
RESEARCH ARTICLE

Chaining and the temporal dynamics of

scientists’ publishing behaviour

Emmy LiuID
1*, Yang Xu2

1 Language Technologies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,

United States of America, 2 Department of Computer Science, Cognitive Science Program, University of

Toronto, Toronto, Canada

* mengyan3@cs.cmu.edu

Abstract

Scientific progress, or scientific change, has been an important topic in the philosophy and

history of science. Previous work has developed quantitative approaches to characterize

the progression of science in different fields, but how individual scientists make progress

through their careers is not well understood at a comprehensive scale. We characterize the

regularity in the temporal dynamics of scientists’ publishing behavior with computational

algorithms that predict the historical emerging order of publications from individual scien-

tists. We discover that scientists publish in ways following the processes of chaining that

mirror those observed in historical word meaning extension, whereby novel ideas emerge

by connecting to existing ideas that are proximal in semantic space. We report findings for

predominant exemplar-based chaining that reconstructs the emerging order in the publica-

tions of 1,164 award-winning and random-sampled scientists from the fields of Physics,

Chemistry, Medicine, Economics, and Computer Science over the past century. Our work

provides large-scale evidence that scientists across different fields tend to share similar

publishing behavior over time by taking incremental steps that build on their past research

outputs.

Introduction

The process of scientific inquiry can follow a winding path that varies across individuals. Isaac

Newton explored optics in his earlier career but later studied the laws of motion and gravity

[1]. Alan Turing at his earlier age worked on computability theory but later contributed to

machine intelligence and the chemical basis of morphogenesis [2]. The problem of scientific

change, or the progression of science through generations of scientists, has garnered much

attention in the philosophy and history of science. However, whether there is regularity in how

individual scientists make progress through time has not been studied comprehensively across

scientific fields.

Scientific change has been an important topic in the philosophy of science. Kuhn suggests

that science develops in cyclic periods of normal science and revolutionary science [3]. Normal

science depends on similarities to exemplars, or canonical instances of scientific work that
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scientists base their hypotheses on. However, anomalies challenging the existing paradigm

may build up and give rise to a period of revolutionary science, also known as a paradigm

shift. Kuhn’s view resonates with Popper’s work emphasizing falsifiability as an avenue for the

advancement of science [4], and Fayerabend’s incommensurability thesis arguing that succes-

sive scientific paradigms may have entirely different conceptual structures and language uses

that are incompatible with each other [5]. Other scholars have suggested that paradigm shifts

can happen gradually during periods of normal science, and the distinctions between normal

science and revolutionary science may be blurry [6]. The philosophical inquiries of scientific

change have focused on explaining scientific progress at a macro scale, but they tend to under-

explore mechanisms in the scientific trajectories of individual scientists.

Parallel studies of scientific change have been conducted in the history of science and cogni-

tive science. For instance, existing work has investigated the transition from Newtonian classi-

cal mechanics to the theory of relativity and quantum mechanics [7], and the effects of new

instruments and methods in physics and chemistry [8]. Transition from one conceptual sys-

tem to another involves an individual scientist noticing contradictions and inconsistencies

within the old conceptual system, and constructing new representations of the scientific con-

cepts. This line of work in cognitive science focuses on individuals, but it typically relies on

anecdotal case studies.

Recent work has taken more scalable and quantitative approaches to studying scientific

progress, but tends to focus on the evolution at the level of a scientific field. Existing work has

explored scientific topic shifts, networks of scientific collaboration, as well as the connections

among people, topics, methods, and team scale in scientific research [9–16]. Recent work has

also explored the role of atypicality and outliers in scientific publications, such as how “sleep-

ing beauty” papers that became highly influential over the long term at the expense of short-

term citations, or understanding the factors underlying “outlier patents” [17, 18]. However,

focusing on outliers and exceptional papers might obscure the incremental steps by which

such papers are generated, since exceptional or unusual papers from a community perspective

could result from the logical continuation of a line of research from an individual perspective.

The problem we pursue here is whether simple computational algorithms focused on charac-

terizing fine-grained temporal dynamics of scientists’ publication behavior might reveal gen-

eral patterns in scientific progress made by individual scientists in different fields.

Although scientific inquiry over time can vary greatly across individuals, we hypothesize

that there should be regularity in scientists’ publication behavior through time that reflect

common principles of human cognition. Our approach is to uncover this regularity by testing

cognitively inspired algorithms against the historical records of scientists’ research outputs as

they emerged over time in different fields.

Our proposal is grounded in the cognitive theory of chaining [19–22], and we use the exist-

ing computational cognitive algorithms that have been shown to capture properties of chain-

ing in the context of word meaning extension [22–25]. More specifically, chaining refers to a

continuous and incremental process of meaning growth whereby novel ideas connect to exist-

ing ideas that are semantically similar, hence forming chain-like structures over time. Existing

work has formulated chaining as probabilistic algorithms or models of categorization and

applied these formal models to predict the historical growth of word meaning in a variety of

domains including container names, numeral classifiers, adjectives, and verbs [22–27].

We believe that the general process of scientific progress might mirror the process of word

meaning extension, whereby a scientist conceives of a new idea by linking to existing ideas that

are closely related. Importantly, previous work has also suggested that certain forms of chain-

ing are preferred or more cognitively natural than other forms, and recent findings suggest

that chaining can be best understood as an exemplar-based process [22, 24, 25]. The exemplar
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model of chaining is rooted in the exemplar theory of categorization, also known as the Gen-

eral Context Model [28]. This model has been demonstrated to predict the historical meaning

extensions of numeral classifiers [22], adjectives [24], and verbs [25].

Here we investigate whether similar chaining mechanisms might account for the historical

emergence of scientific publications from individual scientists. Independent work in mathe-

matical modeling has proposed that similar processes may underlie the emergence of novelties

[29]. However, to our knowledge there has been no formalization or comprehensive evaluation

of chaining in the temporal dynamics of scientists’ publishing behavior over time. We focus on

investigating three related issues: 1) whether there is systematic predictability in the historical

order of emergence of scientists’ papers; 2) how the exemplar-based chaining account fares

against alternative competing accounts including the prominent prototype-based view that

predicts growth to stem from a central core [30, 31]; 3) whether mechanisms of chaining are

domain-general or differ across scientific fields, or between award-winning (or prominent)

and randomly-sampled (control) scientists.

To evaluate our proposal at scale, we collected a large set of historical publication data

from scientists who vary along two dimensions: 1) scientists in different scientific fields,

including Physics (n = 168), Chemistry (n = 120), Medicine (n = 151), Economics (n = 74),

and Computer Science (n = 69); 2) award-winning scientists (n = 582) who have made prom-

inent contributions in these fields, including Nobel Laureates and Turing Prize winners, ver-

sus randomly sampled scientists (n = 582 in total). Within each field and its corresponding

prize category (e.g., Physics and Nobel Prize for Physics), we extracted data exhaustively

from all prize-winning scientists since the 20th century, and we constructed the random con-

trol group by sampling scientists from the same field and matching the group size to that

within the prize category. For each scientist, we collected his or her publications throughout

history where the records were available, and we timestamped each publication by the year

that the work was published. We describe details of the dataset and its processing in Materials
and Methods.

In our analysis, we applied chaining models to the following prediction task: Given a scien-

tist’s publications up to time t, predict which of the yet-to-emerge publications will more likely

to appear at the next time step t+ 1. This prediction task is similar to the problem formulated

in previous work that examines regularity in the historical emergence of word meanings [23].

Here instead we use this predictive analysis to explore shared patterns that underlie the emer-

gence of scientific publications. If the exemplar-based chaining reflects a general and preferred

mechanism in the emergence of scientific papers, we expect this model to best account for data

across the 5 scientific fields, and in both the groups of prominent and random-sampled

scientists.

Computational framework

We formulate the computational problem by considering the set of papers St a scientist has

published by time t, and then applying models of chaining incrementally over time to infer the

probability of a yet-to-emerge paper x� from the same scientist actually being published at the

next available time t + 1. Our analysis treats each year as an individual timestep, so papers pub-

lished within the same year are considered to emerge at the same time. We represent the publi-

cations of a scientist as a point cloud, where each point denotes a publication. As time unfolds,

we ask the question whether there is predictability in how this cloud of points emerges over

time. We expect papers that emerge at each next point to be generally related to the previous

papers that have emerged, and we formalize the temporal dynamics in the emergence of scien-

tific publications using a suite of chaining models grounded in the literature.
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Each model of chaining predicts which papers are most likely to emerge at the next timestep

based on a softmax function of the similarities of all papers which are yet to emerge, following

Luce’s choice model [32]:

pðx�jStÞ �
expðf ðx�; StÞÞ

Sx2S�t
expðf ðx; StÞÞ

; ð1Þ

Here x� is drawn from the set of papers yet to emerge (or be published) beyond t which we

denote as S�t , and f() specifies a particular model of chaining. As a model predicts through

time, St is updated with the ground truth papers at each timestep in order to minimize error

propagation. Whenever “similarity” is mentioned below, we refer to a standard metric used in

measuring psychological distance [28, 33, 34], the exponentiated squared Euclidean distance,

between paper embeddings x1 and x2 in a semantic space.

simðx1; x2Þ ¼ expð� dðx1; x2Þ
2
Þ ð2Þ

We capture the semantic gist of a scientific paper by its content in the abstract section. We

choose to represent a paper by the abstract due to its concise and informative character fol-

lowing a procedure adopted commonly in recent computational studies of scientific publica-

tions [35, 36]. Specifically, we represent each paper by a sentence embedding of the abstract

generated by a model in natural language processing called SBERT [37], that we used the pre-

trained version of. This sentence embedding represents the semantic content of each abstract

as a point in a high-dimensional vector space. Fig 1 provides a 2-dimensional visualization

for the semantic space that includes paper embeddings of two prominent scientists in the

fields of computer science and chemistry. data in S1 Appendix includes analyses that validate

the measure we used to represent scientific papers. More specifically, we validate that the

SBERT embeddings are able to capture semantic differences among abstracts published in

different scientific fields, as well as among the abstracts written by individual scientists within

fields.

We consider five models of chaining following the existing literature [22–24]. Each model

postulates a plausible yet different cognitive mechanism for how future scientific outputs

might relate to or stem from existing ones and constructs a continuous temporal path among

the scientific publications of a scientist. Each chaining process is specified by a likelihood func-

tion listed in Table 1.

k-Nearest-neighbor (kNN) models are commonly used for classification and regression,

but in this case we use them to predict which paper from S�t is likely to emerge next based on

that paper’s similarity to the k most similar papers that have already appeared in St. This model

captures the intuition that scientists preferentially publish work that is most similar to any one

paper they have published before (e.g., 1NN), or most similar to a group of k papers they have

published before (e.g., kNN). We tested values of k from 1 to 20 for each scientist.

The prototype model is motivated by Rosch’s work in categorization [30]. This model cap-

tures the intuition that a scientist’s research is organized around a central theme, yet scientists

tend to publish in relation to that theme by gradually adjusting it and branching out over time.

We take the prototype of a scientist’s papers at St to be the average of paper embeddings at St,
and define the probability of a paper emerging at time t+ 1 as proportional to its similarity to

the prototype at time t. This results in a moving average against which new papers are

compared.

The progenitor model is a static variant of the prototype model in which the prototype is

fixed at the first paper to emerge. This model captures the intuition that a scientist started with

a base theme and then progressed consistently in that direction by incrementally making
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progress toward the theme. In the case where multiple papers emerge in the first year of publi-

cation, we take the progenitor to be the average of these papers’ embeddings. The probability

of a paper emerging at any timestep is then proportional to its similarity only to the

progenitor.

Fig 1. Visualization of scientific publications over semantic space and time. (A) Semantic representation of Turing Prize Winner Geoffrey Hinton’s

published papers throughout his career, with annotations on sampled papers. Each dot represents a paper using BERT-based embedding of its abstract that

is projected into 2 dimensions via tSNE dimension reduction [38]. Color gradient indicates year of publication, with more recent papers in warmer colors.

Distance between abstract embeddings signifies inverse semantic similarity. (B) Similar information for Nobel Prize Laureate John B. Goodenough. Note

that the legend shows the gradation of colours, the latest papers from our dataset were from 2021.

https://doi.org/10.1371/journal.pone.0278389.g001
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The exemplar model is based on work on the exemplar theory [28, 39], which can be

viewed as a generalization or soft extension of the kNN models where k is equal to the number

of total papers at each timestep but each paper is weighted differentially toward prediction.

This model captures the intuition that a scientist tends to publish the next paper that is close to

many similar papers they have written before, and the influence of each existing paper is pro-

portional to its similarity to the target paper (i.e., a more similar paper exerts a higher influ-

ence). In this model, the probability of a paper emerging at time t is proportional to its

similarity to all other papers St. We consider the most prominent exemplar model known as

the Generalized Context Model [28].

The local model is a variant of the 1NN model wherein candidate papers are only com-

pared against papers that emerged specifically at the previous timestep. This model captures

the intuition that scientists branch out directly from the previous papers they wrote at the pre-

vious time step and publish papers close to what they last wrote in terms of time.

Table 1 summarizes the specification of the likelihood function f() for each model class.

Together with Eq 1, they specify the probability that each model assigns to a paper emerging at

time t, given all other papers that have appeared up to that time. Each model class has a single

parameter (i.e., model complexity is kept the same for all the chaining models), k in the k-near-

est neighbour models and s in the other models. We used sequential model-based optimization

implemented in the Python hyperopt library to estimate each parameter s [40], and grid

searched for k from 1 to 20. The parameter s controls how sharply similarity tapers with

increased (Euclidean) distance from the query point.

Materials and methods

Data and materials availability

Data and code for replicating the analyses and results reported are deposited as follows:

https://github.com/nightingal3/metascience/tree/master.

Collection and processing of scientific publication data

To capture a diverse and representative range of scientific outputs, we collected the publication

data for both award-winning and randomly sampled scientists from five different fields: Phys-

ics, Chemistry, Medicine, Economics, Medicine, and Computer Science. We chose the first 4

fields because each of these fields corresponds to an award category of Nobel Prizes, which is

one of the most prestigious and long-standing awards for science. We chose computer science

because it is a relatively recent scientific field that is distinguished from those of Nobel Prizes,

but it nevertheless features the prestigious Turing Award.

We collected all papers available for scientific scholars from DBLP for the Computer Sci-

ence field, and from Semantic Scholar for the other fields [41, 42]. For each paper, we collected

Table 1. Summary of model specifications. Each model specifies the likelihood of paper x� to appear at time t, given

the existing set of papers St. d denotes Euclidean distance. Ck(x)� St denotes the k closest points to x.

Model class Likelihood f(x�|St)

kNN Sx0 2CkðxÞ
expð� dðx; x0 Þ2Þ

Prototype exp(−sd(x�, prototype(St))2)

Progenitor exp(−sd(x�, prototype(S0))2)

Exemplar Sx2St
expð� sdðx�; xÞ2Þ

Local Sx2StnSt� 1
expð� sdðx�; xÞ2Þ

https://doi.org/10.1371/journal.pone.0278389.t001
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its title, abstract, year of publication, and coauthor list. We excluded papers from the main

analysis if they were missing an abstract or year of publication, and from the authorship analy-

sis if they were missing an abstract, year of publication, or authorship list.

We defined prominent scientists as those who received the highest honour in that scientific

field from the inception of the award through to 2020. This was either the Turing Award for

the field of Computer Science, or a Nobel Prize for the other fields. For the random group, we

randomly sampled scientists from the Semantic Scholar open research corpus labelled with the

respective field of study, excluding the set of prominent scientists. We matched the sample size

of the random scientists to that of the random scientists. Table 2 summarizes the number of

prominent scientists and the range of number of papers published for each field.

Semantic representation of abstracts

We computationally represented the semantic gist of a scientific paper by embedding its

abstract via SBERT [37], which is a common method in natural language processing for repre-

senting sentences as a high-dimensional vector. We chose to focus on analyzing abstracts

because they provide a compact distillation of the paper contributions while also containing

some details on the approach and the background that the paper entails. This procedure fol-

lows work on summarization of scientific documents, which often uses the abstract as a target

for text summarization [35, 36, 43–45].

Before constructing the abstract embeddings, we used standard preprocessing in natural

language processing while also removing textual features common in scientific abstracts that

provide irrelevant information. For the standard preprocessing steps, we removed punctuation

and stopwords, lemmatized, and removed bracketed words, as these were most often citations.

For abstract-specific features, we removed symbols including LATEX, the prefixes “Abstract”

and “Summary”, as well as subheadings within the abstract summarizing the parts of the paper

(e.g., “Background”, “Results”). We also excluded any abstracts that were not written in

English.

We ran these procedures for each scientist, excluding in turn any scientists that had fewer

than 5 papers. For the prominent scientists, to remove unlikely papers, we excluded any papers

published after the scientist’s death date or fewer than 15 years after their birth date. We con-

verted the dates of publication to timestamps, so that the first paper published would be given

timestamp 0, and the second timestamp 1, regardless of their actual publication dates.

We describe the details of a series of tests that evaluate the validity of our semantic repre-

sentation for the scientific papers in Supporting Information.

Evaluation of chaining models against historical publication data

For each scientist, we calculated the predictive probability of a model based on the sequence of

papers produced by that scientist, where the sequence recapitulates the historical emerging

order recorded in the years of publications of the papers. The predictive probability of a

sequence of papers is the product of the predictive probabilities of the individual papers as

they emerged through time: P = ∏tp(x�|St), where x� denotes the newly emerged paper at

the next time step and St denotes the set of papers published up to current time t. The

Table 2. Sample size of scientists per award category and range of number of publications.

CS Chemistry Economics Medicine Physics

# scientists 69 120 74 151 168

# pub. range 6–373 5–227 5–187 6–217 5–587

https://doi.org/10.1371/journal.pone.0278389.t002
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log-likelihood of the sequence of papers is then simply log P. To compare each model against

the null model, or a random guesser, we take the log-likelihood-ratio log P
PðnullÞ which is a stan-

dard statistical measure for model comparison. P(null) is theoretically determinable, because

at each time t the probability of randomly guessing the true paper to emerge from a pool of n
yet-to-emerge papers is 1

n.

Results

We evaluated the chaining models described on the historical publication data against a null

baseline model that makes random guesses about the emerging order of the publications. For

each scientist, we calculated the predictive likelihood of a model for all the yet-to-emerge

papers based on Eq 1 aggregated over time (see Materials and methods for details on model

evaluation). Fig 2A and 2B show the raw log-likelihood ratios between each model and the

null model for the prominent and random-sampled scientists respectively across the 5 fields.

Model comparisons against the null indicate the likelihoods obtained in each of the chaining

models are significantly higher than those of the random guesser (Mann-Whitney U test:

p< 0.001 for all conditions; see Table in S1 Table for detailed summary statistics). We also

examined the relative strength of the models in a winner-take-all analysis, where within each

scientist we assessed which model best predicts the emergent pattern of papers over time. We

expect the chaining models to perform better than the baseline, and the best model to yield the

highest likelihood across scientists. Fig 3A and 3B summarize the results for the groups of

prominent and random-sample scientists respectively. Table in S2 Table provides the exact

model percentages from this analysis. In all cases, the chaining models dominated the null

baseline model, and the exemplar-based chaining model yielded the highest predictive likeli-

hood in scientists across fields (binomial test: p< 0.001; n = 10). Importantly, the same pat-

terns of exemplar advantage were attested in both the group of prominent scientists and the

group of random scientists. This initial set of results supports the view that there is temporal

continuity in the emergence of scientific ideas with strong statistical tendencies in a shared

mechanism of exemplar-based chaining observed robustly across the individuals and scientific

fields.

To examine whether collaboration might influence the results described, we next per-

formed the same analysis by controlling explicitly for authorship conditions in the publica-

tions. A scientist may play a leading or non-leading role in a co-authored publication, and

hence collaboration might introduce randomness in the historical emergence of scientific

ideas for any given scientist. To assess whether our results are robust to this factor, we repeated

likelihood calculation and winner-take-all analysis on each scientist under 4 different author-

ship conditions: fewer than 3 authors per paper, fewer than 2 authors per paper, single-author

papers, and first-author papers. Here, first-authorship means that the scientist in question is

either the first or last author. For each scientist, we included only those papers that meet each

authorship condition, and re-ran all analyses. Fig 3 shows that across all 4 authorship condi-

tions, 5 scientific fields, and the groups of prominent and random scientists, the chaining

models persistently better predicted the historical data than the null model and exemplar-

based chaining is the best overall model (binomial test: p< 0.0008; n = 39). These results indi-

cate that the regularity underlying the historical emergence of scientific papers is not affected

by the degree of collaboration in a scientist’s work.

To verify that the best-performing model captures genuine temporal effects, we performed

a shuffle test where we randomized the emerging order of papers over the timeline such that

the same number of papers emerged at each timestep, but papers were assigned with distorted

timestamps. We shuffled 100 times and compared the predominance of the best model in the
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Computer Science

Chemistry

Economics

MedicinePhysics

Computer Science

Chemistry

Economics

MedicinePhysics

A

B

Fig 2. Summary of model predictive performance. (A) Log-likelihood ratio of model against the null random baseline model based on predicting historical

data from the prominent scientists across the 5 fields. 0 on the vertical axis indicates equal performance between a chaining model and the null model; values

above 0 indicate superior performance over the null model. (B) Similar information for the random-sampled scientists.

https://doi.org/10.1371/journal.pone.0278389.g002
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Fig 3. Summary of results from the winner-take-all analysis. (A) Bar chart indicates the winning percentage of a

model in predicting the historical emergence of publications from the prominent (or award-winning) scientists across

the 5 fields (“CS” stands for computer science). Different groups of bar charts display winning percentages under

different authorship conditions. (B) Similar information for the random-sampled scientists.

https://doi.org/10.1371/journal.pone.0278389.g003
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ground truth timeline to the predominance of the best model in the shuffled cases. If the suc-

cess of exemplar-based chaining reflects the temporal emergence of scientific papers, the pre-

dominance of this chaining model in the ground truth condition should be significantly

higher than that in the shuffled conditions. Fig 4A and 4B summarize the results from the shuf-

fle tests for prominent and random scientists across the 5 fields. In all but one case, we found

that the dominance of the exemplar model over alternative models is significantly higher in

the ground truth condition than in the time-shuffled condition (permutation test: p< 0.01 in

all cases, except for the prominent computer scientists group p = 0.06). These results indicate

that the success of the exemplar chaining model reflects the true historical emergence of scien-

tific publications.

Although the exemplar model is predominant through all the predictive analyses, we

observed that there is variation among the chaining models in predicting scientists’ data. In

particular, we found the progenitor model to be persistently the second best-performing

model (see Fig 3 and Table in S2 Table for the breakdown of model performance). This result

shows that despite the fact that exemplar-based chaining may be generally preferred, this pref-

erence reflects a statistical tendency and there exist alternative mechanisms in the emergence

of scientific publications. For instance, the progenitor model reflects the strategy where a sci-

entist tends to make incremental progress toward a base theme. This model of chaining is sta-

tistically less salient than the exemplar-based strategy in our data, but it may be nevertheless

adopted quite commonly by scientists. These findings indicate that there are varying strategies

in how scientists make progress over time, with exemplar-based strategy being the prevalent

kind.

Discussion and conclusion

Our study offers an initial step toward quantifying and evaluating the regularity in the histori-

cal emergence of scientists’ outputs across individuals and multiple scientific fields. Our find-

ings reveal a resemblance between the processes of scientific publishing behavior over time

and historical word meaning extension: both processes rely on mechanisms of chaining that

Fig 4. Summary of results from the time-shuffled analysis. (A) Comparison of the predominance of the exemplar model (model winning percentage indicated by

the red dotted line) against the same statistics recorded in the 100 iterations from the time-shuffled tests (winning percentages shown in the boxplot with an

accompanying histogram and scattered raw data). (B) Similar information for the random-sampled scientists.

https://doi.org/10.1371/journal.pone.0278389.g004
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grow ideas over time based on closely related existing ideas, which suggests that chaining may

serve as a general-purpose mechanism in the extension of human knowledge.

We acknowledge that there are aspects that are not captured by our current analysis and we

do not suggest our account to be a full picture of scientists’ discovery processes, but rather a

high level framework which can be built upon for future work.

One factor influencing scientists’ research output that can be further explored is the role of

collaboration. Although we analyzed papers written by different numbers of coauthors, we did

not examine in detail how the activities of other researchers might impact scientists. This was

partly due to data limitations, since we focused on analyzing the sequences of papers and did

not consider the collaboration network of scientists. This analysis can be challenging to carry

out with the historical Nobel prize winners, since we do not know of any digitized records that

would allow us to build a complete collaborative network of scientists from the earlier periods.

However, exploring models that take into account collaboration would be an interesting ave-

nue for future research.

The primary focus of our analysis is on examining which of the cognitively plausible models

might best account for the historical emergence of scientists’ publications. There may be more

fine-grained patterns which we are unable to explore here, such as the variation in behavior

over the course of career and the variation in behavior due to scientists’ differential demo-

graphics (e.g., the comparison of senior, more established scientists versus junior scientists).

Throughout our large-scale analysis in multiple scientific fields, we found consistent evi-

dence for exemplar-based chaining in award-winning and random-sampled scientists in their

historical emergent patterns of publication. The resolution of our analysis focuses on the level

of scientists, so our computational framework does not speak to the emerging properties of

individual publications. However, our analysis does reveal that scientists who have done prom-

inent work share similar cognitive strategies in scientific inquiry through time with those who

do “normal” science, such that they tend to make progress in continuous ways reflecting a pro-

cess of chaining that mirrors the processes in historical word meaning extension.

Supporting information

S1 Appendix. Validation of semantic representation. Details of how validation of semantic

representations across fields and scientists was performed is included.

(PDF)

S1 Fig. Validation of semantic representations at field-level. Validation of semantic repre-

sentation at the scientific-field level. Comparison of the attested J-value (red dotted line)

against the J-values from the shuffled trials across scientific fields (green histogram and box-

plot with scattered raw data) in (A) prominent scientists, and (B) random-sampled scientists.

(EPS)

S2 Fig. Validation of semantic representations at scientist-level. Validation of semantic

representation at the individual-scientist level. Comparison of the attested J-value (red dotted

line) against the J-values from the shuffled trials across scientists (green histogram and boxplot

with scattered raw data) within each of the 5 scientific fields in (A) prominent scientists, and

(B) random-sampled scientists. “CS” stands for computer science.

(EPS)

S1 Table. Summary statistics from evaluation against the null model, in prominent and

randomly-sampled scientists across fields. Statistics from model evaluation against the null

model in log-likelihood ratio for the award-winning scientists as described in the main text,

using Mann-Whitney U test. The Mann-Whitney U test was used in place of a t-test because
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the data were not normally-distributed (all models outperformed the null, and this is highly

significant).

(PDF)

S2 Table. Percentage breakdowns from winner-take-all analyses. Tthe percentage break-

downs from the winner-take-all analyses described in the main text for the group of award-

winning scientists as well as randomly-sampled scientists. The percentage of the model with

the highest winning percentage across scientists within each scientific field is marked in bold.

(PDF)
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