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Fig. 1. Chaining and the computational problem. (A) Hypothetical sense
chaining for English face. Senses and dates of appearance in parentheses are
from The Historical Thesaurus of English (12). (B) Illustration of the problem.
Senses of a word are represented by dots, with red indicating the earliest
recorded sense. Can the order of historical sense development be predicted,
and, if so, by what algorithms?

these senses should facilitate comprehension in listeners (13) and
language learners (14). Our proposal is consistent with existing
theories (e.g., ref. 15) that suggest that language change results
from demands for “a maximum of efficiency and a minimum of
effort” (ref. 15, p. 324).

Although chaining seems plausible as a mechanism of sense
extension, a principled specification is needed for why it might be
a preferred mechanism. Further, establishing its predictive value
requires testing whether it is better able to account for histori-
cal records of sense evolution—at the scale of the entire lexicon
(cf. ref. 16)—than alternative mechanisms (such as the prototype
and exemplar theories). The present study addresses these issues
through a computational framework that explores how the senses
of individual words in a lexicon have emerged over time. We
show that a model of nearest-neighbor chaining—a probabilistic
algorithm that approximates a minimal spanning tree over time
(a concept from graph theoretical work in computer science)—
predicts the order of emergence of English word senses better
than alternative mechanisms.

Computational Formulation of Theory
We formulate word sense extension as a computational problem,
illustrated in Fig. 1B. We ask how an individual word’s various
senses could have emerged over time by “attaching to” existing
senses of that word, and consider alternative extensional mech-
anisms that yield different “paths.” Because the space of possi-
ble extensional paths grows factorially with the number of senses
a word develops (see Model Cost and Likelihood), we focus on
the paths predicted by five probabilistic algorithms that have
each been motivated by prior work on semantic representation.
We show that the nearest-neighbor chaining algorithm tends to
yield the most “cost-effective” sense extension strategy. We now
present the algorithms and then define “cost.”

Algorithms of Word Sense Extension. Given the set of senses a
word has developed over history, all algorithms that we propose
infer which sense is likely to emerge at time t +1 (i.e., the next

time point in history where new senses appeared), based on exist-
ing senses of a word up to time t : S(t)= {s0, s1, ..., st}. Begin-
ning with the earliest sense of a word s0, each algorithm predicts
sequentially (from the candidate pool of yet-to-emerge senses)
which will be the upcoming sense, based on a unique exten-
sional mechanism that attaches novel senses to existing ones. As
a result, each algorithm specifies a probability distribution over
all of the possible historical orders in which a word’s senses could
have emerged (see Model Cost and Likelihood). At each time
point, an algorithm predicts the next emerging sense with a prob-
ability specified by Luce’s choice rule (17),

s∗∼ f (s∗,S(t))∑
s∈S∗(t) f (s

∗,S(t))
. [1]

S∗(t) represents the set of candidate senses given by the histori-
cal record that have not appeared up to time t , for a given word.
Each model has a different likelihood function f (s∗,S(t)) that
specifies the mechanism that links the candidate emerging sense
to the existing senses. The likelihood functions specify compu-
tations based on semantic similarity between senses, which we
describe below. To make minimal assumptions, all of the mod-
els are parameter-free, and hence are on equal footing in model
complexity (i.e., 0). We describe and summarize the models in
Table 1, along with a null model.

Random Algorithm. This null model predicts the historical emer-
gence of a word’s senses to be random.

Exemplar Algorithm. This algorithm is motivated by Medin and
Schaffer (8) and Nosofsky (9), whereby the emerging, to be
lexicalized sense at t +1 is predicted with a probability based
on average semantic similarity with existing, already lexicalized
senses of a word up to time t .

Prototype Algorithm. This algorithm is motivated by Rosch (5)
and Geeraerts (7) and predicts the emerging sense at t +1
with a probability based on semantic similarity with the proto-
typical sense at time t . We define prototype at t as the sense
with the highest semantic similarity to all other existing senses
of the word: prototype(S(t))←maxsi∈S

∑
j 6=i sim(si , sj ). Thus,

this algorithm allows the most representative sense of a word to
change as a function of time, as a word accrues more senses.

Progenitor Algorithm. This algorithm is a “static” variant of the
prototype algorithm. It assumes a fixed prototype that is always
the earliest recorded or progenitor word sense. It predicts the
emerging sense at t +1 with a probability based on semantic sim-
ilarity with the progenitor sense, for each candidate sense.

Local Algorithm. This algorithm assumes that word senses emerge
in a local temporal chain, where the emerging sense at t +1 is
sampled with a probability based on semantic similarity to the
sense that appears just before it, namely at time t (i.e., st ). Thus,
senses that appear before t have no influence on the emerging
sense at t +1. This assumption posits that an emerging sense
will be minimally distant from the most recent sense of a word

Table 1. Specification of proposed sense extension algorithms

Model p(s*)

Exemplar ∝ f(s*, S(t))= Es∈S(t)[sim(s*, s)]
Prototype ∝ f(s*, S(t))= sim(s*, prototype(S(t)))
Progenitor ∝ f(s*, S(t))= sim(s*, s0)
Local ∝ f(s*, S(t))= sim(s*, st)
Nearest-neighbor chaining ∝ f(s*, S(t))=maxs∈S(t)sim(s*, s)
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(i.e., local minimum), in contrast with the next algorithm, which
tends to minimize distance in a global way (i.e., between all
sense pairs).

Nearest-Neighbor Chaining Algorithm. This algorithm is closely
related to prior proposals about chaining. It approximates Prim’s
algorithm for constructing a minimal spanning tree (18) (see
Nearest-Neighbor Chaining and Minimal Spanning Tree), but with
a fixed starting point; that is, it always begins with the progenitor
sense of a word. The algorithm predicts the emerging sense of
a word at t +1 with a probability based on the highest semantic
similarity with any of the existing word senses up to t , rendering a
chain that connects nearest-neighboring senses over time. In con-
trast with the other algorithms, this algorithm tends to construct
a sense network at globally minimal cost (see Nearest-Neighbor
Chaining and Minimal Spanning Tree), a metric that we describe
in Cost of Word Sense Extension.

Cost of Word Sense Extension. Sense extension can be thought of
as involving costs, such that certain historical paths can be con-
sidered more cognitively efficient or cost-effective than others.
For example, extending the meaning of face via body part→facial
expression might entail a lower cost than body part→front sur-
face of an object, since the former pair of senses appear to be
more semantically related and mentally associable than the lat-
ter. If sense extension tends to minimize cost in the historical
path, then, given the initial body part sense of face, we expect
facial expression to emerge earlier in history than front surface
of an object. Whether historical paths do minimize costs is a key
empirical question that we address.

We quantify the cost of the models by considering the degree
to which they minimize cognitive effort in sense extension over
time. Specifically, given that a novel sense appears at a certain
time point and “location” in semantic space, the cost measure
determines how efficient the path toward that location is. We do
not predict the location of the new sense but instead evaluate
how cost-effective the aggregated spatiotemporal path toward
that sense is. For a given model m that prefers a certain historical
path over alternatives, we define cost c as

c(pathm)=
∑
t

∑
si∈S(t),sj∈S∗(t)

e(si→ sj ). [2]

Namely, the cost of a model is the aggregated effort (denoted
by e) of extending existing senses to novel ones as predicted
by that model, summed over all time points where senses have
emerged for a word. We operationalize effort by semantic dis-
tance, the inverse of semantic similarity. A cost-effective model
should tend to minimize this quantity in the historical exten-
sional paths that it specifies. Given that each model predicts
a path probabilistically, the average cost of a model consider-
ing all possible paths is

∑
p(pathm)c(pathm). It can be shown

that the nearest-neighbor chaining model tends to produce near–
minimal-cost paths, in contrast with the other competing models
(see Results, Nearest-Neighbor Chaining and Minimal Spanning
Tree, and Model Cost and Likelihood). Of course, the hypothe-
sis that historical sense extension is best predicted by a low-cost
model could be wrong, because word senses may not have devel-
oped in ways that minimize costs (Model Cost and Likelihood
discusses how model cost and predictive likelihood are dissocia-
ble). Whether or not they do is an empirical question that we
examine next.

Results
We assess our models in three steps. First, we demonstrate, in a
simulation, that the nearest-neighbor chaining model generally
yields the lowest cost in posited sense extensional paths, com-

pared with alternative models. Second, we test the models’ abil-
ity to predict the order of sense emergence against chance (i.e.,
against the null model), using a large digitized historical lexicon
of English. Third, we evaluate the models against each other and
show that nearest-neighbor chaining dominates the other models
in accounting for the historical data.

Model Simulation. We first examined whether the nearest-
neighbor model yields sense extensional paths that minimize
cognitive cost. We simulated the proposed models in a hypothet-
ically constructed semantic space, where we used Euclidean dis-
tance to represent the similarity between two senses. We used
Euclidean distance only for this simulation, instead of the psy-
chologically grounded measure of semantic similarity which we
used for the empirical analyses. We placed 15 points randomly in
a 2D plane that represents the semantic space of a single word,
designating the bottom right point in the space as the initial sense
of the word. We then applied the set of algorithms to the remain-
ing data points and visualized the sense extensional paths speci-
fied by each algorithm. For simplicity, we display the paths based
on model trajectories that maximize choice probability at each
time step. The same result held when we varied the simulation
parameters (see Nearest-Neighbor Chaining and Minimal Span-
ning Tree).

Fig. 2 shows that these algorithms yield distinct temporal
paths in the simulated space. For instance, the exemplar algo-
rithm links novel senses to all existing senses based on aver-
age distances between them (illustrated by links that develop
from spaces between senses as opposed to stemming directly
from senses). The prototype algorithm predicts a dynamic radial
structure (6), where temporal links are established by attach-
ing novel senses to prototype senses, while allowing the proto-
type to change over time. The progenitor algorithm predicts a
strict radial structure where all senses stem from the earliest
progenitor sense. The local algorithm predicts a temporal link-
age of senses by attaching each emerging sense to the existing
sense of the word that appeared one time point earlier. Finally,
the nearest-neighbor chaining algorithm renders a tree struc-
ture that branches off as needed to preserve nearest-neighbor
relations between emerging and existing word senses. Impor-
tantly, although both the local and nearest-neighbor chaining
algorithms tend to yield lower aggregated cognitive costs in sense
extension compared with the other models, the latter algorithm
yields the global (as opposed to temporally local) minimal cost in
semantic space.

Fig. 2. Simulation of the proposed algorithms of word sense extension. The
solid red circle symbolizes the earliest or progenitor sense of a word. The
blue circles represent emerging word senses, and the arrows and time labels
indicate the historical order of emergence that each algorithm predicts. The
cost is taken as the aggregated Euclidean distances between word senses as
traversed by the arrows.
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Model Evaluation Against Historical Sense Records. We next
assessed the extent to which the proposed models predict the his-
torical emergence of word senses better than chance. In particu-
lar, we examined each model’s ability to predict the actual orders
in which English words’ senses have emerged, relative to the
null model.

We used The Historical Thesaurus of English (HTE) (12)—
the world’s first and largest digital historical dictionary—as a
test bed. The HTE records word form–sense entries from across
the past millennium, sourced from The Oxford English Dictio-
nary and compiled by historical lexicographers and period spe-
cialists. It provides the dates of emergence, or “time stamps,” of
word senses (providing ground truths for the models), and a sys-
tematic classification scheme that sorts each word sense into a
conceptual taxonomic hierarchy. We defined semantic similarity
between two senses based on how closely they are related in this
taxonomy (see Example Calculation of Conceptual Proximity and
Illustration of Verb Taxonomy for examples), and we validated
this measure against human similarity judgments (see Materials
and Methods).

To test the null hypothesis, we compared the proposed algo-
rithms’ predictions regarding the historical orders of emerging
word senses for about 5,000 common words of English, drawn
from the British National Corpus (BNC) (19), that appear in
the HTE. Because HTE does not provide word frequency infor-
mation, we used the BNC to identify the most common words.
We used a standard statistical measure—log likelihood ratio—to
assess each algorithm against the null model (for more details
and examples, see Materials and Methods and Model Cost and
Likelihood). The log likelihood ratio quantifies the degree to
which a model predicts the actual historical order in which a
word’s senses have emerged. The null is rejected if this quantity
exceeds 0, or chance level, substantially.

Fig. 3A summarizes the mean log likelihood ratios across the
words examined. The bar plot indicates that each of the proposed
algorithms yields higher predictive likelihoods on the emerging
order of word senses significantly better than chance (p< 0.001
from all one-tailed t tests [n =4,164]: exemplar, t =47.5; proto-
type, t =26.3; progenitor, t =22.5; local, t =34.3; and nearest-
neighbor chaining, t =36.7). This result provides strong evi-
dence against the null: The order in which English word senses
have emerged can be predicted better than chance by taking
into account the semantic similarities between senses. To con-
trol for the possibility that differences in the relative ages of
words might have affected our results (e.g., some words in the
BNC may have been in existence longer than others), we also

A B

Fig. 3. Summary of model performances. (A) Likelihood ratio test; “0.0” on
the y axis indicates performance of the null model. Bar height indicates the
mean log likelihood ratio averaged over the pool of most common words
from the BNC corpus. Error bars indicate 95% confidence intervals across
words. (B) Visualization of winner-take-all percentage breakdown among
the algorithms from the same test. “Chain. [nn]” refers to the nearest-
neighbor chaining model.

ran the same test on words from the HTE that have existed con-
tinuously from Old English to the present day. We obtained sim-
ilar results for each model (p< 0.001 from all one-tailed t tests
[n =2,648]: exemplar, t =29.8; prototype, t =17.1; progeni-
tor, t =12.1; local, t =23.5; and nearest-neighbor chaining, t =
23.7), offering additional support that a word’s senses emerge in
predictable ways.

Predominance of Nearest-Neighbor Chaining. To explore whether
the emergence of word senses follows near–minimal-cost–
chained paths, we compared the nearest-neighbor algorithm
against the competitor algorithms. Fig. 3A provides support for
our hypothesis: Nearest-neighbor chaining yields a substantially
higher mean log likelihood compared with all competing mod-
els. Paired t tests show significant differences between the chain-
ing model and each of the competitors (p< 0.001 from all tests
[n =4,164] with Bonferroni correction for multiple tests: against
exemplar (t =24.8), prototype (t =26.9), progenitor (t =28.2),
and local (t =20.6)). These results also hold for the word set
that controls for age of words (see Model Comparison Control-
ling for Age of Words for details). Fig. 3B visualizes the model
performances under a more stringent winner-take-all measure
from the log likelihood ratio tests. The percentages show the rel-
ative proportions of winning cases from the five models (the null
model excluded in the figure explains 10.2% of the cases). As
shown, nearest-neighbor chaining yields the highest percentage,
best explaining the historical data.

To better understand the conditions that favor chaining rela-
tive to other mechanisms of sense extension, we examined the
extent to which the chaining model outperformed other models
on a word-by-word basis. For each word, we calculated the pair-
wise difference in log likelihood between the nearest-neighbor
model and the remaining models. A positive score for a word
indicates that chaining outperforms competing models in pre-
dicting the historical order of emergence of that word’s senses
(see Analyses of Conditions That Favor Chaining for details). We
then related these chaining superiority scores to properties of
the individual words, i.e., their orthographic length, and their
degree of polysemy (estimated by number of recorded senses in
the HTE). We expected that, because short and/or polysemous
words tend to be used frequently (20), cost-effective strategies of
sense extension like chaining should be most relevant for these
words. Fig. 4 plots how chaining superiority scores correlate with
these two variables. As can be seen, the chaining model’s suc-
cess correlated strongly with number of word senses (r =0.68,
p< 0.001), and, to a lesser extent, with word length (r =−0.28;
p< 0.001). Strikingly, the correlation between number of senses
and chaining superiority scores remained strong even when par-
tialing out word length (partial correlation ρ=0.70, p< 0.001),
while the correlation between word length and chaining supe-
riority was quite small after partialing out degree of polysemy
(ρ=−0.13; p< 0.001). These results suggest that the nearest-
neighbor chaining model performed best for words that have
developed many senses over time, i.e., precisely those words
whose sense extensional paths could have been the most costly
(see Analyses of Conditions That Favor Chaining for details and
example words).

To illustrate the nearest-neighbor chaining process, we visual-
ized its predicted path for the English word game. Fig. 5 shows a
low-dimensional projection (via multidimensional scaling with a
random starting point) of all emerging senses for the word game
as a noun in the HTE database. As can be seen, the nearest-
neighbor chaining algorithm forms a minimal-spanning-tree-like
path among the senses of game, by linking nodes that are seman-
tically close. Importantly, this process supports branching and
the formation of local clusters, identified roughly in this case as
“hunting” (upper left cluster), “plotting” (upper middle cluster),
and “entertainment/sports” (upper right cluster) in Fig. 5. This
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A B

Fig. 4. Variables that correlate with nearest-neighbor chaining superiority
score. (A) Scatter plot of average difference in model log likelihoods against
word length. (B) Scatter plot against number of senses.

process offers a computational basis for family resemblance (3)
and polysemy, by allowing words to develop both related and dis-
tinct senses.

Discussion
We provide three contributions. First, we showed why nearest-
neighbor chaining might be a preferred algorithm for sense
extension, making a connection to graph-theoretical work in
computer science. Second, we developed an infrastructure using
resources from the digital humanities, to enable large-scale com-
putational explorations of the historical emergence of word
senses. Finally, we provided a rigorous test of the ability of com-
peting algorithms to recapitulate the evolution of English word
senses over a thousand years. Our findings demonstrate that the
historical order of emergence of word senses is predictable, and
is best accounted for by an algorithm that tends to minimize cog-
nitive costs over time.

The fact that the nearest-neighbor chaining model best
explained the historical data—especially for words that have
developed many senses over time—may reflect cognitive pres-
sures on lexical evolution. This algorithm may minimize the costs
associated with communicating new ideas and learning a lexicon.
Interlocutors may find it relatively effortless to encode a new
intended meaning by recycling an existing word that has a closely

related sense, and addressees may find it easy to understand such
new word uses (13). Further, language learners may find it easy
to learn a network of senses where each sense is highly associable
with other senses (14).

Much past work has described patterns of semantic change
such as broadening and narrowing (21), but less progress has
been made in understanding the principled mechanisms that pro-
duce such changes. Large digital databases and computational
modeling techniques open new avenues for forging a deeper
understanding. Our work advances previous proposals about
cognitive efficiency and least effort in language change by for-
mulating and testing algorithmic accounts of the processes that
generate polysemy.

While our models focused on how the senses of individual
words have emerged over time, they could be extended to address
the more general question of how new senses are incorporated
into the lexicon. Presumably, novel senses enter the lexicon due
to communicative need, but what factors explain whether a new
sense will be expressed by reusing an existing word vs. creating a
new word form? What factors explain which of the existing words
in a lexicon will be selected to express a new sense? Our find-
ings suggest that new senses will often be expressed by existing
words with closely related senses, but this constraint might inter-
act with other factors that shape lexical evolution. For instance,
more-frequent word forms might be preferred over rarer ones for
labeling new senses, since the former word forms may be more
accessible (22). Further, speakers’ knowledge of existing, genera-
tive patterns of polysemy (23–25), and their pragmatic reasoning
about what senses are most likely to be understood in the cur-
rent context (26), will also help explain how words accrue new
senses over time, as will understanding the relative cognitive costs
of generating novel words vs. reusing existing ones.

The current study focused on taxonomically based extensions
of meaning: those in which extensions tend not to cross ontologi-
cal domains. However, polysemy also encompasses other types
of extensions, such as metonymy (27) (e.g., “dish” to refer to
an object or the food it contains) and metaphorical mapping
(6) (e.g., “grasping” an object vs. an idea), which often cross
domains. Generating, understanding, and learning such diverse
senses of words may draw on cognitive processes beyond those
addressed here, and it is an open question whether the develop-
ment of these forms of polysemy also minimizes cognitive costs

Fig. 5. Historical chaining for game. Each node represents an emerging sense of game. The solid red circle marks the earliest sense recorded in the HTE. The
arrows indicate the inferred path based on the nearest-neighbor chaining algorithm. The annotations include a gloss for each word sense and its recorded
emergence point in the HTE.
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(cf. ref. 28). Our current work provides a starting point toward
unlocking the algorithms that generate new word senses in lexi-
cal evolution.

Materials and Methods
Historical Database of Word Senses. HTE (12) is a public dictionary that
includes approximately 800,000 word form–sense records, documented for
a span of over 1,000 y, ranging from Old English to the present day. Each
word sense in the HTE is annotated with the date of its emergence (and,
where applicable, obsolescence) and part of speech, and is structured in a
fine-grained taxonomic hierarchy that features about a quarter of a mil-
lion concepts. Consecutive tiers of the hierarchy typically follow an “A is a
B” or “A is part of B” relation. For example, one sense of the word game
under the HTE code “01.07.04.04” is defined in a terms of four-tier hier-
archy: The world (01)→Food and drink (01.07)→Hunting (01.07.04)→Thing
hunted/game (01.07.04.04).

Semantic Similarity. We defined semantic similarity based on the taxo-
nomic hierarchy in the HTE and then validated it against human judg-
ments. We approximated psychological similarity between a pair of word
senses sim(si , sj) by a measure bounded in the range of (0,1) (9): sim(si , sj) =

e−d(si ,sj ). Here d(si , sj) represents conceptual distance between senses, which
we defined by the inverse of a conceptual proximity measure [c(·, ·)] com-
monly used in natural language processing (29): d(si , sj) = 1− c(si , sj) = 1−

2×|p|
l(si )+l(sj )

; |p| is the number of parent tiers shared by senses si and sj , and

l(·) is the depth of a sense in the semantic hierarchy. This measure gives
1 if two senses are identical, and 0 if they have nothing in common.
We validated this measure of semantic similarity via standard techniques
in natural language processing, by evaluating its performance in predict-
ing human judgments of word similarities (instead of judgments of sense
similarities, which are not available at a broad scale). Following Resnik
(30), we approximated word similarity by using the pair of senses for the
two words that results in maximum sense similarity, defined as follows:
word sim(wi , wj) = maxsi∈senses(wi ),sj∈senses(wj )

s(si , sj). Because this word sim-

ilarity measure depends solely on the relations between word senses, it
serves as a proxy indicator of word sense similarity. Our measure of seman-

tic similarity yielded a Spearman’s correlation of 0.441 (p < 0.001) on Lex-
999 (31), which is a well-known challenging dataset of human word sim-
ilarity judgments. The performance of our measure of semantic similar-
ity is better than that of the corpus-based skip-gram (Word2Vec) model,
which has been trained on 1 billion words of Wikipedia text (32) and is
roughly on par with the same model trained on 300 billion words (33). In
addition, our measure of semantic similarity obtained a Spearman’s cor-
relation of 0.467 (p < .001) on Sim-353 (34), another common dataset of
human word relatedness judgments, which is comparable to the state-of-
the-art Global Vectors for Word Representation word vector model, which
has been trained on 6 billion words (33, 35). We also considered the linear
version of similarity without the exponential transformation (i.e., c(si , sj)),
but the fit to human data was substantially worse (Spearman’s correlations
0.361 on Lex-999 and 0.139 on Sim-353), so we chose not to use it for our
analyses.

Model Evaluation. We used log likelihood ratio LLR = log (Lm/Lnull) to
assess the performance of each proposed algorithm against the null. For
any given word, the predictive density of the null can be determined theo-
retically, and it is the inverse of factorial of N− 1 for a word with N senses:
Lnull = 1× 1/N− 1× 1/N− 2× ...× 1/1 = 1/(N− 1)!. Because each model
is parameter-free, metrics that take into account model complexity such as
the Akaike/Bayesian Information Criterion would yield equivalent results
to those from this likelihood measure. For a stream of senses, the likeli-
hood L is the joint probability of observing such a sequence under a cer-
tain model Lm = p(pathtrue) = p(s0)p(s1|s0)p(s2|s1, s0)...p(st|st−1, ..., s0). We
assumed that the initial sense is always given, so p(s0) = 1. At each year
where emerging senses appeared, we removed senses that had become
obsolete by that year according to the time stamps in the HTE, so those
senses had no influence on model prediction.
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