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Supporting Information Text12

1. Additional Information on Computational Formulation13

We provide additional information on the computational formulation of our theoretical proposal. We first provide a formal14

derivation of the objective function we used to specify the Pareto frontier. We then provide additional discussion on previous15

efficiency-based accounts of the lexicon.16

A. Derivation of the Objective Function. Here we provide a formal derivation of Equations 2-5 in the main text. Recall that the17

expanded lexicon L′ is the union of the existing lexicon L and an encoding of emerging concepts E∗. Now, consider the case18

in which the same speaker interacts once with each of n distinct listeners, for a large number n. In the i-th interaction, the19

speaker samples an intended concept from the need distribution Ci ∼ p(c|L′) and a word form from the production policy20

Wi ∼ p(w|c, L′); if Wi = w, then the i-th listener approximates the speaker’s mental representation using the distribution m̂
(i)
w .21

We assume the listeners are distinct but have the same listener distribution, i.e., for every w, m̂
(1)
w , m̂

(2)
w , ..., m̂

(n)
w

iid∼ m̂w,L. We22

will consider a large sample of these interactions, represented by the sequence (C1, W1), (C2, W2), ..., (Cn, Wn).23

A.1. Average Word Length. First, we relate the average length over the above interactions to the expectation of length. Let Llength24

be the average length over these interactions. We define this random variable by first multiplying the length of w with the25

fraction of times the form-concept pair (w, c) shows up in the sample of interactions, and then summing over all possible pairs:26

Llength =
∑
c,w

l(w) ·

[
lim

n→∞

1
n

n∑
i=1

1[Wi = w, Ci = c]

]
=

∑
c,w

l(w) · p(c, w|L′) [1]27

The last step shows the average length over many interactions converges to the expected length with probability 1, which28

follows from the strong law of large numbers and a property of the indicator function. We thus define average length as the29

expectation of length.30

A.2. Average Information Loss. Next, we relate the average information loss over the above interactions to the expectation of KL31

divergence. Let Lerror be the average information loss over these interactions. Similar to ref. 1, because we assumed speaker32

distributions have perfect accuracy, the information loss incurred in the i-th interaction reduces to the surprisal h(m̂(i)
w (c)) if c33

and w were selected by the speaker. Since listener distributions are independent and identically distributed, the information34

loss incurred in any interaction is h(m̂w,L(c)) if c and w were selected by the speaker. Thus similar to above, we define the35

random variable Lerror by first multiplying the surprisal of c given w with the fraction of times the form-concept pair (w, c)36

shows up in the sample of interactions, and then summing over all possible pairs:37

Lerror =
∑
c,w

h(m̂w,L(c)) ·

[
lim

n→∞

1
n

n∑
i=1

1[Wi = w, Ci = c]

]
=

∑
c,w

h(m̂w,L(c)) · p(c, w|L′) [2]38

The last step shows the average information loss over many interactions converges to the expected surprisal with probability39

1, which follows from the same steps used in Equation 1. We thus define average information loss as the expectation of KL40

divergence (which reduces to expected surprisal).41

A.3. Objective Function. To assess the role of communicative efficiency in shaping the encoding E∗, we combine and simplify42

the average length and information loss as defined above. First, we make two simplifying assumptions: 1) the frequency of43

concepts encoded in the existing lexicon during the target interval between t1 and t2 remains proportional to their frequency at44

time t1, the point at which all speakers use the existing lexicon by assumption; and 2) the production policy for these concepts45

during the target interval remains the same as the policy at time t1. These assumptions imply that for every concept-form46

pair (c, w) ∈ L, we have p(c|L′) ∝ p(c|L) and p(w|c, L′) = p(w|c, L). The objective function for the encoding E∗ can now be47

obtained as follows:48

Lβ [E∗|L] = E[D(M ||M̂)|L′, L] + βE[l(W )|L′] [3]49

=
∑

(c,w)∈L′

p(c, w|L′) · (h(m̂w,L(c)) + βl(w)) [4]50

=
∑

(c,w)∈L

p(c, w|L′) · (h(m̂w,L(c)) + βl(w)) +
∑

(c,w)∈E∗

p(c, w|L′) · (h(m̂w,L(c)) + βl(w)) [5]51

∝
∑

(c,w)∈E∗

p(c, w|L′) · (h(m̂w,L(c)) + βl(w)) [6]52

where the second last line follows from L′ = L ∪ E∗ and the fact that L and E∗ are disjoint, and the last line follows from the53

fact that the first sum in the previous line is constant in terms of E∗ after applying our assumptions on the need distribution54

and the speaker’s production policy.55
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B. Additional Discussion. We have hypothesized that word reuse and combination reflect a tradeoff between speaker effort and56

information loss, and that both attested reuse items and combinations are constrained by competing pressures to minimize57

these communicative costs. We formalized this idea by extending previous models of communication (e.g., refs. 1, 2) to the58

setting in which new lexical items spread among language users. One consideration is that existing frameworks or simpler59

variants are sufficient for explaining both attested reuse items and compounds, such that it is less parsimonious to use an60

extended framework. In particular, under an existing framework, ref. 3 has shown that a pressure for informativeness constrains61

the products of word meaning extension in the domain of container names, and it may be likely that this finding generalizes62

across domains. Here we briefly discuss why existing frameworks and their underlying information-theoretic principles cannot63

also account for compound words or structures at the subword level in general. Our discussion will focus on how subwords64

relate to expected word length and informativeness under existing frameworks.65

B.1. Word length. We consider the two-stage approach in ref. 4 which decomposes the speaker’s production policy into a meaning66

encoder and a form encoder and mirrors earlier work in lossy data compression (e.g., ref. 5). Under this approach, the meaning67

encoder maps each intended message to a distribution over a finite list of indexes, and the form encoder maps each index to a68

unique string. Given a fixed meaning encoder, the optimal form encoder that minimizes expected word length can be obtained69

from classic results in lossless data compression (6), and the set of strings assigned by this encoder is likely to be shorter on70

average and less structured than an alternate set of strings that contains a high amount of subword structure (7). However,71

under this existing approach, an optimal form encoder does not impose systematicity between subwords and meaning even72

at the item level. Crucially, the optimal string assignment to each index only depends on the length of the string and the73

probability of the index. Observe that this condition does not impose systematicity because exchanging any two forms of the74

same length does not affect expected word length, even if these forms are substrings of longer forms whose index assignment75

remained unchanged. For example, the strings fly and man have the same length and are frequent compound head words;76

suppose that now fly expresses the meaning of man and vice versa, but the meanings of all other words remain the same. This77

change violates attested systematicity in endocentric compounds headed by these words, e.g., fireman becomes a fly and firefly78

becomes a man, but the expected word length of the lexicon remains the same as before.79

An important feature of existing frameworks based on variable-length lossless data compression is the use of entropy as the80

lower bound on expected length (4, 7). This implicitly assumes that word forms are uniquely decodable, which does not hold81

over the whole lexicon in general (8). This is apparent in the case of compound words: for example, there are two ways to82

decode the string black sea, since it can be parsed as a single named entity but also as two separate words black and sea. In83

speech, distinctions in word stress are generally helpful for disambiguating these cases in certain languages (e.g., English; ref. 9)84

but not others (e.g., French; ref. 10).85

B.2. Informativeness. In efficiency-based accounts of the lexicon that invoke the point-to-point model of communication, the86

expected KL divergence between speaker and listener distributions over world states has become the standard way to measure87

information loss (1–4, 11–13). The exact implementation of speaker and listener distributions differs across studies, but a88

common assumption is that the listener has full access to the speaker’s production policy (e.g., in ref. 14, the listener distribution89

is a function of the shared lexicon as well as the need distribution used by the speaker). Given this assumption and KL90

divergence-based information loss, optimal reconstruction can always be obtained by only combining the meanings of the91

speaker’s utterance that exist in the shared lexicon (2). This implies under this general existing approach, subword information92

in word forms is irrelevant for accurately reconstructing messages intended by speakers.93

Differing from these existing accounts, in our approach the speaker may use word forms that do not exist in the lexicon94

of the listener. The listener distribution for new word forms depends on data-driven modelling decisions and is less general95

than listener distributions that only depend on the mathematical formulation of the communication model itself (e.g., ref. 2).96

Nonetheless, experimental studies on language evolution (e.g., refs. 15, 16) and language production (e.g., refs. 17, 18) show that97

listeners are able to accurately infer intended messages using labels that combine subwords in an informative way, suggesting98

that plausible listener distributions for new word forms will be dependent on subword level information.99
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2. Historical Data100

Here we provide a full description of our data processing pipeline for instantiating our scenario of lexical evolution. We first101

describe the pipeline for English analyses, which builds towards and is followed by a description of the pipeline for French and102

Finnish analyses. Lastly, we provide an evaluation of the historical sense frequencies used in this study.103

A. Processing of English Data. Here we describe the pipeline for processing the English data. It involves the following steps:104

1) standardizing word forms in WordNet (19); 2) estimating the existing lexicon L; 3) identifying emerging reuse items; 4)105

identifying emerging compounds; and 5) compiling L and the attested encoding E∗.106

A.1. Standardizing Word Forms. We standardized the space of English word forms to facilitate measuring word length and frequency.107

We defined a standard word form as a lemma (since WordNet only provides lemma forms) that contains only alphabetical,108

lowercase characters or a delimiter in the form of dash or hyphen and does not have alternate spellings from which it is vastly109

dissimilar. To satisfy the second criterion, we removed any form-sense pair such that 1) the form is a synonym of a proper110

noun or an initialism, 2) the form is a number in orthographic form, or 3) the sense definition includes the words slang or111

informal term. We also removed forms that can be further lemmatized using the WordNet lemmatizer in NLTK (20).112

A.2. Existing Lexicon. To estimate the lexicon L existing at time t1, we first estimated the subset of form-sense pairs that existed113

during the interval [t1, t1 + 19] and another subset that existed during the interval [t1 − 20, t1 − 1], and then we set L to be the114

intersection between the subsets. We estimated if a form-sense pair existed during interval [t, t′] by checking if their frequencies115

in historical corpora exceed certain thresholds. We first obtained sense frequencies from the Corpus of Historical American116

English (COHA; ref. 21). From documents published between t and t′, we extracted contiguous sentences that contain at least117

one ambiguous word and identified the intended sense of each ambiguous word using the word sense disambiguation algorithm118

EWISER (22). In SI Appendix, Section 2.C, we verify that the resulting sense frequencies reflect historical changes in word119

meaning. Second, to more accurately estimate the frequencies of historically rare words, we used unigram frequencies provided120

by the Google Ngrams corpus (English 2020 version; ref. 23). Since infrequent word forms and senses are more sensitive to121

noise, we included a form-sense pair in L only if 1) the unigram frequency of the form exceeds τtoken = 10 and 2) the ratio122

between sense and unigram frequencies, i.e., the proportion of times the sense is expressed by the word, exceeds τsense = 0.1123

during the interval.124

A.3. Attested Encoding via Combination. As mentioned in the main text, we determined the set of emerging concepts and its125

attested encoding for an interval [t1, t2] by collecting attested reuse items and compounds that contain a first citation in the126

interval, and here we describe how these items and their first citations were collected. The first step was to identify a list of127

WordNet lemmas that are compound words. We identified a lemma as a closed compound if it is an entry that is singular128

and correctly parsed in the Large Database of English Compounds (LADEC; ref. 24) or if it is etymologically formed via129

compounding in an extraction of Wiktionary (25); both sources also provided us with their correct constituent segmentation.130

To identify open and hyphenated compounds, we took an inclusive approach by extracting all WordNet lemmas that can131

be parsed into two lemmas by underscore or hyphen. We only extracted compounds that have exactly two constituents for132

tractability, and we removed lemmas in which the second constituent is a preposition so that the compound head is usually133

on the right. Given this list of compounds, the second step is to determine the first citation of form-sense pairs in which the134

form is a listed compound. We used the Historical Thesaurus of English (HTE; ref. 26) to determine the first citation of the135

compounds we collected, and if a compound form w has first citation at year t, we assumed all form-sense pairs containing w136

also has first citation at t.137

A.4. Attested Encoding via Reuse. As in the description of compound-based encodings, here we focus on describing how we collected138

reuse items and their first citations. We used two methods to collect this dataset. In the first method, we manually annotated139

the first citations of 1, 331 form-sense pairs in WordNet by checking the HTE and the associated sense definitions in the140

Oxford English Dictionary (OED). In the second method, we used first citations of compounds to automatically estimate the141

first citations of compound constituents that were reused to express the senses of compounds (e.g., cell and cellphone). In142

the following, we first describe how we obtained the manually annotated form-sense pairs, and then we describe the second143

automatic method.144

To select the subset of form-sense pairs to annotate, we used two automatic methods to shortlist pairs that are likely to145

have emerged in the past century and are expressed by polysemous words. First, we used the HTE to find words such that all146

of their HTE senses first appeared in the 20th century, and we shortlisted these words along with all of their WordNet senses.147

Second, we used the HTE to find words that have at least one HTE sense with a first citation before 1900 and at least one148

with a first citation after 1900. Since the second list is large, we pruned the words in the list by checking if the definitions149

of their senses overlap with culturally salient keywords useful for novel word sense detection (27). Each sense definition is150

processed by removing non-alphabetical characters, converting to lowercase, and lemmatizing its tokens using the WordNet151

lemmatizer from NLTK (20). We kept a form-sense pair in the list only if the processed sense definition contains one of the152

keywords, which yields the second shortlist.153

Since ref. 27 focused on senses emerging after year 2000, we selected a new set of keywords that are culturally salient during154

the past century. We selected these keywords semi-automatically by first selecting keyword candidates based on frequency155

information in COHA. Specifically, we first selected candidates using two kinds of frequency information from five subcorpora156

of COHA (i.e., the full corpus plus the four genres consisting of fiction, magazine, news, and non-fiction). For every subcorpus157
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of COHA, we first ranked all lemmas that appear in both the pre-1900 and post-1900 parts of the subcorpus by changes in their158

frequency. That is, let fh(w) and fm(w) be the frequencies of lemma w in these two parts respectively; we followed ref. 28 and159

ranked the lemmas by the ratio of their modern and historical frequencies, fm(w)/fh(w). We then ranked all lemmas that only160

appear in the post-1900 part of the subcorpus by their raw frequency. For both ranked lists, we selected the top 100 lemmas.161

We applied this method to all of COHA and its four genres, yielding in total ten 100-word lists. Given these word lists, we162

then manually selected words that are 1) related to technological or cultural innovations in the past century and 2) likely to163

exist in the definitions of a large number of word senses. We also manually augmented the selected words with additional ones164

that are etymologically related (e.g., electronic and electric). In total, we identified 32 keywords, which are shown in Table S1.165

aircraft, airport, basketball, broadcast, broadcasting, car, chocolate, cigarette, cinema, computer, data,
electric, electrical, electronic, film, hockey, internet, jazz, motor, motorcycle, online, petro, petroleum, phone,
pilot, radar, radio, rocket, software, spaceship, television, video

Table S1. Set of cultural keywords

Finally, we used the first citations of English compounds to help supplement our dataset of English reuse items. For each166

form-sense pair in this set of compounds, we checked if the compound has a synonym in WordNet that is also a constituent of167

the compound (e.g., line and assembly line). We added these synonymous constituents to our set of reuse items and assumed168

their first citation is the same as the compound. Note that even though a word can be first formed via compounding and later169

reused in the same interval, our setting does not allow the same word form to exist in both L and L′, and for simplicity we did170

not include emerging reuse items that are also emerging compounds in the same interval.171

A.5. Additional Processing. After obtaining the existing lexicon L using frequency statistics from historical corpora and obtaining172

the attested encoding of novel concepts E∗ by compiling reuse items or compounds with a first citation in [t1, t2], we synced the173

encoding E∗ with the lexicon L so that each novel item communicates a novel concept via reuse or combination. Specifically,174

we first updated the lexicon L by removing every form-concept pair that is a reuse item or compound in the encoding E∗.175

We then updated the encoding E∗ by removing form-concept pairs if 1) the concept is encoded in the updated L, or 2) the176

form itself or one of its constituents does not exist in the updated L. The descriptive statistics for each final existing lexicon177

and attested encoding are summarized in Table S2. Note that the smaller sample sizes of the final interval are caused by the178

sparsity of post-1980 entries in the HTE.179

Interval # existing forms # existing senses # reuse # combination
1900+ 47, 572 43, 649 136 766
1920+ 49, 876 45, 658 127 914
1940+ 51, 353 47, 194 142 627
1960+ 52, 317 48, 070 92 474
1980+ 52, 957 48, 555 21 47

Table S2. Number of existing forms and senses, and novel items across intervals for English

B. Processing of French and Finnish Data. Here we describe the data processing pipeline for French and Finnish, involving two180

steps: 1) estimating the existing lexicon; and 2) estimating attested encodings consisting of reuse items or compounds.181

B.1. Existing Lexicon. For each interval, we approximated the existing lexicon L by reusing historical English data and language-182

specific historical corpora. Specifically, we first assumed the senses that existed in the English lexicon also existed in French or183

Finnish. We then obtained a candidate set of existing words by including the lemma forms for every concept in the English184

lexicon and standardized them in the same way we standardized the space of English word forms, except we did not remove185

word forms that can be further lemmatized. The candidate set was further filtered to ensure each word form exists at least186

τtoken = 10 times in the relevant historical interval of the Google Ngrams corpus (French 2020 version; ref. 23) for French187

and the Newspaper and Periodical Corpus of the National Library of Finland (FNC; ref. 29) for Finnish. The descriptive188

statistics for each existing lexicon are summarized in Tables S3 and S4. Note that fluctuations in the number of existing words189

in Table S4 are due to sparsity of the Finnish corpus for certain historical intervals.190

B.2. Attested Encodings of Novel Concepts. To obtain novel reuse items for an interval, we started with all language-specific191

form-sense pairs in which the sense emerges in the same interval in the English data and the form exists in the language-specific192

existing lexicon L. We removed pairs in which the form is a stopword, and we removed duplicates by keeping only the shortest193

form in every set of lemmas that express an identical set of senses. The remaining pairs were added to the reuse-based encoding194

E∗. To obtain novel compounds, we started with all pairs in which the sense emerges in the same interval in the English195

data but the form is not in the language-specific existing lexicon L. We then selected pairs in which the form is 1) a closed196

compound in Wiktionary (25), 2) an open or hyphenated compound according to our inclusive approach for English compounds,197

or 3) a prepositional compound in the case of French. These compounds were added to the combination-based encoding E∗ if198

their constituents do not contain stopwords. The descriptive statistics for each attested encoding are summarized in Tables S3199

and S4. Note that the smaller number of novel items in the last interval is due to sparsity in the English data.200
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Interval # existing forms # existing senses # reuse # combination
1900+ 19, 429 22, 840 147 124
1920+ 19, 948 23, 541 143 127
1940+ 20, 470 24, 235 141 78
1960+ 21, 121 24, 730 82 67
1980+ 21, 682 25, 160 16 13

Table S3. Number of existing forms and senses, and novel items across intervals for French

Interval # existing forms # existing senses # reuse # combination
1900+ 17, 033 24, 552 149 209
1920+ 20, 221 27, 404 155 201
1940+ 19, 634 27, 487 118 128
1960+ 14, 340 23, 370 77 95
1980+ 13, 848 22, 968 11 12

Table S4. Number of existing forms and senses, and novel items across intervals for Finnish

We note that internally inflected compounds were excluded from our WordNet-based data because only lemma forms are201

listed in the existing lexicons. This may have a greater impact for the French and Finnish analyses since these languages are202

more morphologically complex than English. We leave the investigation of the role of internal inflection in our efficiency-based203

account for future work.204

C. Evaluation of Sense Frequencies. Our main analyses depended on the frequency of English form-sense pairs in a historical205

interval. Since historical text only provides the frequency of word forms, we used a state-of-the-art word sense disambiguation206

algorithm, EWISER (22), to determine the proportion of the usages of a word that corresponds to one of its word senses.207

To validate whether the resulting sense proportions reflect variation across different historical intervals, we used an existing208

evaluation framework for semantic change detection (30). The framework consists of a dataset of 100 words that were rated209

by 5 annotators on a four-point scale, indicating the degree of word meaning change between the 1960s and the 1990s. We210

followed previous computational work (27, 31) and compared these human ratings of meaning change against scores computed211

from sense proportions.212

Specifically, we computed a score for each word in the dataset by using novelty scores for its word senses relative to the213

1960s and the 1990s. Let w be a word with m senses s1, s2, ..., sm in WordNet. Further, let ph(si) be the proportion of si in214

the historical usages of w from the 1960s subset of COHA, and similarly let pm(si) be the proportion from the modern 1990s215

subset of COHA. We computed a novelty score for si using the following formula:216

N(si) = pm(si) + α

ph(si) + α
[7]217

Here α is a constant that prevents division by zero, which we set as 0.01 following ref. 31. Finally, the change score of w is218

defined as the maximum over sense-level novelty scores; we applied a log transformation to the computed scores to reduce219

skewness. Since WordNet consists of mappings between synsets and lemmas, we manually lemmatized the entries in the dataset220

from ref. 30, and we computed change scores for the lemmatized entries.221

In Table S5, we compare the correlation between our computed scores and averaged human ratings against correlations222

obtained in previous studies that were also based on the frequency distribution of word senses: 1) ref. 32 used a collection223

of historical corpora (21, 33, 34) and measured change following ref. 27 with a state-of-the-art dynamic Bayesian model; 2)224

ref. 31 used the same data and methods described above, except word senses were obtained from Oxford Dictionary∗ and225

disambiguation was based on a nearest-neighbour approach; and 3) refs. 35 and 36 used COHA and word senses inferred from226

clustering BERT-based contextualized word embeddings (37). Our method yielded Pearson (p < .001, n = 100) and spearman227

(p < .001, n = 100) correlations significantly above zero, and we observe that the performance of our method is comparable to228

previous results. This suggests that the sense frequencies we computed reflect attested changes in frequency distributions of229

word senses across historical intervals.230

Method Corpus Pearson Spearman
Frermann (2016) COHA, DTE, CLMET3.0 - 0.377

Hu (2019) COHA 0.520 0.428
Montariol (2021) COHA - 0.510

Our method COHA 0.472 0.435
Table S5. Correlations between semantic change scores based on sense frequencies and human ratings of change

∗https://www.lexico.com/
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3. Listener Distribution231

We present further analyses on design choices involved in our implementation of the listener distribution. First, we evaluated232

our semantic (or embedding) space and prototype representations in two parts: 1) we evaluated prototypes of existing words233

by using them to reconstruct human ratings of pairwise word similarity; and 2) we evaluated composite prototypes by using234

them to reconstruct human ratings of compound meaning predictability. Then, we examined the sensitivity parameter γ when235

the speaker communicates existing concepts to listeners.236

A. Prototype and Word Similarity. Here we evaluate our WordNet-based semantic space and prototypes constructed by weighted237

averaging. In the following, we first describe datasets of word similarity ratings, an additional English dictionary, and baselines238

that involve other choices of semantic space and methods for prototype construction. We then use pairwise word similarity to239

compare different combinations of embedding method and prototype construction.240

A.1. Datasets. We used three standard datasets of pairwise word similarity ratings: WordSim-353 (38), MEN (39), and SimLex-241

999 (40). WordSim-353 contains 153 English word pairs rated by 13 subjects and 200 English words pairs rated by another 16242

subjects; in both cases, the subjects are near-native English speakers and the rating scale is between 0 (totally unrelated) and243

10 (very much related or identical). WordSim-353 was further divided into a set of 203 pairs focused on similarity and a set of244

252 pairs focused on relatedness (41). MEN contains 3,000 English word pairs, and each pair has a normalized relatedness245

score between 0 and 1; these scores were obtained from MTurk crowdworkers who were presented with target and control246

pairs and asked to judge whether the target pair is more related. SimLex-999 contains 999 English word pairs, and each247

pair has a score between 0 and 10 that was transformed from a 0-6 rating (less to more similar) given by approximately 50248

MTurk crowdworkers. Compared to the earlier datasets, SimLex-999 more explicitly focuses on pairwise similarity instead of249

relatedness or association.250

In the main text, our primary source of word senses and sense definitions is WordNet (42). For comparison, we used Oxford251

Dictionary as an alternate source of word senses. We retrieved primary senses and corresponding definitions for words from252

two word lists. First, we obtained a subset of the dictionary by recording 3, 353 compounds that appear in both LADEC (24)253

and the online version of Oxford Dictionary†. Second, we obtained 43, 482 COHA lemmas and their definitions that appear in254

archived webpages of Oxford Dictionary‡. In total, this provided us with a set of 77, 359 senses for 30, 760 words.255

A.2. Methods. In the main text, we mapped each word sense c to a vector by embedding the definition of c with Sentence-256

BERT (43). For comparison, we considered a baseline approach where we embedded each word sense by using the bag of words257

in its definition. For each word sense c, we first obtained its definition in WordNet or Oxford Dictionary, and we recorded the258

words that are not stopwords and only contain alphabetical characters. We then embedded c by averaging the word embeddings259

of these words. We used a set of pre-trained word2vec embeddings that were trained on a 600B-token corpus from Common260

Crawl using the continuous bag-of-words architecture (44, 45).261

We considered the following approaches to construct the prototype qw,L for an existing word w. For WordNet-based262

embeddings, as in the main text, we constructed the prototype by taking the weighted average of the embeddings of its word263

senses; we set the weights as sense frequencies obtained from the post-2000 subset of COHA. We also considered two baseline264

approaches where the weight is uniform or all weight is concentrated on the most common sense (mcs) in WordNet. For265

Oxford Dictionary-based embeddings, we only considered unweighted averages since we did not have easily accessible frequency266

information that fully covers our dataset. Finally, since word similarity datasets are usually used to evaluate word embeddings,267

we directly used the same pre-trained word2vec embeddings (44, 45) as prototype vectors. We always set the existing lexicon L268

to be the full set of form-sense pairs in a dictionary since we used contemporary datasets of human similarity ratings.269

To evaluate our semantic spaces and prototypes, we first computed the cosine distance between qw,L and qu,L for every word270

pair w and u in one of the word similarity datasets. We then computed the correlation between cosine distances and human271

ratings of pairwise similarity. To directly compare different approaches, we ensured only word pairs that exist in the vocabulary272

of every embedding method are used for evaluation. This yielded a 181-pair subset of WordSim-353 focused on similarity, a273

219-pair subset of WordSim-353 focused on relatedness, a 2647-pair subset of MEN, and 957-pair subset of SimLex-999.274

A.3. Results. We summarize our results for the similarity subset of WordSim-353 in Table S6, for the relatedness subset of275

WordSim-353 in Table S7, for MEN in Table S8, and for SimLex-999 in Table S9. For all datasets, we observe that directly276

using word2vec embeddings usually yields the highest correlations, and weighted averaging of WordNet senses encoded by277

Sentence-BERT is the best sense-level approach. We can also observe that simple averaging of WordNet senses performs better278

than simple averaging of Oxford Dictionary senses, and Sentence-BERT encoded definitions outperform the bag-of-words279

baseline. These results provide validation for our model of the listener distribution by showing that the WordNet-based280

semantic space and weighted averaging approach reflect human judgements of word similarity.281

†https://www.lexico.com/
‡https://archive.org
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Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.834 < 0.001 −0.836 < 0.001 181
OD W2V (average) −0.456 < 0.001 −0.452 < 0.001 −
OD SBERT (average) −0.588 < 0.001 −0.576 < 0.001 −
WN W2V (mcs) −0.549 < 0.001 −0.497 < 0.001 −
WN W2V (average) −0.521 < 0.001 −0.506 < 0.001 −
WN W2V (weighted) −0.659 < 0.001 −0.628 < 0.001 −
WN SBERT (mcs) −0.617 < 0.001 −0.571 < 0.001 −
WN SBERT (average) −0.697 < 0.001 −0.695 < 0.001 −
WN SBERT (weighted) −0.764 < 0.001 −0.741 < 0.001 −

Table S6. Evaluating semantic spaces and word-level prototypes using word similarity ratings (WordSim-353 sim); W2V = word2vec, SBERT =
sentence-BERT, OD = Oxford Dictionary, and WN = WordNet

Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.699 < 0.001 −0.728 < 0.001 219
OD W2V (average) −0.173 0.010 −0.190 0.005 −
OD SBERT (average) −0.283 < 0.001 −0.278 < 0.001 −
WN W2V (mcs) −0.344 < 0.001 −0.353 < 0.001 −
WN W2V (average) −0.308 < 0.001 −0.274 < 0.001 −
WN W2V (weighted) −0.439 < 0.001 −0.416 < 0.001 −
WN SBERT (mcs) −0.339 < 0.001 −0.303 < 0.001 −
WN SBERT (average) −0.424 < 0.001 −0.392 < 0.001 −
WN SBERT (weighted) −0.509 < 0.001 −0.493 < 0.001 −

Table S7. Evaluating semantic spaces and word-level prototypes using word similarity ratings (WordSim-353 rel); abbreviations follow Table S6

Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.819 < 0.001 −0.838 < 0.001 2647
OD W2V (average) −0.388 < 0.001 −0.391 < 0.001 −
OD SBERT (average) −0.487 < 0.001 −0.493 < 0.001 −
WN W2V (mcs) −0.515 < 0.001 −0.515 < 0.001 −
WN W2V (average) −0.448 < 0.001 −0.445 < 0.001 −
WN W2V (weighted) −0.574 < 0.001 −0.580 < 0.001 −
WN SBERT (mcs) −0.568 < 0.001 −0.574 < 0.001 −
WN SBERT (average) −0.595 < 0.001 −0.600 < 0.001 −
WN SBERT (weighted) −0.666 < 0.001 −0.683 < 0.001 −

Table S8. Evaluating semantic spaces and word-level prototypes using word similarity ratings (MEN); abbreviations follow Table S6

Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.457 < 0.001 −0.404 < 0.001 957
OD W2V (average) −0.074 0.022 −0.082 0.012 −
OD SBERT (average) −0.275 < 0.001 −0.288 < 0.001 −
WN W2V (mcs) −0.170 < 0.001 −0.181 < 0.001 −
WN W2V (average) −0.208 < 0.001 −0.194 < 0.001 −
WN W2V (weighted) −0.259 < 0.001 −0.246 < 0.001 −
WN SBERT (mcs) −0.293 < 0.001 −0.313 < 0.001 −
WN SBERT (average) −0.401 < 0.001 −0.378 < 0.001 −
WN SBERT (weighted) −0.438 < 0.001 −0.426 < 0.001 −

Table S9. Evaluating semantic spaces and word-level prototypes using word similarity ratings (SimLex-999); abbreviations follow Table S6

B. Composite Prototype and Meaning Predictability. Here we evaluate our WordNet-based semantic space and composite282

prototypes. We first describe a compound dataset of meaning predictability and additional methods for constructing prototypes283

for compounds. We then use predictability ratings to compare different combinations of embedding method and construction284

of composite prototypes.285

B.1. Compound Dataset. The Large Database of English Compounds (LADEC; ref. 24) contains 8,957 English closed compounds286

compiled from the Brown, CELEX and COCA corpora and a dataset of phrases from ref. 46. Every entry in the database is an287

adjective-noun or noun-noun compound and contains information on the segmentation of the compound into head and modifier,288
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whether the segmentation is correct, and the corresponding human meaning predictability judgement. Meaning predictability289

was obtained by asking 1, 772 native English speakers how predictable a compound meaning is from its parts on a scale of 0290

(not very predictable) to 100 (very predictable). As before, we removed entries that are plural or incorrectly segmented.291

B.2. Methods. As in the main text, here we construct composite prototypes by applying composition functions to simple292

prototypes (i.e., the prototypes of lexicalized words instead of novel compounds). Since we needed to compute information loss293

for and thus apply composition to a large number of potential compounds, we prioritized tractability and focused on linear294

composition functions (47). Let w = xy be a compound with constituents x and y; the linear composition of the prototype295

vectors of its constituents is defined as follows:296

qw,L = Aqx,L + Bqy,L [8]297

Here qw,L is the composite prototype vector of w, and A and B are real-valued matrices; as before we set L to be the full298

set of form-sense pairs. We considered a weighted additive version of Equation 8 where the matrices are replaced by scalar299

weights (47). Here we replaced (A, B) with (1 − λ, λ) for λ = 0, 0.25, 0.5, 0.75, 1; note that λ = 0.5 is equivalent to the300

simple additive function used in the main text since we used cosine distance throughout. We also considered a full version of301

Equation 8 by using linear projection (ref. 48; also see refs. 49, 50). Specifically, we obtained matrices (A, B) by minimizing302

the mean squared error between the simple and composite prototypes of every compound in LADEC. This was implemented303

using batch gradient descent for 10, 000 iterations and the Adam optimizer (51) with learning rate α = 0.001 and decay rates304

(β1, β2) = (0.9, 0.999).305

We first evaluated these composition functions by using the best-performing simple prototypes in the previous section. After306

intersecting LADEC with WordNet and our set of pre-trained word2vec embeddings, we obtained a set of 3, 336 compounds307

with meaning predictability ratings. We then further evaluated our semantic space and simple prototypes from the previous308

section. After intersecting LADEC additionally with Oxford Dictionary, we obtained a set of 2, 121 compounds with meaning309

predictability ratings. In both cases, we computed the cosine distance between the composite and simple prototypes of every310

compound in LADEC, and we correlated these distances with human ratings.311

B.3. Results. The correlations based on the best simple prototypes are shown in Table S10. We observe that both types of312

embeddings yielded similar results across composition functions, and that the correlations tend to be relatively low when the313

weight on one of the constituents is zero. For simplicity, we focused on the simple additive function (λ = 0.5) since it tends to314

achieve the best results. In Table S11, we further evaluate semantic spaces and simple prototypes based on word2vec, Oxford315

Dictionary, and WordNet by using the simple additive function, and we observe the same general trends as in the previous316

section. These results provide further validation for our model of the listener distribution by showing that our composite317

prototypes reflect human judgements of compound meaning predictability.318

Method Pearson ρ p-value Spearman ρ p-value N
W2V Additive λ = 0 −0.353 < 0.001 −0.362 < 0.001 3336
W2V Additive λ = 0.25 −0.388 < 0.001 −0.394 < 0.001 −
W2V Additive λ = 0.5 −0.376 < 0.001 −0.384 < 0.001 −
W2V Additive λ = 0.75 −0.291 < 0.001 −0.306 < 0.001 −
W2V Additive λ = 1 −0.203 < 0.001 −0.218 < 0.001 −
W2V Linear −0.310 < 0.001 −0.315 < 0.001 −
WN Additive λ = 0 −0.330 < 0.001 −0.347 < 0.001 −
WN Additive λ = 0.25 −0.377 < 0.001 −0.390 < 0.001 −
WN Additive λ = 0.5 −0.385 < 0.001 −0.392 < 0.001 −
WN Additive λ = 0.75 −0.329 < 0.001 −0.341 < 0.001 −
WN Additive λ = 1 −0.258 < 0.001 −0.273 < 0.001 −
WN Linear −0.363 < 0.001 −0.370 < 0.001 −

Table S10. Evaluating composition functions based on WordNet (WN) sense-level representations and word-level word2vec (W2V)

Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.385 < 0.001 −0.391 < 0.001 2121
OD W2V (average) −0.128 < 0.001 −0.109 < 0.001 −
OD SBERT (average) −0.256 < 0.001 −0.252 < 0.001 −
WN W2V (mcs) −0.154 < 0.001 −0.157 < 0.001 −
WN W2V (average) −0.172 < 0.001 −0.171 < 0.001 −
WN W2V (weighted) −0.267 < 0.001 −0.258 < 0.001 −
WN SBERT (mcs) −0.300 < 0.001 −0.317 < 0.001 −
WN SBERT (average) −0.346 < 0.001 −0.348 < 0.001 −
WN SBERT (weighted) −0.408 < 0.001 −0.417 < 0.001 −

Table S11. Evaluating semantic spaces and simple prototypes using meaning predictability ratings; abbreviations follow Table S6
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C. Sensitivity Parameter. In the main text, we combined sense and word-level representations with the similarity choice319

model (52, 53) to instantiate the listener distribution. The model contains a single sensitivity parameter γ that determines320

how likely the listener prefers to infer the most transparent interpretation of the word that was uttered by the speaker. We321

focused on the communication of novel concepts, but in our scenario the speaker also communicates concepts in the existing322

lexicon L to listeners that use identical listener distributions for existing words. Here we examine how the sensitivity parameter323

influences the average information loss incurred in the latter case.324

To do so, we reused our WordNet-based datasets for English, French, and Finnish, except for each historical interval, we325

focused on the existing lexicon L instead of the encoding E∗. In other words, we computed the average cost of communicating326

existing concepts by using the omitted sum in Equation 6:327

Lβ [L] =
∑

(c,w)∈L

p(c, w|L) · (h(m̂w,L(c)) + βl(w)) [9]328

We used two implementations of the weight p(c, w|L) and the listener distribution m̂w,L. First, following the main text, we329

implementing each weight using sense frequencies from COHA (21) and token frequencies from the Google Ngrams corpus (23)330

and the FNC (29), and we used the same definition of the listener distribution as in the main text. Second, we repeated the331

first implementation by changing the weight to a uniform distribution over existing form-sense pairs while keeping the listener332

distribution constant.333

Since word length is independent of γ in Equation 9, we only computed the average information loss across five intervals for334

English, French and Finnish. We set the sensitivity parameter γ as 0, 1, 2, ..., 29. The results are summarized in Figure S1. As335

expected, information loss is high when γ is small since that implies the listener does not distinguish among senses. However,336

loss decreases with γ until it reaches [15, 20]. This is because an overly large γ puts most probability mass on a single sense337

that is the nearest neighbour of the prototype qw,L, which increases information loss when the same word is used to express338

multiple senses. We can also observe that French and Finnish tend to have higher information loss when the weight p(c, w|L) is339

uniform. This is because large γ penalizes words with many senses more severely when the weight is uniformly distributed as340

opposed to being concentrated on prototypical or frequent senses. Similarly, the difference between English (uniform) and341

the other languages (uniform) is because the greater coverage of lexical items in the original Princeton WordNet caused the342

English lexicons to have more monosemous words (average percentage of monosemous words = 82.1%) than French lexicons343

(average percentage of monosemous words = 61.1%) and Finnish lexicons (average percentage of monosemous words = 50.8%).344

Fig. S1. Information loss incurred over communicating existing concepts. Triangles indicate the lowest information loss for a specific language and interval. Legend on the right
indicates the starting year of the interval.
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4. Additional Average-Case Analyses345

We present additional average-case analyses of attested reuse items and compounds. First, we present analyses using variants346

of the main-text implementation with different sensitivity parameters and a uniform frequency distribution of attested items.347

Second, we present an average-case analysis that uses phonological representations of word forms. We then present an analysis348

of the English data by representing concepts with historical word embeddings. Finally, we present two analyses on alternative349

datasets of lexicalized concepts.350

A. Parameter Variation. We tested the robustness of our main-text results by computing average-case efficiency loss under351

different settings of the sensitivity parameter γ and the joint distribution for need and production. We used γ = 5, 6, ..., 15 and352

both frequency-based and uniform distributions. For tractability, unlike the main text we used a small number of tradeoff353

parameters, setting β = 0, 0.15, 0.5, 1, 10, and we reduced the number of baselines created per attested encoding to 1, 000. All354

other procedures follow the methods in the main text. Figure S2 summarizes the efficiency loss of attested items and baselines.355

Each bar corresponds to the average over all languages, intervals, and strategies. We observe the same trend as in the main356

text: attested encodings are more efficient relative to both baselines, and near-synonym baselines are more efficient than357

random baselines. We can also observe that efficiency loss tends to increase with γ. This is likely because larger γ increases the358

gap in information loss between any non-optimal encoding and the Pareto frontier.359

Fig. S2. Efficiency loss of attested reuse items and compounds relative to the average loss of baselines. As in the main text, blue bars correspond to attested items, light blue
bars correspond to near-synonym baselines, and grey bars correspond to random baselines. Error bars show bootstrapped 95% confidence intervals.

B. Phonological Representation. In the main text, we used orthographic representations of word forms to approximate speaker360

production effort. Here we present the same analysis by using a better approximation that represents word forms using361

phonemes. We focused on English and French since the Finnish grapheme-phoneme mapping is essentially one-to-one (54).362

B.1. Sound Dictionaries. To test our proposal using phonological representation of word forms, we used the following sound363

dictionaries. For English, we used the unstressed version of the CMU Pronouncing Dictionary (55) which is commonly used364

to evaluate models for grapheme to phoneme conversion. The dictionary contains 133, 854 unique entries, and each entry is365

an English word in orthographic form paired with a phonemic form. The phoneme inventory of the dictionary contains 39366

unique phonemes. For French, we used the Lexique database (version 3.83; ref. 56). This database contains 142, 694 unique367

entries. Each entry contains a series of variables that describe a lexical item, but we focused on each item’s orthographic368

form, phonemic form, and part of speech. The phoneme inventory of the dictionary contains 38 unique phonemes. For both369

dictionaries, we removed entries in which the orthographic form contains non-alphabetical characters. For French, if entries370

with the same orthographic form and part of speech map to multiple phonemic forms, we used the first phonemic form in the371

dictionary’s default ordering. We did the same for English except we did not consider part of speech as it was not provided by372

the dictionary. This provided us with 116, 507 unique entries for English and 137, 819 unique entries for French.373

We note that these sound dictionaries were compiled relatively recently and thus do not account for sound changes that374

took place over the target periods of our study. While chain shifts preserve form-concept mappings, other types of sound375

change (e.g., deletions or mergers) may affect the length of a word form or the distinction between phonemes and thus the376

informativeness of a word form (57). We leave more fine-grained phonological representations and their application to an377

efficiency-based analysis of reuse and combination for future work.378

B.2. Out of Vocabulary Words. Although these sound dictionaries are large, they only cover a limited subset of lemmas in the379

English and French WordNets because many entries correspond to inflected forms. To ensure a comprehensive analysis of our380

historical data, we obtained the phonemic form of a word w not in the above sound dictionaries in one of two ways. If w is a381
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compound in some attested encoding E∗, we approximated its phonemic form using the concatenation of the phonemic forms of382

its constituents. Otherwise, if w is a word in the existing lexicon L, we approximated its phonemic form using a state-of-the-art383

grapheme-to-phoneme model that is based on the transformer (58, 59). We first evaluated the model by applying it to the384

sound dictionaries described above and using 10-fold cross validation. We obtained an accuracy of 0.694 and a phoneme error385

rate of 0.0831 for English, and an accuracy of 0.960 and a phoneme error rate of 0.0831 for French; the English accuracy is386

slightly worse than the accuracy reported in ref. 59 for the same dataset and the high French accuracy is likely due to a large387

number of inflicted forms in the data, but nonetheless we take this as evidence that the model is able to generalize well. We388

thus trained an English model and a French model on the full dictionaries respectively, and used them to map every form in389

existing lexicons to a phonological representation.390

B.3. Results. We used these phonological representations of English and French words to test our proposal. We reused the391

implementations of the scenario described in the main text, except for changes in form-concept mappings. For both languages,392

we replaced the orthographic form in every original form-concept pair with its unique corresponding phonemic form; for French,393

some orthographic forms have multiple phonemic forms corresponding to different parts of speech, and in these cases we394

assigned the correct phonemic form based on the part of speech of the WordNet sysnet for the concept. For both the existing395

lexicon L and the attested encoding E∗, we removed duplicate form-concept pairs after the conversion to phonemic forms. We396

removed compounds in E∗ if their phonemic forms were contained in the phoneme-based existing lexicon, but this only removed397

a very small number of attested compounds. We summarize descriptive statistics for our final datasets in Tables S12 and S13.398

Interval # existing forms # existing senses # reuse # combination
1900+ 45, 919 43, 649 136 766
1920+ 48, 101 45, 658 127 914
1940+ 49, 534 47, 194 140 627
1960+ 50, 452 48, 070 92 473
1980+ 51, 061 48, 555 21 47

Table S12. Number of existing forms and senses, and novel items for English after mapping orthographic forms to phonemic forms

Interval # existing forms # existing senses # reuse # combination
1900+ 18, 531 22, 840 147 124
1920+ 19, 031 23, 541 143 127
1940+ 19, 530 24, 235 140 77
1960+ 20, 121 24, 730 82 67
1980+ 20, 643 25, 160 16 13

Table S13. Number of existing forms and senses, and novel items for French after mapping orthographic forms to phonemic forms

To assess the efficiency of a phoneme-based encoding E∗, we measured the word length of each phonemic form using the399

number of phonemes in the string. We measured the information loss of a form-concept pair by reusing our implementation of400

the listener distribution in the main text, after finding that γ behaves similarly when existing concepts are communicated via401

phonemic forms. These costs were then averaged by reusing frequencies from the main text and combining the frequencies of402

homophones. As in the main text, we compare attested encodings of reuse items or compounds to Pareto frontiers and baseline403

encodings. These comparisons are summarized in Figure S3. We observe that similar to the main text, attested encodings tend404

to be closer to the frontier than both near-synonym and random encodings. We show quantitative measures of efficiency loss in405

Figure S4 which confirms our qualitative observations. These results show that our tradeoff proposal is robust to different406

channels of communication.407

Fig. S3. Illustration comparing (A) attested reuse items and (B) attested compounds to the constructed baselines and the Pareto frontier using an implementation based on
phonological representations of word forms.
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Fig. S4. Efficiency loss of (A) attested reuse items and (B) attested compounds based on phonological representations of word forms relative to the average loss of baselines.
Error bars show bootstrapped 95% confidence intervals.

C. Historical Embedding-based Implementation. In the main text, we implemented the listener distribution by assuming the408

similarity between any pair of concepts is constant across time, and we used a sentence encoder trained on contemporary text409

and sentence similarity ratings (43). Here we relax this assumption by measuring conceptual similarity with historical word410

embeddings (44, 60), and we analyze a subset of the English data used in the main text under this alternative implementation.411

C.1. Methods. We used pre-trained English historical word embeddings provided by HistWords (60). Specifically, we used the412

version that was based on the Google Ngrams corpus (All English version 2; ref. 23), which covers the most frequent 100, 000413

words in the 1800-2000 period of the corpus. For each decade in that period, a set of word embeddings is trained solely on414

the corresponding subset of the corpus using the skip-gram architecture (44). After training, these sets of embeddings were415

aligned across time periods while preserving the cosine similarities among embeddings from the same decade. Importantly,416

the embedding space for each decade is not influenced by novel word sense extensions or novel words that emerged in future417

decades.418

To apply these embeddings to our efficiency analysis, we reused our method in SI Appendix, Section S3 to represent WordNet419

senses by taking the bag of words in their definitions and averaging the corresponding word embeddings. We evaluated these420

representations by reusing the same method and datasets of pairwise word similarity and compound meaning predictability421

ratings in SI Appendix, Section S3. More specifically, for each word in the evaluation datasets, we represented the word by422

embedding its most common sense (mcs) in WordNet, by using the simple average of the embeddings of all definitions, or by423

using the weighted average of the embeddings of all definitions. In the case of compound meaning predictability, we focused on424

using simple additive composition. In all evaluations, we used HistWords embeddings from the decade of 1990 since this is the425

most recent available decade in HistWords and the evaluation datasets are contemporary; we compared the HistWords-based426

sense representations to two alternate approaches: 1) sense representations based on sentence-BERT (37), and 2) a simple427

approach in which we computed the cosine similarity between static word embeddings from HistWords.428

We summarize our evaluation results for the similarity subset of WordSim-353 in Table S14, for the relatedness subset429

of WordSim-353 in Table S15, for MEN in Table S16, for SimLex-999 in Table S17, and for LADEC compound meaning430

predictability ratings in Table S18. Here we observe that the representation we used in the main text (WN SBERT) is the431

best sense-level representation across all datasets, but we can also observe that the HistWords-based representation that is432

weighted by sense frequency tends to outperform several baselines. These results provide evidence that our HistWords-based433

representation of word senses reflect human judgements of word similarity and compound meaning predictability to a reasonable434

extent.435

Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.715 < 0.001 −0.716 < 0.001 194
WN W2V (mcs) −0.540 < 0.001 −0.508 < 0.001 −
WN W2V (average) −0.577 < 0.001 −0.536 < 0.001 −
WN W2V (weighted) −0.664 < 0.001 −0.644 < 0.001 −
WN SBERT (mcs) −0.616 < 0.001 −0.576 < 0.001 −
WN SBERT (average) −0.694 < 0.001 −0.688 < 0.001 −
WN SBERT (weighted) −0.761 < 0.001 −0.738 < 0.001 −

Table S14. Evaluating semantic spaces using word similarity ratings (WordSim-353 sim); W2V = word2vec using HistWords, SBERT =
sentence-BERT, and WN = WordNet
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Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.604 < 0.001 −0.614 < 0.001 235
WN W2V (mcs) −0.327 < 0.001 −0.323 < 0.001 −
WN W2V (average) −0.362 < 0.001 −0.334 < 0.001 −
WN W2V (weighted) −0.411 < 0.001 −0.399 < 0.001 −
WN SBERT (mcs) −0.340 < 0.001 −0.308 < 0.001 −
WN SBERT (average) −0.407 < 0.001 −0.377 < 0.001 −
WN SBERT (weighted) −0.489 < 0.001 −0.474 < 0.001 −

Table S15. Evaluating semantic spaces using word similarity ratings (WordSim-353 rel); abbreviations follow Table S14

Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.685 < 0.001 −0.698 < 0.001 2911
WN W2V (mcs) −0.482 < 0.001 −0.483 < 0.001 −
WN W2V (average) −0.528 < 0.001 −0.520 < 0.001 −
WN W2V (weighted) −0.583 < 0.001 −0.590 < 0.001 −
WN SBERT (mcs) −0.570 < 0.001 −0.574 < 0.001 −
WN SBERT (average) −0.598 < 0.001 −0.601 < 0.001 −
WN SBERT (weighted) −0.671 < 0.001 −0.686 < 0.001 −

Table S16. Evaluating semantic spaces using word similarity ratings (MEN); abbreviations follow Table S14

Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.234 < 0.001 −0.231 < 0.001 989
WN W2V (mcs) −0.182 < 0.001 −0.180 < 0.001 −
WN W2V (average) −0.245 < 0.001 −0.228 < 0.001 −
WN W2V (weighted) −0.272 < 0.001 −0.246 < 0.001 −
WN SBERT (mcs) −0.303 < 0.001 −0.316 < 0.001 −
WN SBERT (average) −0.399 < 0.001 −0.373 < 0.001 −
WN SBERT (weighted) −0.441 < 0.001 −0.424 < 0.001 −

Table S17. Evaluating semantic spaces using word similarity ratings (SimLex-999); abbreviations follow Table S14

Method Pearson ρ p-value Spearman ρ p-value N
Word-level W2V −0.190 < 0.001 −0.200 < 0.001 1208
WN W2V (mcs) −0.185 < 0.001 −0.187 < 0.001 −
WN W2V (average) −0.283 < 0.001 −0.273 < 0.001 −
WN W2V (weighted) −0.327 < 0.001 −0.318 < 0.001 −
WN SBERT (mcs) −0.293 < 0.001 −0.300 < 0.001 −
WN SBERT (average) −0.341 < 0.001 −0.331 < 0.001 −
WN SBERT (weighted) −0.417 < 0.001 −0.415 < 0.001 −

Table S18. Evaluating semantic spaces using compound meaning predictability ratings; abbreviations follow Table S14

C.2. Results. We used English historical word embeddings to further test our proposal. We reused the implementations in the436

main text except we represented each word sense via the averaging method described above and word embeddings from the437

decade of t0 = t1 − 10. To make sure the sense representations do not misrepresent the corresponding word senses, we removed438

word senses in the existing lexicon L and attested encoding E∗ if one of the non-stopword words in their definitions does not439

exist in the vocabulary of the embeddings from t0. The descriptive statistics of our final datasets are summarized in Table S19.440

Interval # existing forms # existing senses # reuse # combination
1900+ 34, 886 31, 538 60 366
1920+ 37, 249 33, 655 54 474
1940+ 37, 691 34, 197 57 341
1960+ 40, 680 37, 042 50 287
1980+ 43, 938 40, 137 15 30

Table S19. Number of existing forms and senses, and novel items across intervals after intersecting with HistWords

As in the main text, we assessed the efficiency of an attested encoding by measuring orthographic length and measuring441

information loss with γ = 10. These costs were averaged using the same frequencies from the main text plus normalization. We442

compared the attested reuse-based and compound-based encodings to Pareto frontiers and the same types of baseline encodings,443

which are summarized in Figure S5. Similar to the main text, we observe that attested encodings tend to be closer to the444
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Pareto frontier than both the near-synonym and random baselines. Figure S6 shows comparisons based on the quantitative445

measure of efficiency loss, and we observe a trend that is consistent with our qualitative observations. These results suggest446

that our findings do not arise because of potential systematic biases in using contemporary embeddings.447

Fig. S5. Illustration comparing attested reuse items and compounds to constructed baselines and Pareto frontiers using an implementation based on HistWords.

Fig. S6. Efficiency loss of (A) attested reuse items and (B) attested compounds relative to the average loss of baselines, under an implementation of our scenario using
HistWords. Error bars show bootstrapped 95% confidence intervals.

D. Alternative Datasets of Lexicalized Concepts. Here we present two further analyses to show our findings are robust to448

datasets of lexicalized concepts that are alternative to WordNet. We first describe an implementation of our scenario based on449

Oxford Dictionary. We then describe an implementation that assumes one-to-one correspondence between concept and form.450

D.1. Oxford Dictionary. In SI Appendix, Section S3, we showed that WordNet-based semantic representations tend to be better451

at reconstructing human ratings of word similarity than Oxford Dictionary-based representations, but the latter nonetheless452

significantly correlated with human ratings. We thus tested the robustness of our findings and performed an analysis of English453

reuse items and compounds using Oxford Dictionary (OD) definitions. We first describe how we processed OD-based form-sense454

pairs, and then we describe how we adapted our methods and assessed the efficiency of attested items.455

We first obtained candidates of novel reuse items and compounds by using our OD dataset from the previous sections456

and intersecting it with the HTE (26). To obtain novel reused items, we used the same keyword matching method (see SI457

Appendix, Section S2.A) and obtained 325 candidate form-sense pairs, which were then manually checked against the OED and458

yielded 149 pairs that emerged during the past century. To obtain novel compounds, we focused on closed compounds since459

we only retrieved unigrams from OD and we identified these compounds using LADEC (24) and Wiktionary (25). As in the460

WordNet implementation, we assumed each compound-sense pair emerged at the first citation year of the compound form,461

which provided us with 399 compound-sense pairs from the past century.462

To obtain emerging and existing concepts and their encodings for each interval, we first filtered form-sense pairs that463

contained unknown, abbreviation, or proper noun in their part of speech information, and we then reused the procedures464

for processing WordNet-based English data. We used COHA-based frequency data for OD senses provided by ref. 31 to465

estimate the sets of existing form-sense pairs; polysemous words not in their dataset were excluded to simplify the calculation466

of form-sense frequencies. The total number of existing forms, existing senses, and novel items are summarized in Table S20.467

To assess the efficiency of these attested items, we reused the main-text implementation with the exception of the need and468

production distributions and the semantic space. The need and production distributions were estimated using the Google469

Ngrams corpus (23) and add-one smoothing as in the main text, but sense frequencies were estimated using the dataset from470

ref. 31. The listener distribution was also implemented in the same way, but here we used sentence embeddings of OD sense471

definitions and used the frequencies of these senses to construct prototypes. Note that reusing the same implementation implies472

we set γ = 10. We also created the near-synonym and random baselines in the same way. We approximated every Pareto473

frontier via our greedy method for β = 0, 0.01, ..., 10.474
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Interval # existing forms # existing senses # reuse # combination
1900+ 27, 533 31, 121 30 46
1920+ 28, 471 32, 214 28 62
1940+ 29, 167 33, 047 37 48
1960+ 29, 753 33, 696 31 53
1980+ 30, 287 34, 197 23 14

Table S20. Number of existing forms and senses, and novel items across intervals for the Oxford Dictionary-based analysis

We compare these English reuse items and closed compounds to baselines in Figure S7. As in the main text, each point475

corresponds to an encoding of novel concepts within a certain interval, and the closer a point is to the Pareto frontier the476

more efficient it is. For this smaller set of English reuse items and compounds, we observe that attested items tend to be more477

efficient relative to both baselines as in the main results, except for reuse items in the 1960+ interval. Figure S8 shows the478

average-case efficiency loss of these items which confirms our qualitative observations. Taken together, these results suggest our479

findings are generally robust to different dictionaries of word senses.480

Fig. S7. Illustration comparing attested reuse items and compounds to constructed baselines and Pareto frontiers under an Oxford Dictionary-based implementation.

Fig. S8. Efficiency loss of (A) attested reuse items and (B) attested compounds relative to the average loss of baselines, under an implementation of our scenario using the
Oxford Dictionary. Error bars show bootstrapped 95% confidence intervals.

D.2. One-to-one Correspondence. A more coarse-grained way to implement our framework is to assume one-to-one correspondence481

between concept and form instead of using word senses. An intuitive extension of this assumption is to operationalize novel482

concepts as new forms, which would be based on more accessible and accurate first citation and frequency information as it483

does not require sense-level information. In the following, we describe how we adapted this alternate implementation to our484

methods for the main text and used it to assess the efficiency of novel items in English.485

First, for each historical interval used in the main text, we listed the sets of existing words, novel compounds, and reuse486

items. For an interval starting at year t1, we set the list of existing words as all word forms in the HTE (26) that existed in the487

year t1 − 1 and do not contain non-alphabetical or uppercase characters; the size of these lists range from 91, 816 to 112, 094.488

We obtained novel English compounds by using closed compounds in LADEC (24) and Wiktionary (25) and checking their489

first citation in the HTE (26); we removed compounds in which the rightmost constituent is a preposition, and this provided us490

with 565 compounds that emerged in the past century. One drawback of the one-to-one assumption is that we no longer have491

access to word senses, but we can still examine the subset of reuse items that involve existing words gaining the meaning of492

a new word. We thus used compound head words to approximate reuse items that express the meanings of attested novel493

compounds; we assumed the rightmost constituent of each novel compound is the head word.494

Instead of using word sense definitions and their embeddings to implement the listener distribution, a natural approach in this495

word-level analysis is to use word embeddings (e.g., ref. 44). Here, we used the same pre-trained word2vec embeddings (44, 45)496
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that we validated against human ratings of English word similarity and compound meaning predictability in a previous section.497

We intersected these embeddings with the lists of existing words and novel compounds, and for each interval we removed a498

form from the set of novel compounds if one of the constituents is not an existing word. The total number of existing forms499

and novel items are summarized in Table S21.500

Interval # existing forms # compounds
1900+ 60, 055 98
1920+ 62, 601 114
1940+ 65, 936 117
1960+ 68, 895 114
1980+ 71, 182 27

Table S21. Number of existing forms and novel compounds across intervals for the word-level analysis

To assess the efficiency of these attested compounds and approximate reuse items, we used a simplified version of the501

implementation in the main text that is based on word-level statistics. Since each form corresponds to a single concept, we502

estimated the need and production distributions using unigram frequency from the Google Ngrams corpus (23) and add-one503

smoothing. We used the same settings for the listener distribution except we used a single pre-trained word2vec embedding (45)504

to represent the prototype of an existing word. Lastly, for simplicity we used γ = 10, but we note that due to the one-to-one505

assumption, the information loss incurred over communicating existing concepts is minimized when γ → ∞ instead of the lower506

values observed in SI Appendix, Section S3.C. The baselines were created in the same way as in the main text. We estimated507

Pareto frontiers using the same method for β = 0, 0.01, ..., 10.508

Figure S9 shows the average information loss and word length of attested closed compounds and approximate reuse items.509

As usual, the closer an encoding is to the Pareto frontier the more efficient it is, but here the frontier is the same for both reuse510

and compound in the same historical interval because the set of novel concepts is the same. Figure S10 shows the quantitative511

efficiency loss that intuitively corresponds to how far each encoding is away from the Pareto frontier. Overall, we observe that512

attested items are relatively more efficient than the corresponding baselines. We can also observe that approximate reuse items513

tend to have lower values of efficiency loss than attested compounds. This may be due to the fact that our word embeddings514

were trained on contemporary text in which the historically dominant meanings of reused words were replaced by historically515

emerging concepts (e.g., phone gaining the sense of cellphone and losing the sense of rotary dial phone).516

Fig. S9. Illustration comparing attested reuse items and compounds to constructed baselines and Pareto frontiers under the one-to-one assumption.

Fig. S10. Efficiency loss of (A) approximate reuse items based on head words and (B) attested compounds relative to the average loss of baselines, under an implementation
of our scenario using word embeddings. Error bars show bootstrapped 95% confidence intervals.
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5. Additional Item-Level Analyses517

We present additional analyses in which we analyze individual reuse items or compounds as opposed to encodings (or sets of518

form-concept pairs). We first compare item-level efficiency loss between orthographic and phonemic representations of the same519

attested items. The remainder of the section focuses on our implementation in the main text. We provide examples of novel520

items that we classified as literal items, and we illustrate the main-text literal vs non-literal comparisons. We next examine521

distributions of item-level efficiency loss alongside distributions of information loss and word length. Lastly, we explore two522

additional factors as predictors of variation in item-level efficiency.523

A. Comparing Orthographic and Phonemic Forms. Here we examine the item-level variation in efficiency based on phonemic524

forms. We reused our implementation in SI Appendix, Section S4.B and replaced each attested encoding E∗ with a singleton525

containing a single attested item as in the main text. We performed two analyses: 1) we tested whether item-level efficiency526

differs between representations on average, and 2) we tested whether the relative rank of an attested item in terms of527

efficiency differs across representations. In the first analysis, we did not find there are significant differences in efficiency528

for English reuse items (t(1034) = −0.660, p = 0.509), French reuse items (t(1056) = 1.063, p = 0.288), English compounds529

(t(5654) = −0.565, p = 0.572), or French compounds (t(812) = 0.273, p = 0.785). In the second analysis, we found that530

item-level efficiency is highly correlated across representations. The correlation statistics are summarized in Table S22. Overall,531

we did not find significant differences in item-level variation between the representations, and thus we focused on analyzing532

item-level variation using orthographic forms.533

Group Spearman ρ p-value N
English reuse 0.925 < 0.001 518
English compound 0.967 < 0.001 2828
French reuse 0.950 < 0.001 529
French compound 0.958 < 0.001 407

Table S22. Correlations between orthography-based item-level efficiency and phoneme-based item-level efficiency

B. Examples of Literal Items. Table S23 shows examples of literal items from the main text.534

Label Head Head hypernym definition
printer printer a machine that prints
birthday card card a rectangular piece of stiff paper used to send messages
publicité publicité a message issued in behalf of some product or cause or idea or person or institution
turbine à gaz turbine rotary engine in which the kinetic energy of a moving fluid is converted into mechanical energy by

causing a bladed rotor to rotate
suodatin suodatin device that removes something from whatever passes through it
sotarikos rikos activity that transgresses moral or civil law

Table S23. Examples of literal items and their hypernyms in existing lexicons

C. Efficiency in Literal and Non-Literal Items. Figure S11 illustrates the comparisons between literal and non-literal items535

presented in the main text.536

Fig. S11. Averages of item-level efficiency loss for literal and non-literal (A) reuse items and (B) compounds. For each plot in row (A), the left shows attested non-literal reuse
items and additional non-literal reuse items based on exocentric compounds; the right shows attested literal reuse items and additional literal reuse items based on endocentric
compounds. Error bars indicate bootstrapped 95% confidence intervals.
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D. Strategy Comparison. We compare distributions of item-level costs between reuse and compounding, separately for the537

languages examined in the main text. Figure S12 summarizes the distributions for English: on average, there is no evidence that538

item-level efficiency loss is significantly different between reuse and compounding (t(3346) = −0.130, p = 0.897), but reuse items539

tend to have higher information loss than compounds (t(3346) = 13.046, p < .001) and lower word length (t(3346) = −34.908,540

p < .001). Distributions of item-level costs for French and Finnish are summarized in Figures S13 and S14. A similar trend is541

observed for French: reuse items do not differ significantly from compounds in efficiency loss (t(936) = −0.498, p = 0.618),542

but they have higher information loss (t(936) = 5.784, p < 0.001) and lower length (t(1154) = −31.907, p < 0.001). However,543

Finnish reuse items are both lower in efficiency loss (t(1154) = −5.225, p < 0.001) and length (t(1154) = −26.909, p < 0.001),544

while information loss is not significantly different (t(1249) = 0.0202, p = 0.984).545

In sum, reuse items have lower word length than compounds on average in all languages, and information loss is lower in546

compounds relative to reuse items in English and French. Nonetheless, differences between strategies are smaller in terms of547

information loss compared to differences in length across all languages, and Finnish compounds are not more informative on548

average. Since our listener distributions for compounds were implemented using very simple models, we hypothesize that it549

could have systematically underestimated the informativeness of compounds and their relative advantage over reuse items.550

Fig. S12. Distributions of item-level efficiency loss, information loss, and word length for English (A) reuse items and (B) compounds. In each plot, the vertical line indicates the
mean of the distribution.

Fig. S13. Distributions of item-level efficiency loss, information loss, and word length for French (A) reuse items and (B) compounds. In each plot, the vertical line indicates the
mean of the distribution.

Fig. S14. Distributions of item-level efficiency loss, information loss, and word length for Finnish (A) reuse items and (B) compounds. In each plot, the vertical line indicates the
mean of the distribution.
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E. Taxonomic Distance Measures. In the main text, we classified both reuse items and compounds into literal and non-literal551

items by using hyponymic relations in the WordNet taxonomy. However, there are two limitations with this approach: 1) literal552

reuse items may be diminished because the original Princeton WordNet avoided linking a sense and its hyponyms to the same553

word (61), and 2) hyponymic relations can be taxonomic but also functional (62). Here we attempt to address the second554

limitation by using conceptual similarity measures to approximate hyponymic relations not captured in WordNet. To this555

end, we used Leacock-Chordorow similarity (63) and Wu-Palmer similarity (64). These taxonomic similarities are based on556

the position of the lowest common hypernym of any pair of senses, and may help to approximate hyponymic relations not557

encoded in WordNet while preserving encoded relations. For example, poker is a type of metal rod used as fire iron, and even558

though poker is not a hyponym of rod in WordNet, they are closely associated by their common hypernym implement (a piece559

of equipment or tool).560

To assess how these similarity measures are related to item-level efficiency, we extended our binary classification in the561

main text. Let c be a novel sense, w be an existing word, and c1, ..., cn be the existing senses of w. If a reuse item consists of562

novel sense c and existing word w, then we measured the taxonomic similarity of the item as the maximum between novel and563

existing senses:564

sim(c, w) = max{wn-sim(c, ci) : i = 1, ..., n} [10]565

Here wn-sim(·, ·) is either Leacock-Chordorow or Wu-Palmer similarity. If a compound item consists of a novel sense c and566

head word w, we plugged c and w into the similarity measure in Equation 10 to obtain an extension of endocentricity. We567

excluded reuse and compound items where there is no path between c and the existing senses from our analysis.568

We summarize the spearman correlations between item-level efficiency loss and Leacock-Chordorow similarity across569

languages and strategies in Tables S24, and summarize analogous results based on Wu-Palmer similarity in Table S25. In all570

cases, we observe that a novel item tends to be more efficient when it is closer to the existing senses of a reused word or head571

word. This is consistent with our results in the main text which showed literal items tend to be more efficient.572

Group Spearman ρ p-value N
English reuse −0.202 < 0.001 414
English compound −0.368 < 0.001 2505
French reuse −0.254 < 0.001 485
French compound −0.277 < 0.001 395
Finnish reuse −0.413 < 0.001 465
Finnish compound −0.323 < 0.001 637

Table S24. Correlations between Leacock-Chordorow similarity and item-level efficiency loss

Group Spearman ρ p-value N
English reuse −0.193 < 0.001 414
English compound −0.383 < 0.001 2505
French reuse −0.249 < 0.001 485
French compound −0.292 < 0.001 395
Finnish reuse −0.413 < 0.001 465
Finnish compound −0.367 < 0.001 637

Table S25. Correlations between Wu-Palmer similarity and item-level efficiency loss

F. Item Frequency. Usage frequency is often correlated with the economy of use of a word form (e.g., refs. 65, 66). Here we573

explore whether frequency also predicts item-level efficiency in attested reuse items and compounds. Intuitively, we expect574

frequent items to be more optimized than infrequent items, so that the total efficiency loss aggregated over many communicative575

interactions tends to be lower than otherwise.576

To investigate the relation between frequency and efficiency loss, we reused the historical frequencies of form-concept pairs577

that were used to implement the need and production distributions. We removed items that had no frequency before applying578

add-one smoothing, and we normalized the frequency of each item over the total frequency of both emerging and existing items579

in the same interval. The results for reuse items are summarized in Table S26 and the results for compounds are summarized in580

Table S27. Contrary to our prediction, we do not observe any significant correlation between item-level efficiency and frequency.581

One possible reason is that our frequency estimates are not sufficiently accurate; for example, a small amount of noise in word582

sense disambiguation may inflate the frequency of a peripheral sense drastically if the corresponding word is highly frequent.583

Another possible reason is that there are frequency-related factors beyond the scope of our account, and future work should584

investigate how these factors and our account are connected.585
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Language Pearson ρ p-value Spearman ρ p-value N
English −0.0606 0.242 −0.0488 0.346 375
French −0.0549 0.209 −0.0646 0.140 524
Finnish 0.0261 0.558 0.0564 0.206 505

Table S26. Correlations between the relative frequency of reuse items and item-level efficiency

Language Pearson ρ p-value Spearman ρ p-value N
English −0.00599 0.775 −0.00647 0.757 2284
French 0.0770 0.177 0.0357 0.531 310
Finnish 0.0257 0.641 0.00123 0.982 332

Table S27. Correlations between the relative frequency of compounds and item-level efficiency
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