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This document provides a full description of our materials and methods as well as supplemen-
tary information. “Data sets” describes the three main data sets our analyses build on. Section
“Knowledge types” describes the four knowledge types that were used as potential predictors.
This section also gives descriptive statistics on their relationship. “Model estimates and rank-
ings” lays out model estimates and rankings. Section “Comparison of estimates across data
subsets” reports on additional sensitivity analyses concerning different splits of the data. Sec-
tion “Self- and cross-prediction” provides details on self- and cross-predictions, as well as on
additional analyses to ensure, among others, that areal or phylogenetic biases did not influence
our results. Section “Visual similarity from self-supervised model” reports on another set of
robustness checks in which visual similarity is derived from a different model than the one re-
ported on in the main text. Section “Visualizations” gives complementary visualizations that
were backgrounded in the main text due to lack of space. Finally, Section “Repeated exten-
sions” provides further information on the data points that appear in multiple data sets.

Data Availability
All the data and resources that our analyses build on are freely available. Our code repository
(see below) provides details to obtain the data necessary to run the analyses. In their original
form, the data is available from the following sources. The CLICS3 data (36) is available at
https://clics.clld.org. The overextension data from Ferreira-Pinto & Xu 2021 (15)
is available at https://github.com/r4ferrei/computational-theory-ove
rextension. The DatSemShift 3.0 data (37) is available at https://datsemshift.
ru/. The English associativity data from Small World of Words (29), at https://smal
lworldofwords.org/en/project. The data from Visual Genome (52) is available at
https://visualgenome.org/. The affectiveness data from Mohammad 2018 (35), at
https://saifmohammad.com/WebPages/nrc-vad.html; and that from Warriner
et al. 2013 (34), at https://link.springer.com/article/10.3758/s13428-0
12-0314-x#SecESM1. Taxonomical information from WordNet (33) was queried through
NLTK (53), available at https://www.nltk.org/howto/wordnet.html. Glottolog
data is available at https://glottolog.org/meta/downloads.

Code Availability
Data processing and analysis code used in this study is available at https://osf.io/zkg
u3/

Materials and Methods
Data sets
Our analyses are based on three main data sets. The overextension data is from Ferreira-Pinto &
Xu 2021 (15). It aggregates cases of overextension attested in the literature; e.g., from Rescorla
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1980 (6) and Thomson & Chapman 1977 (54). Among others, these cases of overextension
encompass recorded play sessions, diary records, and picture naming activities. The data is
monolingual, from English speaking children.

The crosslinguistic colexification data is from the Database of Cross-Linguistic Colexifica-
tions, CLICS3, (36). This large data set aggregates and normalizes typological word-meaning
lists from other resources. For example, from the Intercontinental Dictionary Series (55).
CLICS3 relies on Glottolog (56) for language-level information, and provides information about
meanings and their lexifications in over 3000 languages.

The crosslinguistic semantic change data is from a subset of the Database of Semantic
Shifts in the languages of the world 3.0, DatSemShift, (37). DatSemShift also covers other
non-creative or non-lexical processes such as borrowing or cognancy. We focus on the subset of
shifts labeled as cases of “polysemy” since it corresponds to fossilized relics of lexical creativity.

We identify a language with its unique identifier from Glottolog (56), which also provides
information about the macro-area in which it is spoken. CLICS3 already comes enriched with
this information. To add this information to DatSemShift we proceeded in two steps. First, all
languages were automatically matched with their corresponding information from Glottolog if
their names agreed in both resources (e.g., Spanish is called “Spanish” in both Glottolog and
DatSemShift). Second, languages from DatSemShift with no match were manually matched
(e.g., “Skolt Sami” in DatSemShift corresponds to “Skolt Saami” in Glottolog). After this
process, we exclude data from languages that still lack an identifier since both the identifier
itself and the geographic information it comes associated with are components of our models
(see “Model estimates and rankings”).

Following previous work on colexification (10, 11), data from English was excluded from
both crosslinguistic data sets. We do so to minimize effects that may be due to having En-
glish as a language from which colexification or semantic change data comes from as well as
as a source of information for the four knowledge type we consider (see “Knowledge types”
for further detail and discussion; and “Self- and cross-prediction” and “Visual similarity from
self-supervised model” for additional analyses testing for linguistic or geographic biases).

Knowledge types
We consider four knowledge types: associativity, vision, affectiveness and taxonomic closeness.

Associativity The associativity data is from the English Small World of Words project (29).
It covers first, second, and third responses to 12,282 cues. Following De Deyne et al. (29), we
use a decaying random walk-based measure to derive a measure of associativity from this data.
This measure captures rich conceptual relations such as situation-based thematic relations (e.g.,
‘key’-‘door’), and it has been shown to outperform alternative formulations in other semantic
tasks (29) as well as for predicting crosslinguistic colexification patterns (11). It has also been
shown to fare well at characterizing child overextension (15). The general idea is that the
associative strength between cues is not reflected only by their shared responses but also through
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more indirect relationships mediated by other cues and responses. To this end, the raw cue-
response matrix is first normalized and re-weighted through pointwise mutual information. This
matrix then serves as a basis to operationalize the associativity of two cues as a function of the
number of responses that connect them in a network of cues, and their weight.

More precisely, let P be a PPMI-transformed and normalized cue-response matrix; I be
the identity matrix; and α < 1 a parameter that regulates to which extent the length of paths
matters. An associativity matrix G is then obtained as follows:

G = (I− αP)−1. (1)

The associativity of cues i and j is then

associativity(ci, cj) =
∑

k G[rk,ci] G[rk,cj ]√∑
k(G[rk,ci])

2
√∑

k(G[rk,cj ])
2
, (2)

with rk indexing the column of response k. Following De Deyne et al., we use α = 0.75. We
refer to this work for explicit derivations and further discussion (57) and (29).

Visual similarity Visual resemblance is based on computationally-derived visual representa-
tions of meanings, following (15) and (31). For all English glosses of meanings found in the
three data sets (see “Data sets”) and not covered in Gualdoni et al. 2022 (31), all images with
a matching name were retrieved from Visual Genome (52). Glosses with less than 30 matches
were excluded to avoid sparse representations. These images were then processed by the state
of the art language and vision model of Anderson et al. 2018 (32), yielding distributed (vec-
torial) representations of each image (see (31) and (32) for further detail). These images were
then averaged to arrive at visual prototypes –or visual average representations– of meanings.
For all the glosses covered in Gualdoni et al., we used their publicly available prototype rep-
resentations, obtained through the same procedure. Following previous work (15, 31), visual
similarity is then operationalized as the cosine similarity of such prototypes.

To ascertain that our results are not affected by the nature of the task that the model of An-
derson et al. (32) engages in, through which it learns its visual representations, we additionally
performed a sensitivity check. This check re-evaluates our main analyses employing a different
source of visual information, taken from a model engaged in a task with no linguistic com-
ponent. Our results are stable using either of the two models’ visual representations. Details
on this check and on the alternative model employed for this purpose are provided in “Visual
similarity from self-supervised model”, below.

Taxonomy Following Ferreira-Pinto & Xu 2021 (15), taxonomic similarity is based on the
Wu-Palmer similarity of synsets in WordNet (33), with synsets being the basic representational
unit of WordNet: a collection of synonyms that express the same meaning. This measure of
similarity is the quotient of tree depth of the most specific meaning above both synsets times
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two, and the sum of the depth of each of the synsets. That is, the Wu-Palmer similarity of
synsets si and sj is

WuPalmer(si, sj) = 2
depth(lcs(si, sj))

(depth(si) + depth(sj))
, (3)

with depth(·) being the depth of a synset in the taxonomy, and lcs(·, ·) the least common sub-
sumer of two synsets. The least common subsumer is the most specific ancestor node to both.
This yields a score bounded within 0 and 1 such that lower values correspond to meanings that
are further apart in the taxonomy.

Affectiveness Following De Deyne et al. 2021 (30), affectiveness is operationalized as the
cosine similarity of 9-dimensional vectors based on two resources. The first six dimensions
are valence, arousal, and dominance ratings from male and female participants from Warriner
et al.’s 2013 norms (34) . The remaining three dimensions correspond to rescaled valence,
arousal, and dominance judgments from Mohammad 2018 (35). This is the sparsest knowledge
type we consider, which may contribute to its lack of effect in characterizing crosslinguistic
data (see Section “Model estimates and rankings”).

Two important caveats apply to these four knowledge types. First, while they draw either
from English-speaking subjects (associativity; affectiveness) or from English resources (Visual
Genome; WordNet), we employ them to characterize crosslinguistic data beyond English in
the case of colexification and semantic change. As discussed in the main text, this limitation
is due to there not existing large scale resources for typologically diverse languages to cover
all four knowledge types. The one exception is visual similarity. See “Visual similarity from
self-supervised model” below for a scalable alternative that is less dependent on language. Sec-
ond, as also discussed in the main text, all this data comes from adult language use whereas
child overextension happens in early development. We hope that future research will produce
language resources with a broader typological and developmental coverage to enable a more
comprehensive analysis of the data.

Interestingly, while the anglo-centricity of some of these resources is a clear limitation,
crosslinguistic colexification has been shown to be a good predictor of affectiveness (18). That
is, colexification patterns were shown to provide a good basis to infer English affective norms.
This finding suggest that, while there is certainly an important cultural component to this kind of
data (17), it may be smaller than may be expected a priori –at least for the case of affectiveness.

Table S1 shows Pearson correlations between knowledge types for child overextension data;
Table S2 does so for the data in CLICS3; and, respectively, Table S3 does so for DatSemShift.
As can be appreciated from the three tables, across data sets, knowledge types are not very
correlated. In principle, this allows them all to contribute.

Model estimates and rankings
All models were diagnosed to rule out pathological estimates. We checked for sampling size
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Visual similarity Associativity Affectiveness Taxonomy

Visual similarity 1.000 0.576 0.191 0.352
Associativity 0.576 1.000 0.239 0.473
Affectiveness 0.191 0.239 1.000 0.088
Taxonomy 0.352 0.473 0.088 1.000

Table S1: Pearson correlation between knowledge types in child overextension data.

Visual similarity Associativity Affectiveness Taxonomy

Visual similarity 1.000 0.280 0.001 0.068
Associativity 0.280 1.000 0.095 0.192
Affectiveness 0.001 0.095 1.000 0.067
Taxonomy 0.068 0.192 0.067 1.000

Table S2: Pearson correlation between knowledge types in colexification data (CLICS3).

Visual similarity Associativity Affectiveness Taxonomy

Visual similarity 1.000 0.460 0.082 0.284
Associativity 0.460 1.000 0.142 0.359
Affectiveness 0.082 0.142 1.000 0.110
Taxonomy 0.284 0.359 0.110 1.000

Table S3: Pearson correlation between knowledge types in semantic change data (DatSemShift).

6



(> 0.001 effective samples per transition); that all parameters had a split R̂ < 1.1 (58); that they
all had a Bayesian Fraction of Missing Information over 0.2; and that they lacked staturated
trajectory lengths. All cross-validations had a shape parameter k < 0.7, suggesting reliable
estimates (38).

All models are logistic regressions. The dependent variable is whether a word-referent pair
participates in overextension; whether a meaning pair in a particular language participates in
colexification (CLICS3); or whether a meaning pair in a particular language participates in
semantic change (DatSemShift). As predictors, models had one to four knowledge types (see
“Knowledge types”). Models fit on CLICS3 and DatSemShift additionally had population-
level effects for language and macro-area (see “Data sets”). More precisely, in the case of
colexification, for pair i and j in language l:

colexijl ∼ Binomial(1, pijl), (4)

colexijl =

{
1 if i and j colexify in l,
0 otherwise.

(5)

The logistic regression with all four knowledge types then is as follows:

logit(pijl) = β0l + β1vis(i, j) + β2assoc(i, j) + β3tax(i, j) + β4affect(i, j), (6)
β0l = γ00 + β01languagel + β02macro areal, (7)

with vis(i, j) being the visual similarity of i and j; assoc(i, j) their associativity; tax(i, j) their
taxonomic similarity; and affect(i, j) their affectiveness. Population-level predictors language
and macro area are nominal variables from Glottolog (see “Data sets”). The DatSemShift
models have the same structure, only that they predict whether i and j participate in a shift
in l. The overextension models, respectively, instead predict whether i and j participate in
overextension; and do not have population-level equivalent to β0l (Eq. 7) but instead have just
an intercept β0 that does not vary over languages or areas.

In the main analyses reported, we excluded data not covered by all knowledge types. Focus-
ing on only data covered by all knowledge types could, however, introduce a bias. For instance,
that all data points are visually representable could affect the contribution of affectiveness; ar-
gued to be particularly relevant for abstract meanings that lack a visual representation (30). To
rule this out we conducted separate analyses using the largest subset of data available for each
type on its own (Section “Comparison of estimates across data subsets”). These checks sug-
gest that focusing on data points covered by all knowledge types has little impact on the results
below: estimates derived from data sets covered by a single knowledge type agree with those
from the more restrictive intersection covered by multiple knowledge types.

Child overextension models Table S4 ranks all models fit on the overextension data. It also
indicates their predictive accuracy, using leave-one-out cross-validation (38). The first three
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Model ELPD∆ ELPD Accuracy

all predictors 0 (0) -223 (14) 0.81
visual similarity, associativity, taxonomy -1 (2) -224 (14) 0.80
associativity, affectiveness, taxonomy -8 (4) -231 (14) 0.82
associativity, taxonomy -11 (5) -234 (13) 0.82
visual similarity, affectiveness, taxonomy -12 (5) -236 (13) 0.79
visual similarity, associativity, affectiveness -14 (5) -238 (13) 0.78
visual similarity, associativity -16 (6) -239 (13) 0.78
visual similarity, taxonomy -16 (6) -239 (13) 0.78
associativity, affectiveness -24 (7) -248 (13) 0.76
associativity -27 (7) -250 (13) 0.75
affectiveness, taxonomy -43 (10) -267 (12) 0.75
visual similarity, affectiveness -44 (9) -267 (12) 0.74
visual similarity -49 (10) -272 (11) 0.74
taxonomy -54 (11) -277 (11) 0.75
affectiveness -110 (13) -333 (6) 0.63

Table S4: Ranking of child overextension models in terms of expected log-predictive densi-
ties (ELPD, lower is better). ELPD∆ is the estimated difference in ELPDs from the highest
ranked model. Both ELPD and classification accuracy are estimated through leave-one-out
cross-validation.

models rank similarly, but all uni- or bi-variate models are outranked. Table S5 gives the esti-
mates from the best model.

Colexification models Table S6 ranks all models fit on the colexification data from CLICS3.
It also indicates their predictive accuracy, using leave-one-out cross-validation (38). The first
two models rank similarly. All other models are clearly outranked. Table S7 gives the estimates
from the best model.

Semantic change models Table S8 ranks all models fit on the semantic change data (Dat-
SemShift). It also indicates their predictive accuracy, using leave-one-out cross-validation (38).
The first six models rank similarly, but all univariate models are outranked. Table S9 gives the
estimates from the best model.

Comparison of estimates across data subsets
The following tables compare estimates derived from univariate models fit on the subset of
data points covered by all four knowledge types (see “Knowledge types”) against those from
the larger subsets comprising all data points for which there was information concerning a
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Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.26 0.13 0.01 0.53
Associativity 1.04 0.22 0.63 1.49
Visual similarity 0.67 0.16 0.36 0.97
Affectiveness 0.29 0.14 0.03 0.56
Taxonomy 0.77 0.14 0.49 1.06

Table S5: Standardized estimates from the best overextension model.

Model ELPD∆ ELPD Accuracy

visual similarity, associativity, taxonomy 0 (0) -22730 (104) 0.75
all predictors -2 (1) -22732 (104) 0.75
visual similarity, associativity -136 (16) -22866 (104) 0.75
visual similarity, associativity, affectiveness -136 (16) -22866 (104) 0.75
associativity, taxonomy -250 (22) -22980 (104) 0.75
associativity, affectiveness, taxonomy -251 (22) -22981 (104) 0.75
associativity -429 (29) -23158 (104) 0.74
associativity, affectiveness -430 (29) -23159 (104) 0.74
visual similarity, affectiveness, taxonomy -3308 (76) -26038 (87) 0.68
visual similarity, taxonomy -3350 (76) -26079 (87) 0.68
visual similarity, affectiveness -4129 (83) -26858 (83) 0.67
visual similarity -4217 (84) -26947 (82) 0.67
affectiveness, taxonomy -5787 (94) -28517 (64) 0.61
taxonomy -5868 (94) -28598 (63) 0.61
affectiveness -7985 (103) -30714 (25) 0.55

Table S6: Ranking of colexification models (CLICS3) in terms of expected log-predictive den-
sities (ELPD, lower is better). ELPD∆ is the estimated difference in ELPDs from the highest
ranked model. Both ELPD and classification accuracy are estimated through leave-one-out
cross-validation.

Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.60 0.16 0.29 0.96
Associativity 1.76 0.03 1.70 1.82
Visual similarity 0.32 0.01 0.30 0.35
Taxonomy 0.24 0.02 0.21 0.27

Table S7: Standardized estimates from the best colexification model (CLICS3).

9



Model ELPD∆ ELPD Accuracy

visual similarity, associativity, taxonomy 0 (0) -1767 (34) 0.77
all predictors -1 (1) -1768 (34) 0.77
visual similarity, associativity -4 (3) -1771 (34) 0.78
visual similarity, associativity, affectiveness -5 (3) -1772 (34) 0.77
visual similarity, taxonomy -9 (4) -1776 (34) 0.66
visual similarity, affectiveness, taxonomy -10 (4) -1777 (34) 0.66
associativity -15 (6) -1782 (34) 0.77
visual similarity, affectiveness -16 (6) -1783 (34) 0.65
associativity, affectiveness, taxonomy -359 (28) -2126 (23) 0.77
associativity, taxonomy -360 (29) -2127 (23) 0.77
associativity, affectiveness -391 (29) -2159 (22) 0.77
visual similarity -395 (29) -2162 (22) 0.66
affectiveness,taxonomy -512 (32) -2279 (18) 0.60
taxonomy -517 (32) -2284 (18) 0.61
affectiveness -613 (34) -2380 (14) 0.59

Table S8: Ranking of semantic change models (DatSemShift) in terms of expected log-
predictive densities (ELPD, lower is better). ELPD∆ is the estimated difference in ELPDs
from the highest ranked model. Both ELPD and classification accuracy are estimated through
leave-one-out cross-validation.

Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.97 0.29 0.43 1.60
Associativity 2.23 0.11 2.01 2.45
Visual similarity 0.24 0.05 0.13 0.34
Taxonomy 0.16 0.05 0.06 0.26

Table S9: Standardized estimates from the best semantic change model (DatSemShift).
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particular knowledge type. In other words, the former, more restricted set, comprises data
points covered by all types: visual, affective, taxonomical and associative. The latter, full set
comprises all data points for which we had visual information, in the case of a visual univariate
model; affectiveness information, in the case of an affectiveness univariate model; and so on.

Table S10 contrasts models fits on these two data subsets for overextension. Table S11
does so for colexification; and Table S12 does so for semantic change. Overall, the differ-
ence between estimates across these two data splits is minimal. This suggests that focusing on
the restricted set covered by all four knowledge types should not have a great impact on our
analyses. Note however that slight differences are found in univariate models with taxonomy
or affectiveness as predictors, in the case of crosslinguistic data (Table S11 and Table S12).
Notwithstanding, taking the magnitude of these predictors’ effects and the size of these differ-
ences into account, we conclude that the restricted set that covers all four knowledge types does
not introduce much bias.

Self- and cross-prediction
As discussed in the main text, both self- and cross-prediction of the three best models are per-
formed on data subsets that exclude pairs that appear in more than one data set. For instance, if
the pair “red”-“blood” appears in both CLICS3 and DatSemShift, it was removed when calcu-
lating classification accuracy in order to avoid carry-over due to witnessed pairs. Additionally,
population-level effects of crosslinguistic data sets (see “Model estimates and rankings”) were
averaged out for cross-prediction on overextension. The reason is that neither crosslinguistic
model has a population-level estimate for English, since English data was removed (see “Data
sets”).

We also conducted additional checks to ensure that self- and cross-prediction results were
not due to phylogenetic or areal biases, either inherent in CLICS3 and/or DatSemShift; or due
to the overextension data being in English. To this end, the crosslinguistic models were re-fit,
leaving out, one by one, each of the five major language families found within CLICS3 (North-
east Caucasian, accounting for about 14% of the data; Indo-European for 14%; Austronesian
for 8%; Sino-Tibetan for 7%; and Uralic for 5%) and DatSemShift (Indo-European, accounting
for 38%; Afro-Asiatic for 8%; Northeast Caucasian for 8%; Austronesian for 8%; and Turkic
for 7%). The same leave-one-out re-fitting process was conducted for all macro-areas: Eurasia;
South America; Papunesia; Africa; North America; and Australia. Table S13 shows the cross-
prediction results for colexification models; and Table S14 does so for semantic change models.
These results are also visually presented in Figure 4B and 4C in the main text.

Relatedly, we checked whether leaving out all Indo-European data would have an effect on
the cross-predictive capabilities of the three best models for each phenomenon that we report
on in the main text (Fig. 2A-C; Table S5; Table S7; and Table S9). That is, this check asks
how models that were exposed to all the data, including Indo-European, perform when pre-
dicting only the non Indo-European portion of the colexification and semantic change data. If
our results concerning cross-prediction were driven by a bias due to English (for the overexten-
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Child overextension
Estimate Est.Error Q2.5 Q97.5

Visual Similarity
Restricted set

Intercept 0.01 0.10 -0.20 0.22
Visual similarity 1.38 0.13 1.13 1.63

Full set
Intercept 0.01 0.10 -0.19 0.22
Visual similarity 1.42 0.12 1.18 1.67

Associativity
Restricted set

Intercept 0.38 0.14 0.12 0.65
Associativity 2.03 0.20 1.66 2.44

Full set
Intercept 0.48 0.12 0.26 0.71
Associativity 2.28 0.19 1.91 2.66

Affectiveness
Restricted set

Intercept -0.03 0.09 -0.22 0.15
Affectiveness 0.67 0.12 0.45 0.91

Full set
Intercept -0.03 0.08 -0.18 0.12
Affectiveness 0.60 0.10 0.42 0.79

Taxonomy
Restricted set

Intercept 0.01 0.10 -0.20 0.21
Taxonomy 1.28 0.12 1.05 1.52

Full set
Intercept 0.01 0.08 -0.14 0.16
Taxonomy 1.35 0.09 1.18 1.53

Table S10: Estimates from univariate models fit on the full child overextension data subset
that covers each knowledge type individually, compared to the restricted subset that covers all
knowledge types.
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Crosslinguistic colexification
Estimate Est.Error Q2.5 Q97.5

Visual Similarity
Restricted set

Intercept 0.17 0.13 -0.10 0.44
Visual similarity 0.96 0.012 0.93 0.98

Full set
Intercept 0.11 0.12 -0.12 0.33
Visual similarity 0.96 0.01 0.94 0.99

Associativity
Restricted set

Intercept 0.59 0.15 0.30 0.92
Associativity 2.11 0.027 2.05 2.16

Full set
Intercept 0.34 0.05 0.24 0.45
Associativity 2.10 0.01 2.07 2.13

Affectiveness
Restricted set

Intercept 0.14 0.16 -0.18 0.48
Affectiveness 0.22 0.01 0.2 0.24

Full set
Intercept 0.01 0.08 -0.15 0.18
Affectiveness 0.34 0.01 0.33 0.35

Taxonomy
Restricted set

Intercept 0.20 0.16 -0.14 0.52
Taxonomy 0.71 0.01 0.69 0.74

Full set
Intercept 0.02 0.06 -0.10 0.14
Taxonomy 0.59 0.01 0.58 0.60

Table S11: Estimates from univariate models fit on the full colexification data subset that covers
each knowledge type individually, compared to the restricted subset that covers all knowledge
types.
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Semantic change
Estimate Est.Error Q2.5 Q97.5

Visual Similarity
Restricted set

Intercept 0.60 0.33 -0.06 1.28
Visual similarity 0.85 0.04 0.77 0.93

Full set
Intercept 0.53 0.30 -0.15 1.15
Visual similarity 0.88 0.04 0.80 0.96

Associativity
Restricted set

Intercept 0.98 0.27 0.46 1.56
Associativity 2.47 0.11 2.26 2.68

Full set
Intercept 0.51 0.17 0.16 0.83
Associativity 2.87 0.05 2.77 2.98

Affectiveness
Restricted set

Intercept 0.73 0.39 -0.05 1.52
Affectiveness 0.20 0.04 0.13 0.27

Full set
Intercept 0.17 0.10 -0.02 0.40
Affectiveness 0.27 0.02 0.23 0.30

Taxonomy
Restricted set

Intercept 0.63 0.34 -0.04 1.32
Taxonomy 0.57 0.04 0.49 0.65

Full set
Intercept 0.04 0.04 -0.04 0.14
Taxonomy 0.64 0.02 0.61 0.67

Table S12: Estimates from univariate models fit on the full semantic change data subset that cov-
ers each knowledge type individually, compared to the restricted subset that covers all knowl-
edge types.
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Colexification models
Accuracy: Overextension Accuracy: Semantic change

Excluded macro-area
Africa 0.81 0.73
Australia 0.80 0.73
Eurasia 0.81 0.73
North America 0.81 0.74
Papunesia 0.81 0.73
South America 0.80 0.74

Excluded language family (glottocode)
aust1307 0.81 0.74
indo1319 0.81 0.73
nakh1245 0.81 0.73
sino1245 0.81 0.74
ural1272 0.81 0.74

Table S13: Cross-prediction results for re-fitted colexification models when excluding particular
macro-areas or language families.

sion model) or due to an Indo-European bias, more generally (for colexification and semantic
change) we would expect the models’ predictive capabilities to decrease. We find no such de-
crease. The best overextension model has a cross-predictive accuracy of 0.72 on colexification
data without Indo-European (compared to 0.72 with Indo-European, see Fig. 2) and an accu-
racy of 0.73 on semantic change data without Indo-European (0.72 with, see Fig. 2). The best
colexification model has an accuracy of 0.74 on semantic change data without Indo-European
(0.74 with, see Fig. 2); and the best semantic change model scores 0.73 on colexification data
with no Indo-European (0.74 with, see Fig. 2). These results are also visually presented in
Figure 4A in the main text.

Taken together, these results suggest that cross-prediction results are stable and change
little when removing information from particular regions or language families. The one ex-
ception is the exclusion of Indo-European (glottocode indo1319) when re-fitting the semantic
change model, which reduces its cross-predictive accuracy for colexification by about 0.1 (Ta-
ble S14). Interestingly, this model fares almost identically to the semantic change model with
Indo-European when cross-predicting overextension data, with a drop of only about 0.01.

Visual similarity from self-supervised model
In all the analyses reported above, visual similarity estimates are based on representations from
the language and vision model of Anderson et al. 2018 (32) (see “Knowledge types”). These
representations are optimized on the task of object classification (in English) and attribute pre-
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Semantic change models
Accuracy: Overextension Accuracy: Colexification

Excluded macro-area
Africa 0.81 0.74
Australia 0.81 0.74
Eurasia 0.78 0.75
North America 0.81 0.75
Papunesia 0.82 0.74
South America 0.81 0.75

Excluded language family (glottocode)
afro1255 0.81 0.75
aust1307 0.81 0.74
indo1319 0.80 0.65
nakh1245 0.81 0.75
turk1311 0.81 0.75

Table S14: Cross-prediction results for re-fitted semantic change models when excluding par-
ticular macro-areas or language families.

diction, that is, the task of the model is to detect objects, predict their classes (i.e., their labels
among a vocabulary of 1600 object names in VisualGenome), and predict their attributes (e.g.,
“red” or “striped”). This optimization happens in a supervised manner; that is, the model has
access to human-annotated image-label pairs and learns to associate visual and linguistic infor-
mation.

It is not clear that this operationalization is problematic for our purposes, because human
perception has been shown to be influenced by language, as reviewed in (59). Still, to check
that the language dependency that is introduced in the current model is not what is driving
the results, we reproduce our results with less linguistically informed representations – those
obtained via so-called self-supervised learning.

Self-supervised learning does not rely on any ground truth label (such as, for instance, image
labels). Self-supervised models are well-known for the robustness and generalization capabili-
ties of the representations they learn (60–62). These capabilities allow them to solve complex
tasks related to different aspects of cognition (63, 64). In what concerns vision, self-supervised
models learn image representations with the task of reconstructing the content of an image from
distorted and cropped versions of it (65, 66). This training regime makes self-supervised vision
models completely blind to linguistic information.

We use such a self-supervised model to test the robustness of our results. In particular,
we do so to see whether our results are impacted by the choice between visual representations
obtained through a linguistic task (supervised model, reported on in the main text) and those
obtained from a non-linguistic task (self-supervised, reported on in the following).
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We obtain a measure of visual similarity based on a self-supervised model by following the
same procedure as for its supervised counterpart (see “Knowledge types”). To recapitulate, for
all the English meaning glosses found in the three data sets, we retrieved images from Visual
Genome with matching labels, sampling up to 500 images per gloss. Glosses with less than
30 matches were excluded to avoid sparse representations. We processed these images with
the state of the art self-supervised model of Caron et al. 2021 (65). In this way, we obtained
vector representations for each image. Since the model was trained in a self-supervised manner,
it never had access to the names associated with the images. As before, we then grouped
the images by gloss and averaged their representations to obtain a visual prototypes for each
meaning. Visual similarity is then operationalized as the cosine similarity of visual prototypes.
Note that the averaging step introduces a language dependency also in this case, because we are
grouping the images to be averaged by gloss, that is, by their label in VisualGenome. However,
this method is clearly less informed by language than the other one.

While they are derived in different ways, our two measures of visual similarity are corre-
lated. Their Pearson correlation for the overextension data is 0.68; for colexification data it is
0.77; and for the semantic change data it is 0.76.

We re-fit the best models for each of the three phenomena that we report on in the main
text (see Table S5; Table S7; and Table S9 for model coefficients, reproduced below for ease of
comparison as Table S16; Table S18; and Table S20) keeping everything the same except for
the visual similarity scores, now using the ones from the self-supervised model.

The results we obtain are very stable both in terms of the coefficients of each of the three
models and in terms of self- and cross-predictive capabilities. This suggests that the added value
of visual information for lexical creativity does not hinge on whether the visual embeddings are
a product of the model performing a linguistic task (supervised) or not (self-supervised).

In more detail, the coefficients of the three models re-fit with self-supervised visual infor-
mation are shown in Table S15 for overextension (cf. Table S16 with supervision); in Table S17
for colexification (cf. Table S18 with supervision); and in Table S19 for semantic change (cf.
Table S20 with supervision). They are also visually summarized in Fig. S1A-C. For compari-
son, this figure is a direct counterpart of Fig. 2 in the main text, which shows results that involve
the supervised visual representations. While, as could be expected, there are numerical differ-
ences with respect to the models that draw from supervised visual information (cf. Table S5;
Table S7; and Table S9), they are very small. The main difference worth highlighting is that
the colexification model relies slightly more on taxonomy than vision when the latter is derived
from the self-supervised model, and vice versa for its supervised counterpart.

Importantly, as shown in Fig. S1D, self- and cross-prediction results barely change (cf.
Fig. 2D in the main text). Self-prediction is stable for colexification and increases by 0.01
for overextension and semantic change. Cross-prediction on colexification data decreases by
0.01 and 0.02 for overextension and semantic change models, respectively. Cross-prediction on
overextension data is the same for the semantic change model, irrespective of whether it draws
from supervised or self-supervised visual information; and it decreases by 0.01 for the colex-
ification model with self-supervised visual embeddings. Finally, cross-prediction on semantic
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Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.30 0.14 0.04 0.57
Associativity 1.25 0.22 0.84 1.69
Visual similarity 0.39 0.14 0.12 0.68
Affectiveness 0.31 0.14 0.04 0.59
Taxonomy 0.92 0.15 0.62 1.22

Table S15: Standardized estimates from overextension model with visual similarity derived in
a self-supervised manner.

Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.26 0.13 0.01 0.53
Associativity 1.04 0.22 0.63 1.49
Visual similarity 0.67 0.16 0.36 0.97
Affectiveness 0.29 0.14 0.03 0.56
Taxonomy 0.77 0.14 0.49 1.06

Table S16: Standardized estimates from the overextension model with visual similarity derived
in a supervised manner.

Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.58 0.16 0.26 0.91
Associativity 1.88 0.03 1.82 1.93
Visual similarity 0.20 0.01 0.17 0.22
Taxonomy 0.26 0.01 0.23 0.29

Table S17: Standardized estimates from colexification model with visual similarity derived in a
self-supervised manner.

Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.60 0.16 0.29 0.96
Associativity 1.76 0.03 1.70 1.82
Visual similarity 0.32 0.01 0.30 0.35
Taxonomy 0.24 0.02 0.21 0.27

Table S18: Standardized estimates from colexification model with visual similarity derived in
a supervised manner.
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Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.98 0.31 0.42 1.61
Associativity 2.21 0.11 2.01 2.42
Visual similarity 0.46 0.05 0.37 0.56
Taxonomy 0.11 0.05 0.01 0.21

Table S19: Standardized estimates from semantic change model with visual similarity derived
in a self-supervised manner.

Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 0.97 0.29 0.43 1.60
Associativity 2.23 0.11 2.01 2.45
Visual similarity 0.24 0.05 0.13 0.34
Taxonomy 0.16 0.05 0.06 0.26

Table S20: Standardized estimates from semantic change model with visual similarity derived
in a supervised manner.

change data decreases by 0.01 for both overextension and semantic change models with self-
supervised visual embeddings. In sum, all models still show a very high degree of carry-over
from one phenomenon to another, indicating that our results are robust irrespective of whether
visual information stems from a task with a linguistic component.

Visualizations
The following figures complement the ones shown in the main analyses. Figure S2 shows
the univariate models that best explain different data points in each phenomenon. This figure
visually underscores that that the four knowledge types largely account for complementary
information. This is true across phenomena, and reflected by the fact that the clusters of data
that are best accounted for by different knowledge types are relatively well delimited. That is,
they have relatively little overlap between them. As illustrated by the four exemplary data points
found in the corners of each panel, this does not mean that each data point is solely explained by
a single knowledge type. For instance, while the overextension of ‘bike’ to mean “wheelchair”
is best explained by the univariate visual similarity model (bottom-right corner of Fig. S2A),
the associativity model also predicts the likelihood of overextension for this item to be high. In
this way this figure also underscores that many cases overlap, being explained by a mixture of
factors. This intuition is borne out by the fact that the best models for each phenomenon recruit
information from multiple knowledge types, as shown by our main results and most clearly
reflected in the model rankings (see “Model estimates and rankings”).

Figure S3 is a counterpart of Figure 3 in the main text. The latter visually compares self-
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Figure S1: Summary of results with visual similarity derived in a self-supervised setting. A-
C: Standardized estimates of effect of knowledge types from models of child overextension,
colexification, and semantic change, respectively. As in the main text, while the models for
evolutionary data (B-D) only use 3 predictors; we include a bar for affectiveness at 0 for il-
lustration purposes. D: Accuracy of models when predicting new data. Self-predictions (e.g.,
colexification model’s performance on colexification data) provide an upper-bound for cross-
predictions. The random baseline of 0.5 (dashed line) provides a lower bound. Ceiling and
bottom predictive accuracy are 1.0 and 0.
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and cross-predictions across phenomena, showing predictions for attested cases of overexten-
sion, colexification, and semantic change. Figure S3 illustrates the same but for unattested
cases. For attested cases model success implies assigning high probability to data points partic-
ipating in lexical creativity. For unattested cases success implies the opposite: deeming lexical
creativity unlikely. Accordingly, since predictive success lies in opposite directions for attested
and unattested cases they are not visualized in a single figure. The general pattern remains the
same in both cases: Model predictions generally pattern closely together, and agree both in
success as well as in failure.

Repeated extensions
As described in the main text, some cases of lexical creativity are found in multiple data sets;
and were excluded from the self- and cross-predictive analysis. When it comes to child overex-
tension data, 57 cases appear in evolutionary data. This corresponds to about 22% of the data.
In the case of the colexification data from CLICS3, 3593 cases appear in overextension or Dat-
SemShift. This corresponds to 16% of the data. In the case of the semantic change data from
DatSemShift, 899 cases appear in overextension or CLICS3. This corresponds to 50% of the
data.

Table S21 lists all the child overextensions that are also found in either colexification or
semantic change. Put differently, these cases correspond to crosslinguistically attested matches
to instances of English child overextension. Table S22 gives the estimates from a model fit on
this subset of data, using the same predictors as those of the two best models for evolutionary
data: associativity, visual similarity, taxonomic similarity, and two population-level predictors
for language and macroarea (see “Model estimates and rankings”; Table S6 and S8). On one
hand, the model estimates are in line, both in terms of sign and ranking of effects, with the
estimates derived from the larger data sets used in our main analyses (Table S7 and S9). On the
other, their magnitudes –and the uncertainty about them– are very different. This is due to three
combined factors. First, there is much less data to learn from. Second, as shown in Table S21,
many meaning pairs appear in multiple languages. This means that many data points have the
same prediction values, reducing the informativity of this data subset even further. Finally, there
is also less information per language, adding further uncertainty about the effect of languages
and macroareas. In sum, there is little information in this subset of the data to obtain reliable
effect estimates. This result weakly signals that this data and its larger counterpart may be
aligned; or at least not radically different (e.g., in suggesting sign reversals or differently ranked
predictors).
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Figure S2: Illustration of multiple knowledge types playing a role in attested cases of (A) child
overextension (B) colexification and (C) semantic change. Meaning pairs are projected onto two
dimensions through principal component analysis. Data points correspond to correct predictions
made by an univariate model using one of the four knowledge types. Color/shape indicate the
type that predicts a given pair with the highest posterior probability. Bar plots in corners show
posterior distributions of the four models for selected data points; box colors correspond to type
with highest probability. 22
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Figure S3: Comparisons of model self- and cross-predictions based on data from child overex-
tension (A), colexification (B), and semantic change (C). Each panel compares self-predictions
made by the best models of a phenomenon (y-axis) against cross-predictions made by the best
models for another phenomenon (x-axis). Data points shown are unattested cases of overexten-
sion, colexification and semantic change. Colors and shapes separate predictions into classes:
‘Right/Right’ are correct predictions by both the self-predicting and cross-predicting models;
‘Wrong/Wrong’ are incorrect predictions by both; ‘Right/Wrong’ is a correct prediction from
the self-predicting model but an incorrect one from the cross-predicting one, and conversely for
‘Wrong/Right‘. To make the plots legible, colexification data was randomly subsampled to 8%.
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Glottocode meaning1 meaning2 source

sart1249 bird cow CLICS
khoi1252 bird cow CLICS
guri1247 light lamp CLICS
guri1247 boot shoe CLICS
aika1237 moon sun CLICS
nucl1235 horse donkey CLICS
latv1249 baby child CLICS
lith1251 boot shoe CLICS
bulg1262 chicken duck CLICS
czec1258 boot shoe CLICS
poli1260 baby child CLICS
poli1260 boot shoe CLICS
bret1244 boot shoe CLICS
iris1253 boot shoe CLICS
goth1244 baby child CLICS
dutc1256 baby child CLICS
mode1248 baby child CLICS
sans1269 wagon wheel CLICS
sans1269 goose duck CLICS
sans1269 baby child CLICS
hind1269 baby child CLICS
vlax1238 baby child CLICS
beng1280 baby child CLICS
beng1280 goose duck CLICS
kash1277 moon hair CLICS
west2386 baby child CLICS
mara1378 light lamp CLICS
aves1237 wagon wheel CLICS
osse1243 baby child CLICS
west2369 baby child CLICS
stan1289 baby child CLICS
stan1290 baby child CLICS
roma1327 apple fruit CLICS
roma1327 boot shoe CLICS
stan1288 baby child CLICS
tokh1242 wagon wheel CLICS
bats1242 raft boat CLICS
lezg1247 boot shoe CLICS
cash1254 mother father CLICS
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(continued)

Glottocode meaning1 meaning2 source

tokh1243 wagon wheel CLICS
tokh1243 goose duck CLICS
hawa1245 light lamp CLICS
hawa1245 circle ball CLICS
hawa1245 baby child CLICS
maor1246 animal dog CLICS
maor1246 light lamp CLICS
rapa1244 light lamp CLICS
rapa1244 baby child CLICS
rotu1241 goose duck CLICS
rotu1241 elbow knee CLICS
rotu1241 boot shoe CLICS
tong1325 light lamp CLICS
chec1245 baby child CLICS
chec1245 elbow knee CLICS
kryt1240 baby child CLICS
khva1239 boot shoe CLICS
finn1318 baby child CLICS
udii1243 baby child CLICS
bezh1248 goose duck CLICS
bezh1248 baby child CLICS
khin1240 baby child CLICS
budu1248 boot shoe CLICS
avar1256 baby child CLICS
avar1256 boot shoe CLICS
lakk1252 baby child CLICS
lakk1252 boot shoe CLICS
darg1241 raft boat CLICS
darg1241 circle ball CLICS
darg1241 baby child CLICS
darg1241 boot shoe CLICS
kumy1244 baby child CLICS
kumy1244 boot shoe CLICS
taba1259 baby child CLICS
rutu1240 goose duck CLICS
rutu1240 boot shoe CLICS
iton1250 light lamp CLICS
mose1249 wagon wheel CLICS
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(continued)

Glottocode meaning1 meaning2 source

cavi1250 light lamp CLICS
tibe1272 baby child CLICS
jams1239 fish dog CLICS
waim1255 baby child CLICS
bara1380 moon sun CLICS
bari1297 elbow knee CLICS
bora1263 baby child CLICS
bora1263 moon sun CLICS
cara1272 baby child CLICS
chac1249 moon sun CLICS
chim1309 elbow knee CLICS
cube1242 moon sun CLICS
curr1243 baby child CLICS
desa1247 baby child CLICS
epen1239 eye ball CLICS
guah1255 moon sun CLICS
guam1248 baby child CLICS
hupd1244 baby child CLICS
hupd1244 bus car CLICS
hupd1244 moon sun CLICS
cacu1241 baby child CLICS
kore1283 baby child CLICS
muin1242 baby child CLICS
muin1242 moon sun CLICS
nuka1242 baby child CLICS
nuka1242 moon sun CLICS
ocai1244 baby child CLICS
play1240 moon sun CLICS
puin1248 baby child CLICS
resi1247 baby child CLICS
sion1247 baby child CLICS
sion1247 elbow knee CLICS
siri1274 baby child CLICS
tari1256 moon sun CLICS
tuyu1244 baby child CLICS
tuyu1244 boot shoe CLICS
mini1256 cat dog CLICS
mini1256 baby child CLICS
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(continued)

Glottocode meaning1 meaning2 source

muru1274 baby child CLICS
nupo1240 cat dog CLICS
woun1238 baby child CLICS
woun1238 moon sun CLICS
erzy1239 boot shoe CLICS
esto1258 baby child CLICS
khan1273 boot shoe CLICS
komi1268 baby child CLICS
mans1258 boot shoe CLICS
nene1249 boot shoe CLICS
selk1253 boot shoe CLICS
udmu1245 baby child CLICS
dido1241 boot shoe CLICS
dido1241 goose duck CLICS
enap1235 raft boat CLICS
macu1259 circle ball CLICS
macu1259 baby child CLICS
waiw1244 baby child CLICS
waiw1244 boot shoe CLICS
nege1244 baby child CLICS
jama1262 horse donkey CLICS
jama1262 boot shoe CLICS
high1278 baby child CLICS
karo1304 horse dog CLICS
seri1257 baby child CLICS
zuni1245 ball bead CLICS
nort2938 baby child CLICS
nucl1649 baby child CLICS
uppe1439 moon sun CLICS
uppe1439 elbow knee CLICS
sout2866 wagon wheel CLICS
yuwa1244 raft boat CLICS
yuwa1244 cat dog CLICS
pume1238 baby child CLICS
pume1238 boot shoe CLICS
cofa1242 baby child CLICS
waor1240 boot shoe CLICS
agua1253 circle ball CLICS
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(continued)

Glottocode meaning1 meaning2 source

agua1253 baby child CLICS
yagu1244 horse donkey CLICS
yagu1244 fork spoon CLICS
yagu1244 egg door CLICS
igna1246 baby child CLICS
trin1274 baby child CLICS
wapi1253 circle ball CLICS
wapi1253 baby child CLICS
wapi1253 boot shoe CLICS
waur1244 small fruit CLICS
cent2142 raft boat CLICS
cent2142 baby child CLICS
arao1248 light lamp CLICS
arao1248 baby child CLICS
esee1248 baby child CLICS
taca1256 light lamp CLICS
taca1256 circle ball CLICS
taca1256 baby child CLICS
pano1254 light lamp CLICS
pano1254 horse donkey CLICS
ship1254 circle ball CLICS
ship1254 baby child CLICS
yami1256 boot shoe CLICS
mund1330 moon sun CLICS
ache1246 boot shoe CLICS
east2555 ball bead CLICS
para1311 circle ball CLICS
para1311 baby child CLICS
siri1273 baby child CLICS
siri1273 horse cow CLICS
siri1273 cat dog CLICS
sana1298 raft boat CLICS
sana1298 baby child CLICS
sana1298 boot shoe CLICS
leng1262 baby child CLICS
moco1246 baby child CLICS
pila1245 circle ball CLICS
wich1264 baby child CLICS
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(continued)

Glottocode meaning1 meaning2 source

wich1264 circle ball CLICS
niva1238 butter cheese CLICS
niva1238 boot shoe CLICS
mapu1245 baby child CLICS
puel1244 light lamp CLICS
puel1244 boot shoe CLICS
qawa1238 light lamp CLICS
ghul1238 circle ball CLICS
ghul1238 lion dog CLICS
akhv1239 circle ball CLICS
akhv1239 baby child CLICS
akhv1239 boot shoe CLICS
bagv1239 baby child CLICS
botl1242 baby child CLICS
botl1242 fish dog CLICS
botl1242 boot shoe CLICS
kara1474 boot shoe CLICS
toki1238 baby child CLICS
toki1238 boot shoe CLICS
thai1261 horse dog CLICS
sout2746 baby child CLICS
nort2740 butter cheese CLICS
khun1259 butter cheese CLICS
guib1244 boot shoe CLICS
maon1241 baby child CLICS
hinu1240 boot shoe CLICS
emab1235 baby child CLICS
qaua1234 goose duck CLICS
tind1238 circle ball CLICS
tind1238 baby child CLICS
chir1284 baby child CLICS
cham1309 baby child CLICS
hunz1247 baby child CLICS
arch1244 baby child CLICS
kuba1248 boot shoe CLICS
kajt1238 baby child CLICS
east1436 baby child CLICS
east1436 goose duck CLICS
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(continued)

Glottocode meaning1 meaning2 source

east1436 boot shoe CLICS
tami1289 boot shoe CLICS
telu1262 elbow knee CLICS
noga1249 baby child CLICS
jude1256 baby child CLICS
manm1238 circle ball CLICS
manm1238 boot shoe CLICS
blan1242 circle ball CLICS
blan1242 boot shoe CLICS
huuu1240 baby child CLICS
huuu1240 horse donkey CLICS
boly1239 goose duck CLICS
maqu1238 elbow knee CLICS
elam1244 mother father CLICS
elam1244 mother child CLICS
tehu1242 baby child CLICS
gude1246 cow father CLICS
mafa1239 mother father CLICS
mamb1306 mother father CLICS
anga1288 mother father CLICS
clas1254 baby child CLICS
aleu1260 bird duck CLICS
chuk1273 bird duck CLICS
even1259 boot shoe CLICS
nana1257 bird duck CLICS
nucl1643 wheel ring CLICS
nucl1643 hook key CLICS
kett1243 bus car CLICS
kett1243 baby child CLICS
kild1236 baby child CLICS
sout2750 boot shoe CLICS
ainu1240 boot shoe CLICS
ainu1240 moon sun CLICS
zaiw1241 mother father CLICS
axiy1235 goat dog CLICS
kway1241 elbow knee CLICS
nden1248 horse donkey CLICS
nila1242 horse donkey CLICS
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(continued)

Glottocode meaning1 meaning2 source

zana1238 horse donkey CLICS
mach1266 leaf banana CLICS
mach1266 horse donkey CLICS
ngur1263 cat dog CLICS
ngur1263 goat dog CLICS
vwan1235 horse donkey CLICS
anja1238 elbow knee CLICS
araw1272 elbow knee CLICS
asas1240 elbow knee CLICS
bauz1241 moon sun CLICS
bepo1240 small fruit CLICS
buki1249 moon sun CLICS
erit1239 moon sun CLICS
fait1240 elbow knee CLICS
garu1246 moon sun CLICS
hula1239 elbow knee CLICS
kasu1251 moon sun CLICS
kesa1244 elbow knee CLICS
mala1495 elbow knee CLICS
male1291 elbow knee CLICS
kolo1267 elbow knee CLICS
muba1238 moon sun CLICS
musa1266 elbow knee CLICS
naka1265 elbow knee CLICS
nend1239 elbow knee CLICS
nend1239 small fruit CLICS
odoo1238 bird dog CLICS
pall1244 elbow knee CLICS
pamo1253 elbow knee CLICS
remp1241 mother child CLICS
rera1240 elbow knee CLICS
rumu1243 bird dog CLICS
samm1244 elbow knee CLICS
sile1255 elbow knee CLICS
wagi1249 baby child CLICS
wask1241 elbow knee CLICS
dump1243 elbow knee CLICS
dump1243 moon sun CLICS
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(continued)

Glottocode meaning1 meaning2 source

alek1238 elbow knee CLICS
awap1236 moon sun CLICS
biri1259 moon sun CLICS
dano1240 elbow knee CLICS
edop1238 moon sun CLICS
fayu1238 moon sun CLICS
gads1258 moon sun CLICS
kiri1256 moon sun CLICS
obok1239 moon sun CLICS
taus1252 moon sun CLICS
demi1242 moon sun CLICS
sika1261 flower tree CLICS
chew1245 fork spoon CLICS
gaww1239 baby child CLICS
imba1240 bus car CLICS
gali1262 fork spoon CLICS
cent2050 bus car CLICS
mana1288 goose duck CLICS
mezq1235 light lamp CLICS
sara1340 light lamp CLICS
yaqu1251 raft boat CLICS
tzot1259 bus car CLICS
bats1242 knee elbow DatSemShift
mika1239 peach plum DatSemShift
kich1262 deer horse DatSemShift
nucl1305 child baby DatSemShift
brah1256 child baby DatSemShift

Table S21: crosslinguistically attested colexifications or se-
mantic shifts also found in the English child overextension.
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Coefficient Estimate Est.Error Q2.5 Q97.5

Intercept 1.31 0.71 0.11 2.95
Associativity 6.37 1.79 3.69 10.52
Visual similarity 2.10 0.63 1.03 3.52
Taxonomy 1.15 0.44 0.43 2.17

Table S22: Standardized estimates from model fit on crosslinguistically attested colexifications
and semantic shifts that are also found in English child overextension.
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