains 12 points and lie at 7 W 8, 6 W 7 and 1 W 3 in x, y and t axes. Note that the
triangle and square clusters of points are spatially overlapped (the square cluster constitutes a subset of
the triangle cluster spatially) but occur at different time points. The triangle and circle clusters overlap
temporally but are discrete in space. The star cluster is relatively isolated on its own. Figure 3b shows the
clustering results from BHC over these points. The algorithm identifies exactly the clusters despite the
overlap in space and time. The negative weights on the dendrogram suggest that the ratio of the merged
hypothesis against the split hypothesis is less than 1, and hence, the tree could be cut off at these places,
automatically yielding four distinct clusters.

3.1.2. Uniform p-values under null hypothesis. We used a simulation study to show that the p-values
defined in Section 2.4 are roughly uniformly distributed under the null hypothesis for randomly gener-
ated data. We generated 1000 synthetic data sets in the MEG source space. For each source (853 in total
in MCE software), we used three conditions, each of which has 25 trials. Each trial is a flat 5-point time
series of random amplitude between 1 and 100, where each point is subject to a Gaussian noise with
�D 0 and � D 5. In each of 1000 data sets, we applied the algorithm described in Section 2 to compute
a global p-value by permuting 10; 000 times in the permutation test. The histogram of the resulting 1000
p-values roughly follow a uniform distribution.

3.2. A magnetoencephalography study

3.2.1. Experimental setup and data pre-processing. The experiment involved a center-out wrist move-
ment task. We set up a screen in front of the subjects to provide visual feedback throughout the behavioral
task. We used a 306-channel Elekta Neuromag (Helsinki, Finland) MEG system to record their brain
activities. We asked two right-handed subjects to perform wrist movement by manipulating a joystick
with their right hand following one out of four directions (radial and ulnar deviations, flexion and exten-
sion) indicated by a corresponding visual cursor cue (up and down, left and right). We asked each subject
to perform the task in repeated trials (120 in each direction). Meanwhile, we used electrooculography to
detect eye movement to remove any artifacts. The Institutional Review Board at the University of Pitts-
burgh approved all experimental procedures, and we performed all experiments in accordance with the
approved protocol. The subjects gave informed consent before the experiments. We performed spatial
filtering on the raw MEG data by using signal space separation [11]. We discarded trials with apparent
eye movement detected by electrooculography. We aligned each trial to recorded movement onset, which
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was defined as the first time when 15% of maximal cursor speed was reached. We used MCE for source
localization.

3.2.2. Experimental results. We applied our method to the center-out wrist movement study. For each
subject, we bootstrapped the trial average of sensor signals within each of the four directions 50 times
(i.e., 200 trials in total; to reduce computation, we used a small sample size, although by examining
the samples, we found that the non-zero source currents follow the normality requirement of hypothesis
tests) using the procedure described in Section 2.1. We then source localized each bootstrapped sam-
ple via MCE, obtaining 200 images of source currents. For each source (853 in total) given by MCE,
we ran the likelihood ratio test (the null hypothesis is that the mean source current is equivalent under
four movement directions) through time by averaging the signal every 10 ms. The entire time course is
1000 ms, so there are 100 time steps after averaging. In each source and time step, we computed the
logLR statistic and p-value, forming a statistical map as in Equation (9). We note that the bootstrap
variance across conditions varied as much as 20-fold; hence, the standard ANOVA assumption would
not be valid in this case.

We applied the STE algorithm to the logLR statistical map thresholding at p D 0:01. Figure 4 shows
the results for subject S1. Figure 4a illustrates the logLR map where the black dots indicate above-
threshold test statistics. The onset of subject movement is at 0 ms, and the onset of visual cue is at
approximately �300ms. We observed that significant modulations occur at about 100 ms prior to move-
ment and persist for 200 ms through movement. These activities mostly occur in the motor cortex, and
they correspond to the motor planning and execution stages. In addition to modulation in the motor cor-
tex, we also observed significant modulations at about �260 ms in the occipital visual area after the cue
onset, which are presumably due to processing of visual stimuli. Figure 4b shows that the normalized
sum of ROI statistics of nine clusters discovered using STE. We see that cluster 9 (C9) has the largest ROI
statistic, whereas cluster 0 has zero ROI statistic corresponding to the under-threshold sources. Figure 4c
maps these clusters topographically on the cortex, although it is worth mentioning that the sum of ROI
statistics also integrates over time (Equation (12)). We see that C9 with maximal ROI statistic is in the
contralateral motor region, and large ROIs also occurs in the occipital and frontal areas. Figures 5 and 6
further demonstrate the results for the two subjects (S1 and S2), respectively. We note that both subjects
have similar patterns of modulation with contralateral motor region owning the maximal ROIs and less
significant modulations in the visual and frontal areas. These observations suggest that the motor cortex
encodes differing directional information, which agrees with the phenomenon of directional tuning
observed in single-neuron studies [12–14]. Our observation is also consistent with the results in a recent
MEG study of decoding center-out movement via motor-related sensors [5].

To evaluate the global significance of the observed ROI (i.e., the contralateral motor clusters), we per-
muted the bootstrapped source trials 100,000 times and used STE to compute the sum of ROI statistics
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Figure 4. Spatiotemporal region of interest analysis of a magnetoencephalography study in a visuomotor task. a)
Map of time-evolving chi-square statistics of 853 sources thresholded at ˛thresh D 0:01 for subject S1. The black
dots indicate test statistics that exceed threshold. b) Normalized sums of statistics of nine spatiotemporal clusters
found using the STE algorithm for S1. Cluster 1 consists of under-threshold space–time events. Cluster 9 has the
maximal sum of statistics and corresponds to the contralateral motor area (on the right). c) Spatial visualization

of ROI on the cortical surface. The white area indicates the cluster with the maximal sum of statistics.
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Figure 5. Clusters of spatiotemporal ‘hot spots’ in subject S1 in the left hemisphere viewed from the top. The
intensity of the bar indicates the magnitude of the normalized sum of statistic (white for large values).

Figure 6. Clusters of spatiotemporal ‘hot spots’ in subject S2 in the left hemisphere viewed from the top. The
intensity of the bar indicates the magnitude of the normalized sum of statistic (white for large values).

for each permutation. For both subjects, there were zero cases where the permuted ROI statistic exceeded
that of the original ROI. Hence, concluded that the ROI in both cases was statistically significant with
a global p-value p < 10�5. To account for multiple ROIs, we repeated the entire permutation proce-
dure and compared instead with the smallest ROI in the clusters partitioned from BHC, hence obtained a
more conservative estimate for p-value. The intuition is that if the ROI with the smallest statistic is found
significant, then those that have larger statistics would be also significant. Thus, we are able to estab-
lish the significance for multiple clusters. In these experiments, we also found that p < 10�5. Finally,
to visualize spatiotemporal modulations, we took four snapshots across the time course to see how the
modulations varied spatially on the cortex (Figure 7). We observed that the modulations start from the
occipital visual area during the cue onset and transit to the motor area before the movement onset and
persist through the movement, which matches the observed logLR map in Figure 4a and intuitively
explains the process in this visuomotor task.

3.3. Visualizing the variability

We extracted the signals in the ROI in the contralateral motor area (Section 3.2.2) and examined the vari-
ation within and across the four movement directions. To do this, we projected the bootstrapped source
signals at locations inside the ROI cluster discovered by our algorithm (these occurred 100 to 0 ms prior
to movement onset) onto a lower-dimensional space via PCA. Figure 8 visualizes these trials in a 2-D
space spanned by the eigenvectors that correspond to the two largest eigenvalues in PCA. We observed
that although the trials in each of four directions form their own clusters in the projected space, there is
also noticeable trial–trial variation within each movement direction.

4. Discussion

To solve the problem of discovering brain regions having differential activity under varying experimental
conditions, within subjects, from MEG or EEG data, we have pursued two ideas. The first uses bootstrap
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Figure 7. Snapshots of ‘hot spots’ that migrate from the occipital visual area to motor area during the time course
in a center-out visually cued motor task. The movement onset starts at 0 ms.
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Figure 8. Visualization of 200 bootstrapped trials in four movement directions (50 in each direction). The signals
from the ROI in each trial are projected onto the first two principal components via PCA.

resampling of trials to produce uncertainty in source-localized images, within conditions. This is analo-
gous to performing a somewhat unusual but valid bootstrap when solving an ordinary ANOVA problem.
The usual bootstrap solution to ANOVA is to combine the data across conditions, and resample the
whole, assigning at random each resampled observation to an experimental condition—each resampled
set of data leading to a single bootstrapped F statistic. An alternative is to begin with the data means
under each condition, compute a standard error of each mean by resampling the observations under each
condition separately and then apply a likelihood ratio test by assuming each mean to be normally dis-
tributed. This latter bootstrap would be unnecessary in the ordinary ANOVA problem because the same
standard errors may be obtained analytically. In the case of MEG, however, we are not working with a
sample mean but rather with the source-localized image strength at each source, and for this, particularly
in the case of L1-penalized source localization, the bootstrap is very helpful.

The second idea was to apply a clustering method to thresholded likelihood ratio values in order to
find contiguous spatiotemporal sources of high differential activity and then to evaluate global signifi-
cance using a permutation test. We used BHC as our clustering method, but this is not essential to the
logic of our approach. We illustrated the methodology using data taken from subjects during wrist move-
ment. Elsewhere, we have shown that directionality can be decoded from individual trials based on MEG
signals [6, 15]. The point, here, has been to discover regions responsible for this ability to decode while
producing a p-value that assesses the strength of the evidence against the rate of spurious null results.
We have emphasized that the methodology applies to source images produced from individual subjects.
Using this approach to examine inter-group differences by combining results across subjects is a topic
for future research.
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