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Abstract

A scientist’s academic pursuit can follow a winding path.
Starting with one topic of research in earlier career, one may
later pursue topics that relate remotely to the initial point.
Philosophers and cognitive scientists have proposed theories
about how science has developed, but their emphasis is typi-
cally not on explaining the processes of innovation in individ-
ual scientists. We examine regularity in the emerging order of a
scientist’s publications over time. Our basic premise is that sci-
entific papers should emerge in non-arbitrary ways that tend to
follow a process of chaining, whereby novel papers are linked
to existing papers with closely related ideas. We evaluate this
proposal with a set of probabilistic models on the historical
publications from 70 Turing Award winners. We show that an
exemplar model of chaining best explains the data among the
alternative models, mirroring recent findings on chaining in the
growth of linguistic meaning.
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Introduction

A scientist’s academic pursuit can follow a winding path.

Newton studied optics earlier in his career but later devel-

oped ideas on the laws of physics and calculus. Turing ini-

tially published on computability theory but later contributed

to machine intelligence and the chemical basis of morphogen-

esis. How do scientists conceive ideas over time, and to what

extent do earlier ideas influence the development of future

ideas? Here we present a computational approach to explor-

ing regularity in the process of scientific innovation.

The topic of scientific development has been studied ex-

tensively in the philosophy of science and cognitive science.

At a macro level, philosophers have contributed theories to

the development of the broad scientific field. Representative

work includes Popper’s falsificationism (Popper, 1959), Fay-

erabend’s incommensurability thesis (Fayerabend, 1962) and

Kuhn’s theory of scientific revolution (Kuhn, 1962). For in-

stance, Kuhn characterized science as consisting of two al-

ternating modes, “normal science” and “revolutionary sci-

ence” (Kuhn, 1962). Whereas the periods of normal science

are incremental and cumulative, the periods of revolutionary

science involve a revision and reframing of pre-existing sci-

entific ideas (Kuhn, 1962). At a micro level, scholars have

suggested that the development of scientific concepts such as

“temperature” or “H2O” often involves a gradual process of

conceptual change (Carey, 2009; Chang, 2004, 2012).

Recent computational work has added to this line of in-

quiry by modeling topic trending in science (Griffiths &

Steyvers, 2004; Prabhakaran, Hamilton, McFarland, & Ju-

rafsky, 2016), the evolution of citation frames and net-

works (Jurgens, Kumar, Hoover, McFarland, & Jurafsky,

2018; Zeng, Shen, & Zhou, 2019), and the propagation of

innovation in a specific scientific field (Jurafsky, 2015).

Our focus here differs from the existing array of work. We

explore whether there is regularity in a scientist’s innovative

research outputs as they emerge over time. Although scien-

tists vary widely in the subjects they study, we hypothesize

how scientists conceive novel ideas over time should exhibit

shared tendencies that reflect basic principles of human in-

duction. There is some work from cognitive psychology sug-

gesting that individual scientists undergo a process of concep-

tual change (Carey, 2009), and we extend this idea by probing

incremental mechanisms that underlie the process of innova-

tion in scientists.

Spatiotemporal mapping and chaining of scientific

outputs

We describe two ideas that are central to the formulation of

our framework: spatiotemporal mapping and chaining of sci-

entific outputs.

Spatiotemporal mapping. We represent the main sci-

entific outputs (i.e., published papers) throughout a scien-

tist’s career as dots on a spatiotemporal map. We use spatial

proximity between dots to approximate semantic similarity

of publications, and we timestamp each paper by its year of

publication. We then infer a plausible innovation path for a

scientist in question, by revealing one dot at a time as a pub-

lication emerges, and we ask whether the emerging order of

publications into the future (at time t+1) is predictable given

the spatiotemporal profile of existing publications (at time t).

Figure 1 illustrates the map of scientific outputs from the Tur-

ing Award winner Geoffrey Hinton. What this map reveals is

a compact summary of Hinton’s scientific outputs over a 40-

year period. It is clear that they have shifted from the initial

focus on visual perception to the later focus on deep learning.

What this map does not reveal directly is the hidden processes

that underlie the shift: how one’s earlier research ideas might

influence the development of future ideas.

Chaining. We next explore plausible mechanisms that ex-

plain the emergence of future scientific outputs from existing

ones, and we do so by constructing a connected path among

the dots (or papers) over historical times. Our basic premise
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Figure 1: Illustration of Geoffrey Hinton’s publications (1976-2019). Each dot represents a published paper projected onto a

2-dimensional space via tSNE (Maaten & Hinton, 2008). Year of publication is expressed in a cool-warm color gradient (warm-

ness indicates recency). Distance between dots reflects semantic similarity between two papers in their Abstract embeddings.

is that the emerging order of publications is non-arbitrary, and

certain ways of scientific innovation may be preferred by over

others—statistically speaking among the scientists, because

they are more cognitively natural or efficient.

Our hypothesis about the scientific innovation mechanisms

is grounded in chaining, a prominent proposal on the growth

of linguistic meaning. Chaining refers to a process that links

novel ideas with existing ideas that are closely related, hence

forming a chain-like structure over time (Lakoff, 1987; By-

bee, Perkins, & Pagliuca, 1994; Malt, Sloman, Gennari, Shi,

& Wang, 1999). Previous work has formulated chaining

as probabilistic graph-traversal algorithms (Sloman, Malt, &

Fridman, 2001; Xu, Regier, & Malt, 2016; Ramiro, Srini-

vasan, Malt, & Xu, 2018; Habibi, Kemp, & Xu, in press; Gre-

wal & Xu, in press). More recently, it has been suggested that

chaining can be best operationalized as an exemplar model,

initially proposed as a theory of categorization—sometimes

also known as the General Context Model (Nosofsky, 1986)

and later extended to predicting the historical extensions

of linguistic meaning in domains including numeral classi-

fiers (Habibi et al., in press) and adjectives (Grewal & Xu, in

press). Here we explore the connection between these com-

putational chaining algorithms and the process of scientific

innovation: we believe that the process of conceiving novel

scientific ideas may resemble the process of linguistic inno-

vation, and we test this proposal against historical publication

records of scientists. Independent work from mathematical

modelling has proposed that similar processes might under-

lie the emergence of novelties (Loreto, Servedio, Strogatz, &

Tria, 2016), but to our knowledge there has been no formal-

ization or comprehensive evaluation of chaining in scientists’

innovation.

There is no strong reason a priori for scientist’s publication

order to be predictable, and in fact, many factors involved in

the process of innovation that might forbid one from reversing

the path (e.g., scientific collaboration, a point that we return to

later). There is also no direct ground truth for evaluating our

proposal on chaining, because only the scientists themselves

would have gone through the actual thought processes. As we

shall describe, we evaluate a set of models on their ability to

predict the historical emerging order of papers of individual

scientists, similar to how previous work predicts the emer-

gence of word meaning (Ramiro et al., 2018). If the chaining

models can reconstruct the emerging order of papers for dif-

ferent scientists, it will provide support for our hypothesis and

reveal basic principles in the process of scientific innovation.

Computational methodology

Problem formulation. We formulate the problem as a tem-

poral prediction problem. Given the set of papers St a scien-

tist has published by time t, we want to predict the probability

of a yet-to-emerge paper x∗ from the same scientist to be ac-



tually published at the next available time step t + 1. Our

analysis treats each year as an individual timestep, so papers

published within the same year are considered to emerge at

the same time. Each model we specify below predicts which

papers are most likely to emerge at the next timestep based

on Luce’s choice rule (Luce, 1959):

p(x∗|St)∼
f (x∗,St)

Σx∈S∗t
f (x,St)

(1)

where S∗t is the set of papers yet to emerge (or be published)

beyond t, and f () specifies the particular model class. As a

model predicts through time, St is updated with the ground

truth papers at each timestep in order to minimize error prop-

agation. Whenever “similarity” is mentioned below, we refer

to the exponentiated squared Euclidean distance between pa-

per embeddings x1 and x2 in semantic space.

sim(x1,x2) = exp(−d(x1,x2)
2) (2)

Semantic representation. We capture the gist of a scien-

tific paper by its content in the Abstract section. Specifically,

we represent the semantics of each paper by a sentence em-

bedding of the entire abstract generated by a pretrained BERT

model (Reimers & Gurevych, 2019).

Computational models of chaining. We consider five

main model classes adapted from recent work on semantic

chaining (Ramiro et al., 2018; Habibi et al., in press; Gre-

wal & Xu, in press). Each model class postulates a different

mechanism of chaining that yields potentially different pre-

dictions in the emerging order of papers, and several of these

models are related to neighbourhood-based chaining mod-

elled closely by the exemplar theory (Nosofsky, 1986). Ta-

ble 1 summarizes the model specifications of the f () function

in Equation 1.

1) k-Nearest-neighbor models. k-Nearest-neighbor (kNN)

models are commonly used for classification and regression,

but in this case we use them to predict which paper from S∗t
is likely to emerge next based on that paper’s similarity to the

k most similar papers that have already appeared in St . We

tested values of k from 1 to 5. All of these models are slight

variants of the exemplar model with hard and pre-specified

neighbourhood sizes.

2) Prototype model. The prototype model is based on

Rosch’s work in categorization (Rosch, 1975). The prototype

of a scientist’s papers at St is taken to be the average of paper

embeddings at St , and the probability of a paper emerging at

time t + 1 is proportional to its similarity to the prototype at

time t. This results in a moving average against which new

papers are compared.

3) Progenitor model. The progenitor model is a static vari-

ant of the prototype model in which the prototype is fixed at

the first paper to emerge. The probability of a paper emerg-

ing at any timestep is then proportional to its similarity only

to the first paper that emerges. This model suggests that a

scientist’s paper order is fully predictable given how related

that paper is to the first paper a scientist has published, which

means that the scientist might have progressed consistently in

a restricted topic.

4) Exemplar model. The exemplar model is based on work

by Medin and Schaffer, and Nosofsky (Medin & Schaffer,

1978; Nosofsky, 1986). In the exemplar model, the probabil-

ity of a paper emerging at time t is proportional to its similar-

ity to all other papers St . The most prominent exemplar model

is the Generalized Context Model (Nosofsky, 1986), in which

a sensitivity parameter s controls how sharply similarity ta-

pers with increased (Euclidean) distance. We also consider

a parameter-free version of this model assuming s = 1. The

exemplar model can be viewed as a soft extension of the kNN

models, in which k is equal to the number of total papers at

each timestep but each paper is weighted differentially toward

prediction.

5) Local model. The local model is a variant of the 1NN

model wherein candidate papers are only compared against

papers that emerged specifically at the previous timestep, to

capture some recency effect (e.g., a paper emerging next is

likely to be most related to the paper that just appears before

it). We predict a paper’s probability of arising at time t as

proportional to its similarity to papers in St−1 \ St−2, where

Si denotes the set of all papers that have emerged at time i or

earlier.

Table 1: Specification of selected models with respect to the

probability of paper x∗ appearing at time t, given a set of ex-

isting papers at time t, St . sim() is defined in Equation 2, and

d refers to Euclidean distance.

Model f (x∗|St)
1NN maxx∈St sim(x∗,x)
Prototype sim(x∗, prototype(St))
Progenitor sim(x∗,x0)
Exemplar Σx∈St exp(−sd(x∗,x)2)
Local sim(x∗,St−1 \St−2)

Model scoring. Given the ground-truth sequence of emer-

gent papers (from the publication dates), we score each model

by its predictive probability assigned to the true sequence

of papers. A better model should assign a higher predictive

probability to the true sequence. We calculate the probability

of any sequence R = r1, ...,rN as:

p(R) = p(r1)× p(r2|S1)× ...× p(rN |Sk−1) (3)

where there are k timesteps in total. Note that p(r1) = 1 since

the starting point is fixed. It is also possible for multiple pa-

pers to arise at the first timestep, in which case all of their

probabilities are set to 1. Denote nk as the number of papers

that specifically emerge at the k-th timestep.

We compare our models against a random guess baseline



postulating any sequence is as likely as any other:

p(Rrand) = 1×
1

N −n1 +1
× ...×

1

N −nk +1
(4)

For each non-random model, we define the probability of

p(r∗|St) through Equation 1 as specified. For each paper that

appeared at a timestep, we evaluated its probability with re-

spect to only papers that emerged at a different timestep and

itself (since several papers can appear at a single time point).

Data collection and processing

In this initial exploration, we focused on analyzing scien-

tific innovation in computer science researchers, although our

framework is applicable to the analysis of other scientific

fields. The cultural norm of publishing in computer science is

primarily conference-based (Vrettas & Sanderson, 2015), so

it provides us with useful time-locked publication data and a

relatively high number of publications per scientist.

More specifically, we chose to work with 70 Turing Award

winners (Association for Computing Machinery, 2019) be-

cause 1) their work has been highly recognized and is repre-

sentative of the field 2) their academic profiles represent a de-

cent temporal span of researchers from 1966 to 2018. While

this is not a random sample of scientists, we would expect

any regularity displayed in the emergence of innovation in the

general scientific population to also be present in this sample.

Here we are not particularly concerned with the impact of a

specific scientific paper, but rather its semantic relationships

with other papers by the same individual. Nevertheless, it is

possible that the type of work that scientists do, as well as in-

dividual differences between scientists would affect the mod-

els that best characterize them, and that this differs between

a randomly selected group and a widely recognized group.

This is not within the scope of this paper, but is a potential

direction for future work.

Year, title, co-authors, and abstract data for the list of Tur-

ing Award winners were extracted from DBLP Computer Sci-

ence Bibliography (https://dblp.uni-trier.de/) which

is a standard database for bibliography in computer science.

In order to restrict papers to scientific research, only journal

articles and conference or workshop papers were retained.

Miscellaneous publications (opinion pieces, obituaries,

panel discussions, interviews) were removed when it was

clear that a publication fell into one of these categories.

Words were lemmatized, and functional words, punctuation,

bracketed words, and markup were removed in the calcula-

tion of average embeddings.

Results and evaluation

We focus on reporting two main aspects: 1) whether there

is evidence for chaining in the emergence of scientific pa-

pers from different scientists; 2) how degree of collaboration

might affect chaining models in predicting scientists’ innova-

tion trajectories.
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Figure 2: Summary of winner-take-all predictive analysis of

all models based on data from 55 Turing Award winners.

Predominance of the exemplar model. To find the best-

performing value of the sensitivity parameter s in the exem-

plar model, we performed a grid search over the range [0,

100]. To avoid giving this model an advantage over the other

models that are parameter free, we used held-out data with a

20/80 train-test random split among the 70 scientists to evalu-

ate all of the models. A larger test set was used in the interest

of preserving as many scientists as possible for our analysis

(55 scientists were left in the test set). The best s value was

found to be 0.02.

We ran each class of models on data from the 55 Turing

prize winners on an individual basis. To evaluate which of

the models best accounted for scientists’ extension of work,

we performed a winner-take-all comparison of the models

based on log predictive probability. If two or more models

did equally well in predicting the paper sequence, they would

receive equal credit, though each scientist’s best model(s) re-

ceived equal weight in the final tally.

The best-performing models are summarized in Figure 2.

The overall best model is the exemplar model with s = 0.02,

explaining 54.2% of the scientists that dominates the remain-

ing models. A residual 38.9% of scientists are best explained

by one of the kNN models, while progenitor and prototype

models account for only 2.2% of scientists and the local

model accounts for 0.7% of scientists.

We also visualized the average log-likelihood ratio against

the random model for each model over the 55 Turing prize

winners, and the results appear in Figure 3. These re-

sults align with the winner-take-all results, with the exem-

plar model achieving the highest average log-likelihood ratio,

and the progenitor, prototype, and local models achieving the

lowest average log-likelihood ratios. There is generally more

variation among individual scientists and less variation within

models for an individual scientist.

All kNN models are very closely correlated (by construc-

tion), such that a given scientist would tend to either be best
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Figure 3: Summary of average log-likelihood ratio over the

random model of all models based on data from 55 Turing

Award winners.

explained by the exemplar model or be best explained by sev-

eral of the kNN models. Figure 4 confirms this is the case

by showing the inter-model correlations in prediction across

the 70 data points. The class of kNN models correlates most

highly with one another. The local model and 1NN are highly

correlated with Pearson ρ = 0.991. The progenitor model

does not correlate as much with any of the other models, for

instance with 1NN (ρ= 0.684). This corroborates the account

that there is more variation between scientists than between

model performance on a single scientist.
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Figure 4: Inter-model correlations in prediction.

Overall, this initial set of results provides support for the

idea that how scientists innovate may involve a mechanism

similar to that captured by a weighted exemplar model, more

so than prototype-based models or nearest-neighbour models.

These results resonate with findings made in the linguistic do-

mains of historical adjective extension and numeral classifiers

(Grewal & Xu, in press; Habibi et al., in press).

Predictability in scientific trajectories and collabora-

tion. Our analyses so far have focused on comparing different

model sets but not how these models fare with random drift,

which is plausible for scientific innovation.

To address this issue we analyzed each scientist individ-

ually. In each case, the probability of the ground-truth se-

quence of papers occurring in each model was compared

to the probability of the sequence occurring in the random

model, which is determined by Equation 4. Figure 5 shows

that most models perform above chance for most scientists,

and at least one model performs above chance for 87.3% of

scientists (48/55).

One pertinent question is to what extent these results are

affected by collaboration. Scientists sometimes decide what

to work on based on what their collaborators are working on,

so the process of extension is not purely one person’s cogni-

tive process. To examine the effect of collaboration on these

results, we ran the models on papers written by a low number

of co-authors. We also considered a separate run where only

papers written by a scientist as the leading or final (senior)

author were included.

The results are summarized in Table 2. Model performance

above chance peaks when we only considered lead-author pa-

pers, but there is not a significant difference between the re-

sults for lead-author papers and the results with no authorship

restrictions in place. This indicates that there may not be a

significant effect of authorship on the ability for models to

predict the sequence of papers above chance.

Table 2: Number of scientists for which models performed

above chance, evaluated via log-likelihood ratio against ran-

dom of the ground-truth sequence.

Paper authorship Number (%) of scientists

predicted above chance

Lead author 50/55 (90.9%)

1 author 49/55 (89.1%)

2 authors 47/55 (85.4%)

3 authors 49/55 (89.1%)

No authorship restriction 48/55 (87.3%)

To verify whether the exemplar model persists to be the

best explanatory model under these different authorship con-

ditions, we repeated the winner-take-all analysis and summa-

rize the breakdown of model performance when models pre-

dicted above random in Table 3.

In each case, we confirm our initial finding that the ex-

emplar model is the best overall in comparison to the other

alternative models. We note that there are slight variations

across conditions, with the 1NN and 2NN models accounting

for a greater proportion of scientists in the 1 author condition

compared to baseline, and the exemplar model accounting for

a lesser proportion in the 1 author condition.



Figure 5: Model performance above random on 55 Turing Award winners (1966-2018), with no authorship restriction. Green

squares indicate that the model performed below chance, while red squares indicate that the model performed above chance.

The size of squares is proportional to the absolute value of the log-likelihood ratio between the model’s assigned probability

and the random probability of a true sequence, relative to either the best ratio for that scientist (if the ratio is above 1) or the

worst ratio for that scientist (if the ratio is below 1).

Table 3: Proportion of scientists predicted above chance that are best explained by each model under different authorship

conditions.

Paper authorship 1NN 2NN 3NN 4NN 5NN Progenitor Prototype Exemplar Exemplar (s=1) Local

Lead author 7.1% 7.6% 6.2% 6.2% 8.3% 2.3% 0.2% 59.2% 2.3% 0.6%

1 author 15.6% 18.7% 9.0% 2.7% 4.8% 1.3% 0.2% 33.5% 10.6% 3.7%

2 authors 7.2% 7.2% 5.7% 5.7% 7.9% 2.9% 0.7% 58.7% 2.9% 1.1%

3 authors 8.3% 4.7% 5.4% 5.4% 7.4% 2.5% 0.5% 62.5% 2.5% 0.8%

No restriction 9.0% 8.0% 6.6% 6.6% 8.7% 2.1% 2.1% 54.2% 2.1% 0.7%

Table 4 highlights some authors for which either the Ex-

emplar or the 1NN model performed especially well, as in-

dicated by the gap in log-likelihood ratio between that model

and the next best model on a particular scientist. One ques-

tion that we investigated was whether or not the performance

of these models correlates with the number of papers that a

scientist has published, but we found that there is a small cor-

relation between number of papers published and the compar-

ative advantage of that model over others (1NN: ρ = 0.211,

Exemplar: ρ = 0.126), but neither is statistically significant

(1NN: p = 0.122, Exemplar: p = 0.358).

Table 4: Top 5 scientists for which the Exemplar and 1NN

models performed the best.

Exemplar 1NN

Edmund M. Clarke E. Allen Emerson

Robin Milner Ken Thompson

Leslie Lamport Allen Newell

Judea Pearl Butler W. Lampson

John E. Hopcroft Charles W. Bachman

Conclusion

We present to our knowledge the first computational account

for the processes of scientific innovation in individual scien-

tists. None of the models we considered is complex, but each

model is grounded in the existing literature and easily inter-

pretable. The exemplar model performs better than the alter-

native models in characterizing well-known scientists’ paper

sequences over time in the field of computer science.

Our results provide support for the view that the processes

underlying how scientists develop ideas over time may rely

on cognitive mechanisms of chaining that closely resemble

those found in linguistic innovation (Habibi et al., in press;

Grewal & Xu, in press), but variation exists among different

scientists. Future work should assess the generality of these

findings in scientific domains other than computer science.
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