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Part I

Detailed Formulations of Efficiency and Grammar
S1 Information Locality

S1.1 Formalizing Information Locality

Information Locality is motivated by the interaction of two prominent psycholinguistic perspectives on
what determines human comprehension difficulty in processing syntactic structure. Memory-based
theories [1, 2, 3] propose that comprehension difficulty arises from the difficulty of retrieving and in-
tegrating information from preceding context. Expectation-based theories [4, 5] states that difficulty
arises at points in a sentence that are hard to anticipate from the preceding context. Jointly consider-
ing both perspectives leads to the prediction that words should be easy to process when they are easy
to predict from preceding context (as predicted by expectation-based accounts) unless the relevant pre-
dictive information has been affected by memory decay or interference (as predicted by memory-based
accounts) [6, 7, 8, 9] (see also [10, 11, 12] for closely related proposals). Under this perspective, word
order enables efficient processing when predictive information about a word is concentrated in its re-
cent past, so that it can be utilized before it suffers memory decay or interference. This idea has been
formalized using the term Information Locality by Futrell et al. [8] and Hahn et al. [9], though it is
closely related to proposals from preceding work on the role of efficiency in language [13], of relations
between usage statistics and conceptual structure in language [14], information-theoretic studies of lan-
guage [15], and also to classical experimental findings about the role of contextual constraint on the
occurrence of words [16, 17].

The key formal notion is the conditional mutual information between two words Xi, Xi+t at a distance
t (Figure S1 A):

It := I[Xi,Xi+t |Xi+1 . . .Xi+t−1] = EX

[
log

P(Xi+1|Xi,Xi+1 . . .Xi+t−1)

P(Xi+t |Xi+1 . . .Xi+t−1)

]
(1)
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Figure S1: Information Locality, Mutual Information, and their links to psycholinguistic processing
effort. (A) The conditional mutual information It measures how much predictive information a word
t words in the past provides about the next word, on average across a corpus. While we only show
values up to t = 4, t runs through all integers up to the length of the longest sentence in the corpus. In
human language, It is largest at t = 1 and quickly decays as t increases. (B) Another possible situation,
where the predictive information is spread out more widely over the past context. Here, I1 is lower and
It decays more slowly. Such a situation corresponds to a lower degree of Information Locality than in
A. (C) The decay of It is linked to two aspects of psycholinguistic processing: memory and surprisal.
For an individual comprehender, there is a tradeoff whereby a higher memory capacity lowers surprisal
on average. The shape of this tradeoff depends on It and thus on word order: If It decays more quickly
(green), a comprehender can achieve lower surprisal at the same memory budget, i.e., the tradeoff is
more efficient. The efficiency of the tradeoff can be measured by its area under the curve (AUC), which
is lower for the green curve.
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where the expectation X runs over all sequences of words in the statistics of the language. The con-
ditional mutual information It measures how much predictive information words that are t words apart
provide about each other’s identity, controlling for information that is redundant with the t−1 interven-
ing words, and averaging across all such word pairs in a corpus.

Mutual information is closely related to two other well-studied information quantities [e.g. 18, 19,
20]: the entropy rate H[Xt | . . . ,Xt−2,Xt−1] measuring how unpredictable words are in context on average,
and the unigram entropy H[Xt ] measuring the diversity of the distribution over individual words, i.e., how
unpredictable a word is without context. The difference between the two turns out to be1

H[Xt ]−H[Xt | . . . ,Xt−2,Xt−1] =
∞

∑
t=1

It (2)

which measures the total average amount of predictive information contained in the preceding context.

Formalizing Information Locality Broadly speaking, Information Locality asserts that language fa-
vors orderings where a higher fraction of the overall predictive information (2) is contained at words in
the recent context, and only a small fraction is contained in words farther in the past. This is equivalent
to stating that It is high for small distances t and decays relatively steeply as t increases (Figure S1 A–B).

In this paper, we choose maximization of the mutual information between adjacent words I[Xi,Xi+1]
as a particularly simple operationalization of Information Locality:

I1 = I[Xi,Xi+1] = EX

[
log

P(Xi+1|Xi)

P(Xi+1)

]
(3)

If this quantity is high, a larger fraction of (2) is provided by the immediately preceding word. A smaller
fraction of the overall predictive information from the past is then contained in context further in the
past. Conversely, if I1 is small, a larger fraction of (2) must be contained further in the past.

We next discuss how this relates to proposals from prior work.

Area under Memory-Surprisal Tradeoff Curve Hahn et al. [9] provide a mathematical derivation
of information locality in terms of a memory-surprisal tradeoff, combining the expectation-based and
memory-based perspectives with a general information-theoretic analysis. This is formalized by the
following theorem about comprehenders processing a stream of words using some (otherwise arbitrary)
memory representations M (Figure S1 C): If T ≥ 0 is an integer chosen so that the information-theoretic
capacity of the listener’s memory representation M satisfies

M ≤
T

∑
t=1

t · It (4)

then this comprehender’s average surprisal S satisfies

S≥ H[Xt | . . .Xt−1]+
∞

∑
t=T+1

It (5)

They showed that comprehenders can achieve a lower surprisal at the same memory capacity when It
decays faster. This happens because of the factor t in (4), which creates a higher memory cost due to
predictive information It at higher distances t. Our chosen formalization (3) emerges in the limit of small
memory capacities: For T = 1, the surprisal bound precisely equals H[Xt ]− I1. A higher value of I1 thus
guarantees a lower (i.e., more favorable) surprisal at low memory budgets.

Hahn et al. [9] proposed to quantify information locality in terms of the area under the memory-
surprisal tradeoff curve (AUC): a lower AUC corresponds to a faster decay of surprisal as memory
capacity increases, and thus higher IL. In Section S23, we compare to results obtained when quantifying
IL in terms of this AUC measure as estimated by Hahn et al. [9].

1H[Xt ]−H[Xt | . . . ,Xt−2,Xt−1] = I[Xt : (. . . ,Xt−2,Xt−1)], which is ∑
∞
t=1 It by the chain rule of mutual information.
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N-Gram Surprisal [21] showed that the word orders of five languages minimize trigram surprisal (i.e.,
H[Xt |Xt−2,Xt−1]), compared to most other possible orderings. While they justified trigram surprisal as
an approximation to surprisal as considered in expectation-based models of processing, it can also be
justified as a formalization of information locality: trigram surprisal equals H[Xt ]− I1− I2; it is thus low
if and only if I1 + I2 is high.

Decay of Unconditional Mutual Information A line of prior work has considered the unconditional
mutual information Jt [15, 8, 14]:

Jt := I[Xi,Xi+t ] = EX

[
log

P(Xi+1|Xi)

P(Xi+1)

]
(6)

This differs from It in that it does not factor out information redundant with intervening information.
Note that I1 = J1; thus, our formalization (3) equivalently states that Jt decays quickly as t increases.

Information locality was stated in terms of unconditional mutual information by Futrell et al. [8],
who provided an approximate mathematical derivation in terms of minimizing surprisal under a cer-
tain class of memory loss models. While they did not provide a full operationalization of Information
Locality, they proposed that language favors that words are close together when they have a high (un-
conditional) mutual information, i.e., Jt decays quickly.

Further related to the principle of Information Locality, Culbertson et al. [14] show that the typolog-
ically most frequent relative orderings of noun phrase modifiers are such that modifiers are closer to the
noun if they have higher mutual information with the noun. While they interpreted mutual information
as reflecting statistical properties of the world that correlate with conceptual structure, their account is
fully compatible with the principle of Information Locality as derived from theories of psycholinguistic
processing effort.

Decaying Cue Effectiveness Relatedly, Qian and Jaeger [13] argue that the effectiveness of past pre-
dictive information in language production decreases over distance. They studied the overall predictive
information (2) (their “cumulative discourse informativity”, Formula (4) in their paper) and the decay of
It (their “cue effectiveness”, Formula (3) in their paper), proposing that It decays over distances t due to,
among other factors, limitations of human memory. They fitted a power law to the decay of cue effec-
tiveness; in this framework, a steep decay is reflected in the coefficients of the power law. Information
locality can also be linked to classical findings that most predictive information about a word, at least as
utilized by humans, comes from a few preceding words [16, 17].

S1.2 Estimating Mutual Information

Mutual information is defined in terms of an idealized statistical distribution over all possible sentences;
it is thus necessary to approximate it using the available finite corpus data. We follow the approach of
Gildea and Jaeger [21] and Study 3 of Hahn et al. [9], drawing on long-standing techniques in natural
language processing (see Section S23 for a second estimation method, used in Study 2 of Hahn et al.
[9]).

We split each dataset into a training set and a held-out set. While the UD datasets have prede-
fined splits, those vary substantially in the train/held-out ratio across languages. We therefore, for each
language, randomly sampled a subset whose size was the greater of 100 sentences and 5% of all sen-
tences, and used those as held-out data, and the remainder as training data. We estimate the probabilities
p(xt |xt−1) using counts from the training set, and estimate the entropies H[Xt ], H[Xt |Xt−1] as cross-
entropies on the held-out data:

H[Xt ]≈−
|HeldOut|

∑
i=1

log p(xi) (7)
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H[Xt |Xt−1]≈−
|HeldOut|

∑
i=1

log p(xi|xi−1) (8)

I1 is then estimated as the difference of these cross-entropies. This approach of estimating mutual
information as a difference of cross-entropies is a well-established method with theoretical guarantees
[22], avoiding an overestimation bias that would result from naively applying the definition of mutual
information to the full dataset.

The method for estimating probabilities p(xt |xt−1) exactly follows Study 3 of Hahn et al. [9] and
is based on Kneser-Ney Smoothing [23], which we describe here for completeness. First, the unigram
probabilities are estimated using Laplace smoothing as

p(wt) :=
N(wt)+1

|Train|+ |V | ·1
(9)

where N(wt) is the number of occurrences of wt in the training data. Here |Train| is the number of
tokens in the training set, |V | is the number of types occurring in train or held-out data.

Then, conditional probabilities p2(wt |wt−1) are estimated as follows. For a sequence w1w2, let
N(w1w2) be the number of times w1w2 occurs in the training set. If N(wt−1wt) = 0, set

p(wt |wt−1) := p(wt) (10)

Otherwise, we interpolate between second-order and first-order estimates:

p(wt |wt−1) :=
max(N(wt−1wt)−1,0.0)+#{w : N(wt−1w)> 0} · p(wt)

N(wt−1)
(11)

Kneser and Ney [23] show that this definition results in a well-defined probability distribution, i.e.,
∑w∈V p(w|wt−1) = 1. This method can be justified as approximate Bayesian inference assuming a
Zipfian-like distribution over words [24].

S2 Ordering Grammars

S2.1 Ordering Grammar Formalism

We adopt the word order grammar formalism of [25, 26, 21] to Universal Dependencies. The original
grammar formlism of [25] is defined for constituency treebanks; it defines weights for each combination
of parent and child constituent category (e.g., “NP→JJ” for the position of the adjective within the noun
phrase). We adapt this to Universal Dependencies by defining weights for dependency relation labels
(e.g. amod for the noun-adjective dependency).

Dependents of a head are ordered in ascending order by their weights, so that dependents with
negative weights appear before the head and dependents with positive weights appear after the head.

For instance, a grammar might define the weights (among others)

nsubj : -0.8
obj : 0.3

Applying this to a simple transitive sentence would result in SVO order:

dogs bite people
NOUN VERB NOUN

subj obj
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In contrast, the following grammar, where both weights are negative, results in SOV order:

nsubj : -0.8
obj : -0.3

as in the following example:

dogs people bite
NOUN NOUN VERB

subj

obj

S2.2 Optimization Methods

Hill-Climbing Method The hill-climbing method is adopted from the method of Gildea and Temper-
ley [25]. It first randomly initializes the weights of the grammar. In every iteration, it then randomly
chooses one relation and changes the grammar by moving this relation to a randomly selected new po-
sition. If the objective function (a linear combination of IL and DL) improves, the new grammar is
adopted, else it is discarded. We iterate this until the grammar remains stable for 2K iterations, for at
most 10K iterations.

Gradient Descent Method We further use the gradient-based optimization method of [27] to optimize
DL, which converges more quickly than the hill-climbing method, in particular on larger datasets.2 This
method considers a probabilistic extension of the grammar formalism where each grammar defines a
distribution over possible linearizations of a tree; grammars as defined above correspond to the special
case where the distribution is always concentrated on one linearization (i.e., it is deterministic). We refer
to [27] for the precise definition of this extension. This extension makes the average dependency length
a differentiable function of the grammar parameters, opening the door to the use of gradient-based op-
timization algorithms for ordering grammars. The optimization method then applies stochastic gradient
descent using the REINFORCE estimator [28] to optimize the average dependency length across the
trees in the corpus and the possible linearizations of each tree. Over the course of optimization, the
probabilistic grammars converge to essentially deterministic ones that approximately minimize average
dependency length across the trees in the corpus.

S3 Interpolating Efficiency Plane and Pareto Frontier

Here, we describe how we interpolated subject-object position congruence throughout the efficiency
plane, and how we approximated the Pareto frontier. We made all choices before evaluating the hy-
potheses tested in the paper. Results do not depend on the smoothing method: See Figure S18 for an
analysis of coadaptation based on the raw samples that do not depend on the smoothing method, showing
equivalent results.

Distribution of Subject-Object Position Congruence Given the set of grammar samples (obtained
through approximate optimization or random generation) ξi = (xi,yi) (xi = IL, yi = DL) with associated
subject-object position congruences zi, for each point ξ = (x,y) in the plane spanned by DL and IL,

2While this method is also applicable to optimizing mutual information (IL), it does not offer an efficiency advantage over
the hill-climbing method there.
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we predict the average subject-object position congruence of grammars at this point with a normalized
Gaussian kernel as

f (x,y) :=
N

∑
i=1

wizi (12)

where
wi ∝ L1(xi− x)2 +L2(yi− y)2 (13)

and ∑i wi = 1, and L1,L2 > 0 are chosen to minimize the regularized leave-one-out objective:

1
N

N

∑
i=1
| fi(x,y)− zi|2 +λ · (L2

1 +L2
2) (14)

where fi arises by leaving out ξi from the dataset in the definition of f . We determined a small regular-
ization weight λ = 0.00001 to prevent smoothing artifacts arising due to excessively large weights Li.
Optimization uses 5K iterations of random search over L1,L2 ∈ [0,100]× [0,100].

Pareto Frontier We fit the approximate Pareto frontier as a spline covering the convex hull of all gram-
mar samples. The definition is very similar to standard cubic splines [29], except that we constrained the
spline to be convex and monotonic. More precisely, we selected all sampled grammar points ξi = (xi,yi)
that were not Pareto-dominated by any other point in the convex hull. For each segment between adja-
cent points xi,xi+1, we defined a cubic polynomial gi(x), and determined the coefficients of these cubic
polynomials to maximize the area under the curve ∑

N
i=1

∫ xi+1
xi

gi (thus, making the spline fit as closely to
the convex hull as possible), suject to the constraints of (i) lower-bounding the convex hull: gi(xi)≤ yi,
(ii) continuity: gi(xi+1) = gi+1(xi+1), (iii) continuity of the slope g′i(xi+1) = g′i+1(xi+1), (iv) convexity:
g′′i ≥ 0, (v) monotonicity: g′i ≤ 0. This is a standard linear program, which we solved using cvxpy [30].

Part II

Languages and Datasets
S4 Corpora and Corpus Sizes

As described in Methods, we included all UD 2.8 languages with at least 10,000 available words, plus
Xibe (new in UD 2.9, published after the other experiments were finished). We however excluded
corpora of code-switched text (Hindi English and Turkish German). Table S1 shows the corpus sizes for
the included UD languages. Table S3 shows excluded treebanks from languages otherwise included.

The hillclimbing algorithm is computationally very costly when corpora are very large. We thus
had to focus on subcorpora for three languages: we focused on German-GSD (292K words) for Ger-
man, Japanese-GSD (193K words) for Japanese, and Czech-PDT (1,509 words) for Czech. We used all
available corpora for the gradient descent method.

S5 Historical Languages

Table S5 shows the historical languages in our dataset, with approximate dating assigned.
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Language Number of Nunber of
Sentences Words

Afrikaans 1,934 49,260
Akkadian 2,008 25,434
Amharic 1,074 10,010
Ancient Greek 30,999 416,988
Arabic 28,402 1,042,024
Armenian 2,502 52,630
Bambara 1,026 13,823
Basque 8,993 121,443
Belarusian 25,231 305,099
Breton 888 10,054
Bulgarian 11,138 156,149
Buryat 927 10,185
Cantonese 1,004 13,918
Catalan 16,678 546,638
Chinese 11,998 277,871
Classical Chinese 55,514 269,002
Coptic 1,873 48,632
Croatian 9,010 199,409
Czech 127,507 2,223,222
Danish 5,512 100,733
Dutch 20,944 306,720
English 33,251 570,631
Erzya 1,690 17,147
Estonian 36,508 506,637
Faroese 2,829 50,486
Finnish 36,981 397,001
French 42,832 1,132,460
Galician 4,993 164,385
German 208,440 3,753,947
Gothic 5,401 55,336
Greek 2,521 63,441
Hebrew 6,216 161,411
Hindi 17,647 375,533
Hungarian 1,800 42,032
Icelandic 51,957 1,162,040
Indonesian 7,623 168,286
Irish 5,776 131,423
Italian 35,879 818,562
Japanese 67,031 1,490,840
Kazakh 1,078 10,536

Language Number of Nunber of
Sentences Words

Kiche 1,435 10,013
Komi Zyrian 872 10,321
Korean 34,702 446,996
Kurmanji 754 10,260
Latin 22,405 284,794
Latvian 15,351 252,334
Lithuanian 3,905 75,403
Maltese 2,074 44,162
Manx 2,319 20,630
Mbya Guarani 1,144 13,089
Naija 9,242 140,859
North Sami 3,122 26,845
Norwegian 42,869 666,984
Old Church Slavonic 6,338 57,563
Old East Slavic 17,901 180,110
Old French 17,678 170,740
Persian 35,104 654,696
Polish 40,398 499,392
Portuguese 22,442 571,085
Romanian 40,480 937,540
Russian 85,789 1,420,647
Sanskrit 4,227 28,960
Scottish Gaelic 3,798 72,422
Serbian 4,384 97,673
Slovak 10,604 106,097
Slovenian 11,188 170,158
Spanish 34,693 1,015,119
Swedish 12,269 206,856
Tamil 1,134 12,165
Thai 1,000 22,322
Turkish 72,151 628,938
Ukrainian 7,060 122,091
Upper Sorbian 646 11,196
Urdu 5,130 138,077
Uyghur 3,456 40,236
Vietnamese 3,000 43,754
Welsh 1,833 36,837
Western Armenian 1,780 35,926
Wolof 2,107 44,258
Xibe (UD 2.9) 810 15,401

Table S1: Corpus sizes of the included UD languages. Experiments used UD 2.8, except in Xibe (UD
2.9), which was published after the other experiments were finished.

9



Treebank Rationale
Chinese-CFL Text written by non-native speakers
English-ESL Text written by non-native speakers
English-Pronouns Specifically targets pronouns
French-FQB Consists entirely of questions
Latin-ITTB Consists of Medieval Latin text
Latin-LLCT Consists of Medieval Latin text

Table S3: UD corpora excluded, from languages otherwise included.

Language Time Rationale
Classical Chinese 300 BC Life of Mengzi (died around 300 BC); the treebank contains his

teachings as collected by his followers.
Ancient Greek 400 BC Approximate mean age of texts used
Coptic 400 AD Dating of the Apophthegmata Patrum texts used in the UD tree-

bank
Gothic 350 AD Life of bible translator Ulfilas (311–383)
Latin 0 AD Approximate mean age of texts used
Medieval Spanish 1400 AD Approximate mean age of texts used (not from Universal Depen-

dencies, see Section S25).
Medieval Portuguese 1400 AD Approximate mean age of texts used (not from Universal Depen-

dencies, see Section S25).
Old Church Slavonic 850 AD Bible translation after invention of Glagolitic alphabet around 850

AD.
Old English 900 AD Approximate mean age of texts used (not from Universal Depen-

dencies, see Section S25).
Old East Slavic 1200 AD Approximate mean age of texts used
Old French 1200 AD Approximate mean age of texts used
Sanskrit 900 BC Approximate mean age of texts used

Table S5: Historical languages in our dataset.
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S6 Phylogenetic Tree

S6.1 Tree Topology

We obtained tree topologies from Glottolog [31]. We only retained interior nodes when more than one of
their daughter nodes had languages in our dataset. The resulting tree topology is displayed in Figure S2.3

S6.2 Dating Inner Nodes

We labeled interior nodes for the time at which they split into descendants, using estimates based on
historical evidence and the linguistic literature:

Group Split Source or Rationale
Afroasiatic 10,000 BC Diakonoff [32]
Arabic 1,100 AD Calibration from Holman et al. [33] based on end of Arabic dom-

ination of Malta.
Armenian 1,750 AD Separate development of Eastern and Western standards [34, p.

1]
Balto-Slavic 1,400 BC Gray and Atkinson [35]
Brythonic 500 AD Migrations from Britain to Brittany [33]
Central-Semitic 2,450 BC Kitchen et al. [36]
Common Turkic 700AD Savelyev and Robbeets [37, p. 49] estimate Common Turkic to

have split around 474 AD. However, in their model, Old Turkic
split off around 650 AD, earlier than the languages in our dataset,
with uncertainty about the time of split of the remaining Common
Turkic languages. It should predate the earliest documentation of
Karluk Middle Turkic after 900AD. We thus put the divergence
of the other Common Turkic languages at 700AD.

Eastern Baltic 600 AD Split between Latvian and Lithuanian [38, p. 209]
Finnic 800 AD Maurits et al. [39, Section 4.1]
Germanic 250AD [35]
Global Dutch 1,600 AD Dutch colony in South Africa
Goidelic 950 AD Migrations from Ireland to Scotland. Holman et al. [33], citing

Jackson [40], calibrates the divergence between Irish and Scottish
Gaelic to 950 AD.

Hindustani 1,800 AD Standardization of Hindi and Urdu
Iberian Romance 1,000 AD Expansion of Christian kingdoms in Iberia, earliest Iberian Ro-

mance texts
Icelandic-Faroese 1,400 AD Sound shifts specific to Faroese
Indo-European 5,300 BC Gray and Atkinson [35] (excluding Hittite and Tocharian, for

which we have no corpus data).
Indo-Iranian 2,500 BC Parpola [41, p. 138]
Insular Celtic 900BC Gray and Atkinson [35] estimate 900BC.
Iranian 500 BC Gray and Atkinson [35].
Italo-Western-Romance 500 AD End of the Western Roman empire [33].
Macro-English 1900AD In our dataset, this is the common ancestor of contemporary En-

glish and Naija (Nigerian Pidgin).

3Tree obtained with https://icytree.org/.
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Niger-Congo 5000BC Holman et al. [33] estimate an age of 6227 years, but the family
has to be older than Atlantic-Congo, which they estimate at 6525
years. We thus place Niger-Congo at 5000BC.

North-Germanic 650 AD Split of Old Norse into regional variants, such as assimilation of
nasals to following stops in Western Norse in the 7th century [42,
p. 1856, 1859]. Similarly Holman et al. [33] calibrates this to 900
AD.

Semitic 3,750 BC Kitchen et al. [36]
Serbo-Croatian 1,900 AD Standardization of Serbian and Croatian
Slavic 700AD Gray and Atkinson [35]. Novotná and Blazek [38, p. 209] date

the split of East Slavic to the 6th century, Holman et al. [33] cali-
brates it to 550AD.

South-Slavic 750 BC Expansion of Slavic into Balkan. Postdates Slavic and antedates
Old Church Slavonic (attested after 800AD)

Uralic 3,000 BC Maurits et al. [39, Section 4.7], cf [41, p. 144] for references
West Iberian 1,100AD Independence of Portugal
West-Germanic 500 AD Migrations into Britain and southern central Europe
West-Scandinavian 1,100 AD Sound shifts specific to Norwegian
West-Semitic 3,400 BC Kitchen et al. [36]
West-Slavic 750 BC Expansion of Slavic.
Western Romance 800 AD Expansion of Christian kingdoms into Iberia
Western South Slavic 1,000 AD Antedates earliest Slovenian and Serbo-Croatian texts

Part III

Phylogenetic Analyses
S7 Details for Phylogenetic Models

S7.1 Calculating the Likelihood

For completeness, we describe how to calculate the likelihood of a multidimensional Ornstein-Uhlenbeck
model on phylogenetic trees [43, 44, 45]. As described in the Methods section, it is described by the fol-
lowing stochastic differential equation for the instantaneous change of the state ξL,t ∈ R4 of a language
L at a given time t:

dξL,t = Γ · (ξL,t −µ)d t +
√

ΣdBt (15)

where µ ∈ R4, Γ is non-degenerate, and Σ ∈ R4×4 is a covariance matrix, and Bt is multidimensional
Brownian motion. In our model, Γ is diagonal with positive entries.

The conditional distribution of a future observation at time t +∆ given an earlier one at time t is
given by the following equation [46, Theorem 3.3], [47], [48, p. 156, eq. 6.124]:

ξL,t+∆|ξL,t ∼ N
(

µ+ e−∆Γ(ξL,t −µ), Ω− e−∆Γ
Ωe−∆ΓT

)
(16)

where the matrix Ω ∈ R4×4 is obtained as the solution of the equation [47, p. 110, eq. 4.4.51] [48, p.
156, eq. 6.126]:

ΓΩ+ΩΓ
T = Σ (17)
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Figure S2: Phylogenetic tree topology of the languages in our sample. Compare Figure S3 for a version
indicating the time depth of different families.
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Figure S3: Phylogenetic tree of the languages in our sample. The length of branches reflects distance in
time. Compare Figure S2 for a version indicating the raw topology without time depths.
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This can be solved as follows (recall that Γ is diagonal in our model): 4

Ωi j =
Σi j

Γii +Γ j j
(19)

One can compute the stationary distribution that solves the differential equation as follows. The station-
ary distribution of an individual observation is

ξt ∼ N (µ,Ω) (20)

The stationary cross-covariance between the states of two languages L1,L2, possibly on different branches
of the phylogenetic tree, is given by

Cov(ξL1 ,ξL2) = e−∆1Γ
Ωe−∆2ΓT

(21)

where ∆1,∆2 are the times of evolution from their last common ancestor to L1 and L2, respectively. 5

If L1,L2 do not share a common ancestor (the root in Figure S2 does not count as an ancestor), the
covariance is zero.6

Since any Ornstein-Uhlenbeck process is Gaussian [46], the joint distribution of any set of observa-
tions ξL,t is determined by (20-21).

S7.2 Implementation

We defined the following priors on the parameters. We parameterized Σ as the combination of a corre-
lation matrix and a vector of standard deviations [49]. Stated differently, we parameterized Λ :=

√
Σ as

DU , where U is a lower-diagonal matrix, and D is a diagonal matrix. We directly parameterized Γ using
its diagonal entries.

To define a prior over Σ, we modeled U as the lower Cholesky factor of a correlation matrix subject to
an LKJ(1) prior (Lewandowski et al. [50], i.e., the uniform distribution over 4×4-correlation matrices).
We placed a standard normal prior N(0,1) on the entries of µ and on the non-zero entries of D and Γ.

We rescaled times so that 1000 years corresponded to one unit. We further rescaled the four compo-
nents to range from -1 to 1 (instead of [-1,0] for IL/DL, and [0,1] for position congruence).

We implemented the models in Stan [51] and obtained posterior samples using the No-U-Turn sam-
pler. We ran four chains with 10,000 iterations each, of which the first half each were discarded as
warmup samples.

The model can be implemented either using the analytical formula for the cross-covariance (21), or
by explicitly modeling the inner nodes of the tree using (16). The first approach makes posterior infer-
ence more efficient, but we specifically used the second approach in the analysis where µ,Γ depended

4If Γ is not diagonal, and ξ has two dimensions:Ω11
Ω12
Ω22

=

2Γ11 2Γ12 0
Γ21 Γ11 +Γ22 Γ12
0 2Γ21 2Γ22

−1Σ11
Σ12
Σ22

 (18)

5This can be shown as follows: If ξA is the last common ancestor, then (we set µ = 0 without loss of generality, as it does
not affect the covariance):

Cov(ξL1 ,ξL2) = E
[
ξL1 ξ

T
L2

]
−EξL1Eξ

T
L2

= E
[
E
[
ξL1 ξ

T
L2
|ξA

]]
−0 ·0 = E

[
E [ξL1 |ξA]E

[
ξ

T
L2
|ξA

]]
= E

[
e−∆1Γ

ξAξ
T
A e−∆2ΓT

]
= e−∆1Γ

Ωe−∆2ΓT

6As lim∆→∞ e−∆B = 0, this is practically equivalent to assuming a very large time-depth of the last common ancestor, which
would be the case under the assumption of macrofamilies with very large time depth.
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on geography (Section S11) or case marking (Section S12), as the cross-covariance is hard to compute
explicitly when parameters vary.

We computed marginal likelihoods using Stepping Stone Sampling [52] with K = 10 stones. We
verified stability of the estimates by running the procedure ten times for each model, and averaging the
obtained marginal likelihoods.

S7.3 Correlation Component of Σ

In the main analysis, we reported the correlation between two dimensions in the stationary distribution
Ω. In some analyses, there are multiple stationary distributions (depending on geography in Section S11
and case marking in the main paper and Section S12). In these cases, we therefore report correlations
for the instantaneous changes at any point in time: The matrix Σ indicates the variance-covariance struc-
ture of the instantaneous changes at any time t [53, 54]. The main quantity of interest is the correlation
between changes in two dimensions (e.g., attested and average optimized subject-object position con-
gruence) [cf. 53, 54], which is given by

Ri j :=
Σi, j√
Σi,iΣ j, j

(22)

A positive value indicates that changes in both directions are positively correlated.

S8 Detailed Results for Phylogenetic Model

Figures S4 and S5 visualize the stationary distribution, both for all languages and when excluding the
Indo-European phylum.

Further Model Versions We also considered a version of the model where we explicitly accounted for
imprecise measurements due to limitations in corpus data by assuming Gaussian observation noise, i.e.,
observations are modeled as ξ̂L = ξL + ε, with εi ∼N (0,σi). 7 While the added model complexity did
not improve model fit8, it did not alter the conclusions: Indeed, with this model, the correlations were
estimated to be even somewhat larger than without assuming observation noise (R = −0.54, 95% CrI
[−0.79,−0.30], P(R > 0)< 0.0001 for the correlation between DL and congruence; R = 0.61, 95% CrI
[0.32,0.87], P(R < 0) < 0.0001 for the correlation between attested and average congruence). We also
conducted a version of the model where the noise in different dimensions was allowed to be correlated,
ε ∼ N(0,T ) where T has the same prior as the instantaneous covariance matrix Σ (see Section S7.2).
This is a particularly conservative model, because it allows the correlation in the noise to potentially
explain some of the observed correlations. Nonetheless, correlations continued to be estimated similarly
to before (R = 0.42, 95% CrI [0.10,0.72], P(R < 0) = 0.00815 for attested and optimized subject-object
position congruence; R = −0.52, 95% CrI [−0.73,−0.26], P(R > 0) = 0.00005 for DL and attested
subject-object position congruence).

S9 Details for Model and Random Mutations

We sampled 40 random grammars and 40 approximately optimized grammars, each from one of the 80
languages. For each grammar, we ran 30 chains, either of 200 random mutations, or of ≈ 200 years of

7In terms of implementation, this leads to the addition of a diagonal matrix diag([σ1, . . . ,σ4]) to Cov(ξL,ξL), and does not
affect the other terms of the covariance.

8The marginal log-likelihood for a model applied to optimized and attested subject-object position congruence without
noise is -94; the analogous model with noise has a less favorable marginal likelihood of -96.
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Figure S4: Stationary distribution in the plane spanned by optimized and attested subject-object position
congruence; this indicates the region in which languages tend to move over the course of long-term
evolution. The left column shows results on the entire dataset, the right column shows results excluding
the Indo-European family.
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Figure S5: Stationary distribution in the plane spanned by optimized and attested subject-object position
congruence.
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evolution under the fitted model. In Main Paper, Figure 5, we show for each sampled grammar, an arrow
from the original point to the mean position at the end of the 30 chains.

For an optimized grammar, random mutations usually deteriorated efficiency: chains of 200 muta-
tions had a 12% chance of improving IL, and 17% of improving DL. In contrast, under the fitted model,
change was neutral: 55% of chains improved IL, 51% of chains improved DL. For a baseline gram-
mar, the pattern was in the opposite directions, random mutations were mostly neutral (39 % chance of
improving IL, and 50% chance of improving DL). In contrast, under the fitted model, 71% of chains
improved IL, 81% of chains improved DL.

S10 Comparison with Simple Brownian Model

The simple Brownian model leaves out the drift term, leading to the stochastic differential equation:

dξt =
√

ΣdBt

This is known as the Independent Contrasts model [53, 54], and underlies standard phylogenetic regres-
sion models [55].

Brownian motion differs from the Ornstein-Uhlenbeck process in that it does not have a long-term
stationary solution. Instead, trajectories ξt tend to move arbitrarily far away from the origin over time
t. This is clearly unrealistic in our setting, as subject-object position congruence is bounded between
0 and 1. As there is no stationary solution, there is no straightforward way to jointly apply the model
to data from languages that do not share a common ancestor. For modelling purposes, we assumed
that all families had a common ancestor at some large time T0 in the past. This modelling assumption
corresponds to the assumption of macro-families of very large time-depth. We considered T0 to be
15,000 BC, 20,000 BC, 50,000 BC, and measured the instantaneous correlation of changes R for each
fit.9 To evaluate model fit, we compared marginal likelihood of the Brownian model with the Ornstein-
Uhlenbeck model, computed using using Stepping Stone Sampling [52] with K = 10 stones. Note that
an assumption of a specific time depth is not necessary for the Ornstein-Uhlenbeck model, as unrelated
languages can be modeled as draws from the stationary distribution for that model.

In the absence of a stationary distribution, the Brownian model cannot make statements about
whether languages evolve to maintain efficiency. We therefore only applied this to the attested and
optimized subject-object position congruence, not to IL/DL.

Results Model fit as measured by marginal likelihood is much weaker than in the Ornstein-Uhlenbeck
model, across choices of T0 (Table S7), corresponding to a Bayes factor of about 1024 in favor of the
Ornstein-Uhlenbeck model. Nonetheless, across different choices of T0, the Brownian model strongly
supports a positive correlation R between attested and optimized subject-object position congruence,
very similar to the Ornstein-Uhlenbeck analysis; the posterior probability of R ≤ 0 is 0.00425 at the
best-fitting setup, T0 =−15,000.

S11 Accounting for Areal Convergence

The model of random walks on phylogenetic trees assume that languages evolve independently once
they have split [e.g. 56, 57]. However, linguistic evolution can include borrowing between geographi-
cally neighboring languages [e.g. 58, 59, 60, 61, 62]. Fully integrating such borrowing within phyloge-
netic modeling is an open problem for computational modeling. Here, we describe a possible modeling
approach that explicitly models convergence in linguistic areas, geographic regions in which languages

9The maximum possible T0 can be no later than Proto-Afroasiatic, which we calibrated at 10,000 BC (see Section S6.2).
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Model Log-Likelihood
Ornstein-Uhlenbeck -94
Lesioned Ornstein-Uhlenbeck (No Coadaptation) -119
Brownian (T0 =−100,000) -140
Brownian (T0 =−50,000) -129
Brownian (T0 =−20,000) -117
Brownian (T0 =−15,000) -114

Table S7: Marginal log-likelihoods for Ornstein-Uhlenbeck and simple Brownian models. Values closer
to 0 indicate better model fit. We ran the Brownian model at different time depths, because it does
not have a stationary distribution, necessitating the assumption of a common root node. The lesioned
Ornstein-Uhlenbeck model without coadaptation is obtained by constraining the matrix Σ (Equation 15)
to be diagonal.

tend to show convergent evolution due to borrowing [e.g. 63, 64, 65, 66], with a proof-of-concept im-
plementation. We note that there may be other possible approaches, and have to leave a complete
investigation of models fully integrating both phylogeny and borrowing to future research.

We propose to model linguistic areas as latent variables defining time- and location-dependent values
µ(x, t) (where x is a point on the surface of the earth and t is a point in time) that languages at time t
and place x drift towards. These values are inferred from the data together with the other parameters of
the Ornstein-Uhlenbeck process. By placing a suitable Gaussian process prior on µ(x, t), we encourage
parameters that smoothly vary over space and time, reflecting the idea that areal convergence between
languages depends on their geographic distance. This approach is related to the model described by [67],
who propose to model convergence between species by assuming correlations between the means µ of
different species. For other approaches to model interactions between species from the bioinformatics
literature, see [68, 69, 70, 71].

Model We model the grammar and usage components of µ as depending on the language’s geographic
position and the time a language was spoken. This models the impact of linguistic areas, and allows this
impact to change over time.

We assume that a language L observed at time t +∆ (e.g. French) developed from a prior state at
time t (e.g., Old French) during time [t, t +∆] according to the Ornstein-Uhlenbeck SDE

dξL,t = Γ · (ξL,t −µL)d t +
√

ΣdBt (23)

where µL is defined by the temporal and geographical location of the language L.
We placed a Gaussian process prior with a Laplace kernel on µ. That is, the covariance between µ at

points x,y on the surface of the earth at times T1,T2 is taken to be

Cov(µx,µy) = α · exp
(
− 1

ρ2
1

d(x,y)− 1
ρ2

2
|T1−T2|

)
(24)

where d(x,y) is the great circle (geodesic) distance between points x,y, and α,ρ> 0 are hyperparameters.
The Laplace kernel is positive-definite with the great-circle distance d(·, ·) [72] and thus provides a
valid covariance for this distance; many other popular kernels like the RBF kernel are not valid for this
distance [72]. This prior favors values of µL that vary smoothly over space and time, encoding the idea
of linguistic areas. We placed Gaussian priors with mean 0 and variance 1, truncated to positive values,
on the hyperparameters α, 1

ρ2 of the kernel (24).
We extracted locations of languages from the World Atlas of Linguistic Structures [73]. For ances-

tors, we recursively defined their location as the mean of the locations of their immediate children.
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Due to substantial computational cost of this model, we applied it only to the main correlation of
interest, i.e., the correlation between attested and average optimized subject-object position congruence.
As convergence is slow compared to our other models, we ran MCMC for 40,000 iterations, again
discarding the first half as warmup samples. We used the R̂ statistic and visual inspection of chains to
assess model convergence.

Results As the mean µ depends on the geographic position, there is no single stationary distribution.
As described in Section S7.3, we thus instead consider the correlation component of Σ, the covariance
matrix of instantaneous changes. The correlation between changes in attested and average optimized
subject-object position congruence was estimated at R = 0.44, 95% CrI [0.2,0.65], P(R < 0) = 0.0004,
suggesting that coadaptation is found even when accounting for areal convergence in addition to phylo-
genetic relations.

S12 The Role of Case Marking

Here, we report details on the analysis of coadaptation when controlling for the presence of case mark-
ing. We do this by fitting an extension of the model that can model different directions of change in
languages with and without case marking, and checking whether the analysis continues to provide ev-
idence for coevolution between word order and usage even beyond what is captured by correlations of
usage and word order with the presence of case marking.

Coding Languages for Case Marking We coded languages from our sample for the presence or ab-
sence of case marking on the basis of Iggesen [74], supplemented with information from the grammatical
literature where no information was provided. We amended the annotation from Iggesen [74] to include
only case marking that distinguishes between subjects and objects; this concerns several modern Celtic
and Germanic languages, which have some nominal case marking but do not distinguish subjects and
objects (e.g., Swedish and English use -s to mark possessives, but do not distinguish nominal subjects
and objects.).

We furthermore coded all interior nodes of the phylogenetic tree for case marking based on the
linguistic literature. In some cases, this annotation was unambiguous due to available historical docu-
mentation even though no treebank data was available (e.g., Proto-West-Scandinavian was a late form
of Old Norse and had case markers). In many other cases, cognate case markers are unambiguously at-
tested both within and without a group, showing that they were present in the protolanguage (e.g., Proto-
Germanic, Proto-Indo-Iranian). Furthermore, in many protolanguages, case markers are commonly re-
constructed based on their presence in different descendant branches (e.g., Proto-Indo-European, Proto-
Afroasiatic, Proto-Common-Turkic, Proto-Uralic and Proto-Ugric). Case is not unambiguously recon-
structed for Proto-Niger-Congo; we verified that both possible parameter settings lead to qualitatively
equivalent results (we report results under the assumption that it did not have case, with essentially
indistinguishable results for the other cases).

Model of Change conditioned on Case Marking Based on the prior literature, we expect that lan-
guages without case marking will be biased towards low subject-object position congruence [75]. To
take this into account, we modified the model by conditioning the mean vector µ on the presence or
absence of case in the language L.

dξL,t = ΓC(L) · (ξL,t −µC(L))d t +
√

ΣdBt

where C(L) is 1 if L has case and 0 else. We set priors µC(L) ∼ N(0,1) for both C(L) = 0, and 1.
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Figure S6: Fitted stationary distribution, conditioned on case marking. (A) Languages with and with-
out case marking similarly concentrate in the region between the baseline distribution and the Pareto
frontier. The difference between the mean values of IL and DL of the two stationary distributions is not
statistically meaningful. (B) While the presence of case marking is associated with higher subject-object
position congruence (µ = 0.65, 95% CrI [0.56,0.76] with case, µ = 0.16, 95% CrI [−0.07,0.36] with-
out case), coadaptation is predicted even beyond this association, as evidenced by the shape of the two
stationary distributions.

Results We plot the distribution of languages and the fitted stationary distributions, conditioned on
C(L), in Figure S6. In accordance with the prior literature, the model indicated that languages with-
out case marking favor regions with low observed subject-object position congruence. For languages
with case marking, there was evidence for a bias towards higher subject-object position congruence.
We quantified correlations using the correlation component of the instantaneous changes Σ (see Sec-
tion S7.3), i.e., the correlation between short-term stochastic changes in different dimensions. Similarly
to the results in the main analysis, there was a negative correlation between DL and subject-object po-
sition congruence (R =−0.39, 95% CrI [−0.60,−0.18], P(R≥ 0)< 0.0001), and a positive correlation
between attested congruence and average optimized congruence along the Pareto frontier (R = 0.49,
95% CrI [0.29,0.67], P(R≤ 0)< 0.0001). This shows that languages show coadaptation between usage
and grammar in basic word order, even beyond an association with case marking.

Conclusion We found that, while case marking has a robust impact on subject-object position congru-
ence, coadaptation continues to hold when controlling for this.
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Part IV

Additional Analyses
S13 Optimized and Baseline Grammars

In Figure S7, we show the position of optimized (orange) and baseline (blue) grammars for each of
the 80 languages. Optimized grammars inhabit the area between the baseline grammars and the Pareto
frontier. Compare Section S22 for results by subject-object position congruence.

S14 Within-Language Correlates of Basic Word Order

Here, we show that basic word order reflects optimization for Dependency Length Minimization (DLM)
not only on the level of languages, but also on the level of individual sentences.

In many SVO languages, certain intransitive subjects can appear after the verb (“along came a dog”).
This kind of “intransitive inversion” has been documented in many SVO languages, including English,
Romance languages, and Chinese [76, Chapter 17.2]. There are also languages whose basic word order
is different in transitive and in intransitive clauses [77]; the World Atlas of Language Structures lists 13
languages with transitive SVO and intransitive VS basic word order [78, 77], while it lists no languages
with transitive VSO and intransitive SV order. This observation has been formalized as the following
language universal: If VS is dominant with transitives, it is also dominant with intransitives (Plank and
Filimonova [79, No 344], citing Kozinsky [80]). DLM provides an explanation for this universal.

We conjectured that, more generally, the rate of VS order is higher when no object is present than
when an object is present. For each language in our dataset, we collected statistics for all verbs with a
subject and conducted the following logistic analysis:

SV Order∼ Object is present (25)

A positive effect indicates that presence of an object makes SV order more likely, compared to VS
order. Results are shown in the table below. As predicted, in most languages where there is variation
between SV and VS order, a significant positive effect was observed.

Coefficients in logistic analysis regressing SV/VS Order based on the presence of
an object. ‘SV Frequency’ indicates the overall rate of SV order (as opposed to VS)
in the language. A positive coefficient (β > 0) indicates that SV is more common
in the presence of an object than when there is no object.

Language SV Frequency β p
Afrikaans 0.989 -0.12 0.6568
Akkadian 0.98 1.56 0.0449
Amharic 0.665 -0.38 0.0011
Ancient Greek 0.786 0.31 < 0.00001
Arabic 0.492 0.55 < 0.00001
Armenian 0.89 0.83 < 0.00001
Bambara 0.999 16.68 0.9948
Basque 0.872 -0.11 0.0811
Belarusian 0.773 1.24 < 0.00001
Breton 0.541 0.1 0.6465
Bulgarian 0.813 1.29 < 0.00001
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Buryat 0.996 -0.42 0.731
Cantonese 0.994 1.12 0.3061
Catalan 0.932 0.07 0.0502
Chinese 0.999 17.7 0.985
Classical Chinese 0.999 17.51 0.9852
Coptic 0.922 18.18 0.9581
Croatian 0.827 0.99 < 0.00001
Czech 0.733 0.47 < 0.00001
Danish 0.865 0.62 < 0.00001
Dutch 0.813 0.42 < 0.00001
English 0.962 3.49 < 0.00001
Erzya 0.677 0.94 < 0.00001
Estonian 0.737 0.49 < 0.00001
Faroese 0.854 -0.16 0.0559
Finnish 0.867 1.23 < 0.00001
French 0.957 1.17 < 0.00001
Galician 0.877 1.09 < 0.00001
German 0.843 0.63 < 0.00001
Gothic 0.733 0.6 < 0.00001
Greek 0.839 0.65 < 0.00001
Hebrew 0.692 0.93 < 0.00001
Hindi 0.996 2.03 < 0.00001
Hungarian 0.81 0.77 < 0.00001
Icelandic 0.75 0.2 < 0.00001
Indonesian 0.943 4.54 < 0.00001
Irish 0.162 0.45 < 0.00001
Italian 0.821 1.76 < 0.00001
Japanese 1 15.4 0.9952
Kazakh 0.992 -0.36 0.6167
Kiche 0.474 0.97 < 0.00001
Komi Zyrian 0.762 1 3e-04
Korean 1 15.18 0.9953
Kurmanji 0.997 16.57 0.9948
Latin 0.833 0.56 < 0.00001
Latvian 0.79 0.76 < 0.00001
Lithuanian 0.785 0.33 9e-04
Maltese 0.731 2.34 < 0.00001
Manx 0.001 -16.59 0.9969
Mbya Guarani 0.866 1.73 0.0929
Naija 0.982 17.81 0.959
North Sami 0.799 1.91 < 0.00001
Norwegian 0.837 0.85 < 0.00001
Old Church Slavonic 0.686 0.76 < 0.00001
Old East Slavic 0.661 0.38 < 0.00001
Old French 0.861 0.78 < 0.00001
Persian 0.999 0.22 0.462
Polish 0.756 0.83 < 0.00001
Portuguese 0.909 2.14 < 0.00001
Romanian 0.74 0.58 < 0.00001
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Russian 0.772 1.09 < 0.00001
Sanskrit 0.893 0.35 0.0091
Scottish Gaelic 0.013 -0.55 0.2019
Serbian 0.801 1.36 < 0.00001
Slovak 0.724 0.71 < 0.00001
Slovenian 0.778 0.37 < 0.00001
Spanish 0.849 1.28 < 0.00001
Swedish 0.865 0.72 < 0.00001
Tamil 0.987 1.71 0.1
Thai 0.999 17.45 0.9967
Turkish 0.972 -0.25 < 0.0001
Ukrainian 0.806 1.05 < 0.00001
Upper Sorbian 0.799 0.84 5e-04
Urdu 0.996 1.24 0.0038
Uyghur 0.961 2.69 < 0.00001
Vietnamese 0.989 0.76 0.0209
Welsh 0.053 1.21 0.0011
Western Armenian 0.915 0.81 < 0.0001
Wolof 0.999 16.7 0.9914

In some predominant VSO languages, SVO is an alternative word order in unembedded clauses,
whereas embedded clauses tend to only allow VSO. This is in accordance with the predictions of DLM,
which favors high subject-object position congruence in embedded clauses (see Figure 1B in the main
paper). Examples include relative clauses in Afroasiatic and Celtic (Standard Arabic [81], Breton [82,
p. 80], Ancient Egyptian [83], Tuareg [84, Chapter 12.1.2]). Conversely, in some SVO languages,
embedded clauses show VSO order (Bantu, Demuth and Harford [85]); Miza (Chadic) has SVO/VOS in
main clauses and VOS in embedded clauses [78]. However, it is not generally true that VS order is more
common in embedded clauses across all languages that have variation in basic word order. For instance,
German and Dutch can have VS in main clauses, but are almost always SV in subordinate clauses; the
same holds for Quileute (Chimakuan) [78].

S15 Coexpression of Subjects and Objects

In Figure S8, we show attested subject-object congruence together with the fraction of verbs that simul-
taneously express a subject and an object among those verbs expressing at least one, for each language.
In Figure S9, we compare this fraction with the average subject-object position congruence along the
Pareto frontier.

S16 Details for Mixed-Effects Analyses

Priors We conducted standard Bayesian linear mixed-effects regressions [86] where the response yi

belonging to language i is given by

yi = (α+α fi)+(β+β fi)xi + εi (26)

where xi is the predictor (e.g., attested subject-object position congruence), fi is the family of language i,
εi ∼N (0,σ2), and α fi and β fi are per-family adjustments to the intercept α and the slope β respectively.

As described in the main paper, we assumed the prior N(0,1) for the fixed effects slopes, N(0.5,1)
for the intercepts, weakly informative Student’s t priors (ν = 3 degrees of freedom, location 0, and scale
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Afrikaans Akkadian Amharic Ancient Greek Arabic Armenian

Bambara Basque Belarusian Breton Bulgarian Buryat

Cantonese Catalan Chinese Classical Chinese Coptic Croatian

Czech Danish Dutch English Erzya Estonian

Faroese Finnish French Galician German Gothic

Greek Hebrew Hindi Hungarian Icelandic Indonesian

Irish Italian Japanese Kazakh Kiche Komi Zyrian

Korean Kurmanji Latin Latvian Lithuanian Maltese

Manx Mbya Guarani Naija North Sami Norwegian Old Church Slavonic

Old East Slavic Old French Persian Polish Portuguese Romanian

Russian Sanskrit Scottish Gaelic Serbian Slovak Slovenian

Spanish Swedish Tamil Thai Turkish Ukrainian

Upper Sorbian Urdu Uyghur Vietnamese Welsh Western Armenian

Wolof Xibe

Figure S7: Position of optimized (orange) and baseline (blue) grammars for each of the 80 languages.
Red dots indicate the attested ordering.
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Figure S8: Comparison of attested subject-object position congruence (x-axis) and the fraction of verbs
that simultaneously express a subject and an object, among those verbs expressing at least one (“coex-
pression”, y-axis). Attested subject-object position congruence predicts coexpression in a linear mixed-
effects regression with per-family intercept and slope (β =−0.11, SE = 0.04, 95% CrI [−0.20,−0.03],
P(β > 0) = 0.006).
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Figure S9: Comparison of average subject-object position congruence along the Pareto frontier (x-axis)
and the fraction of verbs that simultaneously express a subject and an object, among those verbs ex-
pressing at least one (“coexpression”, y-axis). We show coefficients and Bayesian coefficients of deter-
mination in a linear mixed-effects regression with per-family intercept and slope.
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Figure S10: Impact of the prior for the variance terms on the posterior in the Bayesian mixed-effects
analysis predicting attested subject-object position congruence from average congruence along the
Pareto frontier. The first line corresponds to the prior used in our analysis; the other priors differ in
the degree to which they regularize towards 0, from mild regularization (top) to very strong regulariza-
tion (bottom). We write t(ν,µ,σ) for the Student’s t distribution with ν degrees of freedom, location
µ, and scale σ. For each prior, we show the posterior of the coefficient β (the quantity of interest), the
standard deviation of the slope across families, and the standard deviation of the Gaussian response.
While changing the prior affects the estimated posterior of the slope variance across families, it has little
effect on the estimate of β. This shows that the estimate of β is not impacted by a possible inflation of
the variance components linked to the large number of isolated languages.

σ = 2.5) for the standard deviations of the residuals and the random effects, and an LKJ(1) prior [50]
for the correlation matrix of random effects.

S16.1 Insensitivity to Priors

A potential concern is that, because our dataset includes many families represented by only one or a few
languages, the mixed-effects model might suffer from inflated estimates of the variance components, as
the slopes cannot be individually estimated for those families.

We repeated the analysis predicting attested subject-object position congruence from optimized
subject-object position congruence with several more strongly regularizing priors on the variance com-
ponents.

In Figure S10, we plot how the posteriors for β, the standard deviation τ of the per-family adjust-
ments β f , and the response standard deviation σ vary as a function of the prior. The priors for the fixed
effect coefficient β (N(0,1)) and the intercept (N(0.5,1)) are as in the main analysis. Results show that,
while more strongly regularizing priors shrink the estimated range of τ, they have limited impact on the
posterior of the key quantity, β. Even an unrealistic extremely regularizing prior t(3,0,0.1) does not
change the posterior of β much.
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Figure S11: Attested and optimized subject-object position congruence (compare Figure 3 in the main
paper), with language names, colored by the 17 families represented in the dataset. Compare Figure S12
for results from joint analysis in higher resolution.

S17 Further Visualizations for Coadaptation

See Figures S11–S13 for versions of Figure 4 in the main paper with language names.
We further investigated the robustness of the correlation between attested and average optimized

subject-object position congruence to possible outliers. Correlations, in particular Pearson correlations,
are vulnerable to outliers and points of high leverage. In order the evaluate whether this impacted the
results, we considered all subsets of ≤ 3 languages, and recomputed the correlation when excluding
this subset. The correlation was in the range [0.42,0.61] for all such subsets. This suggests that the
correlation is not inflated due to individual points of high leverage.
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Figure S12: Attested and optimized subject-object position congruence (compare Figure 3 in the main
paper), with language names, colored by the 17 families represented in the dataset. Compare Figure S11
for results optimizing only for DL or IL.
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Figure S13: Attested and optimized subject-object position congruence (compare Figure 3 in the main
paper), excluding the Indo-European languages. Compare Figure S12 for results on all 80 langiages.
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S18 Per-Family Results and Fitted Slopes

Figure S14 shows results across the 17 families, including the six ones represented by at least two
languages, for the analysis of optimized and attested subject-object position congruence. In Figure S15,
we show the fitted slope β+β f (fixed effects slope β plus per-family adjustment β f ) for each family that
has at least two languages.

We note that, while smaller families do not provide sufficient evidence for a positive relationship
on their own, estimating the overall slope in a mixed-effects analysis does not require independent
estimates of the slopes in each family. Instead, the mixed-effects regression obtains its slope estimate by
combining (i) the data across isolates and smaller families, and (ii) the slope within the well-represented
Indo-European family. Thus, for the purposes of the mixed-effects analyses, the presence of many
families, even isolates and sparsely represented ones, can provide an advantage, because it increases the
amount of statistical independence in the dataset.
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A. Fit by Family B. Residual by Family
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Figure S14: A: Fit of the mixed-effects model across the 6 families represented by at least two languages
in the Universal Dependencies dataset. We show the overall slope fitted by the mixed-effects analysis
across the 80 languages as a dashed line, and the per-family adjusted slope as a solid line. In both cases,
we use the posterior mean of intercepts and slopes. Note that, for less well represented families, the
model has substantial uncertainty about the slope, not well represented by the point estimates, and even
in families with seemingly divergent slope, the data are statistically consistent with the slope being in
fact the same across families, see Figure S15. B: Residuals by family tend to be centered around zero.
C: Means across all languages within each family. This illustrates that the per-family means also exhibit
a positive correlation: That is, a positive correlation is supported both across families, and within the
larger families individually.
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Figure S15: Posterior Densities (scaled so all are bounded by 1) for the slope in the linear mixed-effects
regression in the six families with at least two languages. For poorly represented families, the posterior
is wider. Nonetheless, across families, the model assigns almost all of the posterior probability mass
to a positive sign, except in Sino-Tibetan, where the dependent variable has almost no variance. While
the posterior mode differs between the families, the posterior is always well compatible with the overall
estimated β, indicated by a solid vertical line.

S19 Detailed Results for Figure 3 in Main Paper

See Figure S17 for results per word order category, including less frequent categories “VSO” and “No
dominant order”.
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Figure S16: Position of the 80 languages in the efficiency plane with all language names. Compare
Figure 3 in the main paper.
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Figure S17: Position of languages in the efficiency plane spanned by IL and DL, per word order category.
Compare Figure 3 in the main paper.
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Figure S18: Results using raw counts for grammars optimized only for IL (center), only DL (right), and
the average of the two counts (left). Results are very similar to those obtained using smoothed counts
along the interpolated Pareto frontier, but do not depend on the method used to interpolate along the
frontier.

S20 Results using Raw Counts

Here, we show that results concerning co-adaptation do not depend on the choice of a specific method for
interpolating the Pareto frontier, or for interpolating position congruence along it. Figure S18 shows re-
sults corresponding to Figure 4 in the main paper, but representing the average optimized subject-object
position congruence directly in terms of the average over optimized grammars, instead of smoothed
values along the interpolated frontier. Results closely mirror those reported in the main paper.
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Correlates with...
Real Optimized Optimized

verb object
for IL for IL+DL

wrote letters

1© adposition noun phrase
to a friend

2© copula noun phrase
is a friend

3© auxiliary verb phrase
has written

4© noun genitive
friend of John

5© noun relative clause
books that you read

6© complementizer sentence
that she has arrived

7© verb adp. phrase
went to school

8© want verb phrase
wants to leave

Figure S19: Optimizing for Information Locality predicts the Greenberg correlations. Following Dryer
[87], each correlation defines a pair of syntactic elements whose ordering is correlated with the relative
order of object and verb; for instance, languages that place the object after the verb (“wrote letters”)
tend to place adpositions before the noun phrase (“to a friend”); languages that place the object after the
verb (letters – wrote, Japanese) tend to place adpositions after the noun phrase (friend – to). For each
correlation, we provide its prevalence (between 0% and 100%) among actual grammars of languages
represented in Universal Dependencies (left, from Hahn et al. [27]), and the posterior distribution of the
prevalence among grammars optimized for IL and DL, obtained from a mixed-effects analysis with by-
language and by-family random effects (as in the analysis of Hahn et al. [27], but using the 80 languages
from our sample used here). Optimization predicts all eight correlations to hold in the majority of
grammars, matching the distribution observed in real languages.

S21 Comparison to Greenberg’s Correlations

Here, we show that Greenberg’s correlation universals [88, 87] arise from both IL and DL individu-
ally. Prior work has argued, using theoretical arguments, that these universals arise from optimizing
DL [89, 90, 91]. This was confirmed by Hahn et al. [27, SI Appendix, Table S15] using word order
grammars optimized for DL on 51 UD languages.10 Here, we show that IL (and IL+DL) also predict
these universals. Figure S19 shows the eight correlations as formalized in the Universal Dependencies
format by Hahn et al. [27]. Results show that optimization for IL and IL+DL each predicts all of the
correlations to hold in the majority of optimized grammars. This shows that, unlike in basic word order,
the predictions of IL and DL converge on the Greenberg correlation universals, and explains why these

10We note that the predictions of DL for three of the correlations (1, 2, 6) are affected by specific properties of the Universal
Dependencies format that deviate from the psycholinguistic theories underlying DL [1, 3] and from some other syntactic theo-
ries [92, 93]. Hahn et al. [27] followed Futrell et al. [94] in measuring dependency length in terms of a converted representation
closer to those other theories; such a representation format is necessary to derive correlations 1, 2, 6 from DL [89, 90, 91].
In contrast, IL predicts Greenberg’s correlations irrespective of these modeling assumptions, as it does not directly refer to
syntactic structures.

36



tend to hold across languages, whereas basic word order is much more variable.
Hahn et al. [27] further argued that the Greenberg correlation universals can be derived from a

principle of communicative efficiency closely related to efficiency principles that have found success in
other domains of language [e.g. 95, 96, 97, 98, 99], balancing predictability with parseability, noting
that optimizing communicative effiency also leads to efficiency in DL. We believe that communicative
efficiency might be seen best as a possible justification of DL rather than being an orthogonal pressure.
Evaluating the grammars optimized by Hahn et al. [27] for communicative efficiency on 51 languages,
we found that they exhibit evidence for coadaptation, but overpredict SVO in a way very similar to
grammars optimized solely for DL.
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S22 Raw and Interpolated Efficiency Plane per Language

Here, we report per-language results for the efficiency planes. For each language, we first plot both the
set of grammar samples, including both randomly constructed baseline grammars, and approximately
optimized grammars inhabiting the area close to the Pareto frontier. These are colored depending on
their subject-object position congruence, which is either 0 (green) or 1 (yellow). The red dot denotes the
position of the real observed orderings. Second, we plot the interpolated average subject-object position
congruence throughout the entire efficiency plane, the interpolated approximate Pareto frontier, and the
distribution of randomly generated baseline grammars.

Note that some languages are beyond the approximate Pareto frontier; this can happen both because
the optimization algorithm is approximate, and because real orderings are not subject to the same repre-
sentational constraints as the grammars, enabling them to potentially be more efficient than is possible
in the grammar formalism (see Section S28).

Language ISO Code Samples Interpolated

Afrikaans afr

Akkadian akk

Amharic amh

Ancient Greek grc

Arabic arb

Armenian hye

Bambara bam

Basque eus

Belarusian bel
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Breton bre

Bulgarian bul

Buryat bua

Cantonese yue

Catalan cat

Chinese cmn

Classical Chinese lzh

Coptic cop

Croatian hrv

Czech ces

Danish dan

Dutch nld

English eng
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Erzya myv

Estonian est

Faroese fao

Finnish fin

French fra

Galician glg

German deu

Gothic got

Greek ell

Hebrew heb

Hindi hin

Hungarian hun

Icelandic isl
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Indonesian ind

Irish gle

Italian ita

Japanese jpn

Kazakh kaz

Kiche quc

Komi Zyrian kpv

Korean kor

Kurmanji kmr

Latin lat

Latvian lav

Lithuanian lit

Maltese mlt
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Manx glv

Mbya Guarani gun

Naija pcm

North Sami sme

Norwegian nob

Old Church Slavonic chu

Old East Slavic orv

Old French fro

Persian pes

Polish pol

Portuguese por

Romanian ron

Russian rus
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Sanskrit san

Scottish Gaelic gla

Serbian srp

Slovak slk

Slovenian slv

Spanish spa

Swedish swe

Tamil tam

Thai tha

Turkish tur

Ukrainian ukr

Upper Sorbian hsb

Urdu urd
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Uyghur uig

Vietnamese vie

Welsh cym

Western Armenian hye2

Wolof wol

Xibe sjo
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S23 Neural Network Estimates of Information Locality

Here, we compare our formalization and estimation method for information locality to the method used
by Hahn et al. [9], which is based on neural language models, estimating the next-word predictive
distribution using LSTM recurrent neural networks [100]. Compared to the method used here, the
use of recurrent neural networks can potentially result in better modeling of longer-range statistical
relationships, and we asked whether this impacts our estimates of IL. Running the estimation method
used by Hahn et al. [9] on all 80 languages was not feasible due to the high computational cost of
neural network estimators.11 We thus selected twelve languages representing typological, genetic, and
geographic diversity within the bounds afforded by the UD data, and particularly where the Pareto
frontier shows variability in subject-object position congruence:

1. Arabic (VSO, Afro-Asiatic, Asia/Africa)

2. Basque (SOV, isolate, European)

3. Chinese (SVO, Sino-Tibetan, Asia)

4. English (SVO, Indo-European, European)

5. Finnish (SVO, Uralic, European)

6. Hindi (SOV, Indo-European, Asia)

7. Indonesian (SVO, Austronesian, Asia)

8. Persian (SOV, Indo-European, Asia)

9. Polish (SVO, Indo-European, Europe)

10. Thai (SVO, Tai-Kadai, Asia)

11. Turkish (SOV, Turkic, Asia)

12. Wolof (SVO, Niger-Congo, Africa)

We used the neural network-based method of Hahn et al. [9] to compute both I1 and the AUC measure
they used to quantify IL (see Section S1), for the approximately optimized grammars, the real orderings,
and for ≥ 30 randomly constructed baseline grammars per language.12 For the LSTM network, we used
the hyperparameters that they had determined for each of the 12 languages to minimize surprisal on
random baseline grammars.

Here, we show for each of the twelve languages the efficiency plane, with IL represented by (i)
I1 as computed by our method (Section S1.2), (ii) I1 as computed using neural language models, and
(iii) the AUC measure also computed using neural language models. For comparability across the three
methods, we normalize DL and IL as in the main paper. Results are very similar, in the shape of the
Pareto frontier, in the position of the real ordering, and in the distribution of subject-object position
congruence throughout the efficiency plane.

11Hahn et al. [9] estimated information locality for 10–20 grammars in 54 languages. In contrast, we have ≈ 150 approxi-
mately optimized grammars for each of 80 languages.

12The baselines are different from those used in the other studies, as we had not recorded the baseline grammars, only their
IL/DL values.
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Language I1 (Our) I1 (Neural) AUC (Neural)

Arabic

Basque

Chinese

English

Finnish

Hindi

Indonesian

Persian

Polish

Thai

Turkish

Wolof
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S24 Historical Changes

Below, we show efficiency planes for all languages that are attested in our dataset at multiple points in
time.13 For comparability, we normalize DL and IL as in the main paper.

For each such language, we show the trajectory of subject-object position congruence (left), and the
efficiency planes over time (right). In three cases of closely related languages with essentially identical
subject-object position congrunece values, we plot those together (Sinitic, Hindi/Urdu, East Slavic).

In one case (Icelandic), data is available continuously across a word order change (compare Sec-
tion S25); for the others, it is available at two or more points in time.

In terms of word order changes, there are multiple cases of changes towards SVO (lower subject-
object position congruence; English, Romance, Icelandic), and also cases with only limited change
(Sinitic, Greek, Hindi/Urdu, East and East South Slavic). In terms of efficiency, languages have moved
closely along the frontier (e.g. English, Icelandic) or towards the frontier (e.g., Romance). Languages
with change towards SVO (English, Romance, Icelandic) correspondingly exhibit an increase of SVO-
like orderings (dark blue) along the Pareto frontier (compare Figure S20).
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13For space and clarity, we only those descendants of Latin with an intermediate attested stage (French, Spanish, Portuguese).
Trajectories for languages without data for intermediate stages (Italian, Catalan, Galician, Romanian) are similar; compare
Figure S20.
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14This corpus consists of poetry (Homer and Hesiod), potentially explaining the high efficiency in IL compared both to later
stages, and to typologically similar ancient Indo-European languages like Latin and Sanskrit. See also caption of Figure S21.
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Figure S20: Historical trajectories of attested and average optimized subject-object position congruence.
Faint contours describe the stationary distribution identified by the phylogenetic model. See Section S24.
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S25 Other Historical Datasets

In Figure S21, we provide details on the historical datasets obtained from outside the Universal De-
pendencies Project, and by splitting UD corpora into multiple epochs. We plot per-dataset results as in
Section S22.

Periodization of Ancient Greek As shown in Figure S21, we split Ancient Greek into three conven-
tional phases: Archaic Greek (covering data from Homer and Hesiod, about 700BC), Classical Greek
(≈ 600-350 BC, represented e.g. by Herodotus and Sophocles, both ≈ 450BC), and Koine Greek (≈
350 BC–200 AD, represented e.g. by the New Testament and Diodorus Siculus).

Periodization of Icelandic In Icelandic, continuous corpus data is available from the 12th century
onwards [103]. While the grammatical structure of Icelandic remained largely constant during this
time, Icelandic witnessed a word order change where previously common OV order became much rarer.
Hróarsdóttir [102, p. 59] states “OV word order seems to have been as frequent as VO word order in
texts until the seventeenth century, but the frequency of OV-orders drops 30–40% in texts dating from the
seventeenth and eighteenth centuries. In the nineteenth century texts studied, the frequency of OV word
order has dropped to an average of 24.8%.” Figure S22 shows the trajectory of attested subject-object
position congruence, binning all texts in the dataset by half-centuries (e.g., 1200–1250, 1250–1300, etc.).
Subject-object position congruence appears to drop in the 17th century, and only reaches its current
low level in the 20th century. We thus grouped the data into three periods, 1100–1600, 1600–1900,
1900–today. The first period largely coincides with the conventional period of Old Icelandic, which is
conventionally taken to have ended about 1540 with the translation of the New Testament [104].
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Old English (ISWOC, ≈ 900 AD)

Medieval Spanish (ISWOC, ≈ 1400 AD)

Medieval Portuguese (ISWOC, ≈ 1400 AD)

Icelandic, 1100–1600 (before word order change)

Icelandic, 1600–1900 (during word order change)

Icelandic, 1900–2020 (after word order change)

Archaic Greek (poetry, Homer and Hesiod, ≈ 700 BC)

Classical Greek (600–350 BC)

Koine Greek (350 BC–200 AD)

Figure S21: Additional historical corpora, in other dependency grammar formalisms, or obtained by
splitting UD treebanks into distinct epochs. First, we considered the treebanks in the ISWOC collection
[101], covering Old English, Medieval Spanish, and Medieval Portuguese. These corpora are annotated
in a dependendency grammar format, though with differences from the Universal Dependencies for-
malism. Second, we split the Icelandic data, which spans almost a millenium, into three phases. We
conducted the split based on a documented word-order change, whereby SOV was partly replaced by
SVO order, between the 16th and 19th centuries [102] (see text for details). Finally, we split the An-
cient Greek data, based on three conventional phases. What stands out is that Archaic Greek appears
highly efficient on IL, in contrast both to later forms of Ancient Greek and related early Indo-European
languages. We attribute this to the fact that the Archaic Greek subset consists entirely of poetry. The
presence of meter might increase local predictability, though we leave an investigation of possible inter-
actions of information locality and meter to future research.
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Figure S22: Attested subject-object position congruence in Icelandic. The vertical bars denote the
boundaries between the three periods for which we compute the Pareto frontier. See text (Section S25)
for details.

Language Number of Sentences
English SWBD 110,504
French-Spoken 2,789
Norwegian-NynorskLIA 5,250
Slovenian-SST 3,188
TuebaJS (Japanese) 17,753

Table S14: Corpus sizes for spoken corpora.

S26 Role of Modality

Here, we consider the effect of text modality on usage patterns. Most corpora in the Universal Depen-
dencies collection reflect written text. We identified six datasets of spoken languages in the Universal
Dependencies format or other dependency grammar formalisms. The Naija corpus consists entirely of
spoken text. For Slovenian, French, and Norwegian, there are sub-corpora reflecting spoken text. We
further considered the Tueba J/S corpus of spontenous dialogue in Japanese [105] For English, we used
an automated conversion [106] of the Switchboard section of the Penn Treebank [107] to Universal
Dependencies. Corpus sizes are shown in Table S14.

We compare attested and average optimized subject-object position congruence on these six datasets
in Figure S23. Results confirm that usage patterns as observed in spoken corpora also support the
proposal of coadaptation between usage patterns and word order.
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Figure S23: Attested and average optimized subject-object position congruence for six datasets of spo-
ken text. Attested and average optimized congruence are correlated (R = 0.96, p = 0.002; ρ = 0.94,
p = 0.02).
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Figure S24: Comparing attested and average optimized subject-object position congruence in subsam-
pled subsets (1K, 2K, 5K sentences), in 16 languages.

S27 Effects of Corpus Size

The datasets available for different langusages differ substantially in their sizes. While some languages
have tens of thousands of sentences available, corpora for other languages are substantially smaller.
This raises the question whether estimates of the efficiency plane provide sufficiently reliable signal
when corpora are small. To evaluate this, we selected 8 langages with very high subject-object position
congruence, and 8 languages with very low subject-object position congruence. For each language, we
randomly selected subsets of 1,000, 2,000, and of 5,000 sentences, and estimated average optimized
subject-object position congruence along the Pareto frontier. Results are shown in Figure S24. Results
suggest that estimates at 1,000 sentences may be noisier, but they are nonetheless highly correlated with
estimates at 5,000 sentences (R = 0.89, p < 0.00001). In order to account for errors due to finiteness
of corpora, we also considered a version of the Ornstein-Uhlenbeck process incorporating measurement
noise, finding that it continues to support our conclusions, and in fact estimates stronger correlations
than our main analysis (Section S8).

S28 Comparison to Fitted Grammars

Here, we compare to results obtained when representing the grammar of real languages using ordering
grammars subject to the same representational constraints as the baseline and approximately optimized
grammars, in order to assess the role of word order flexibility beyond the constraints of the ordering
grammar formalism in efficiency optimization. For each language, we used the hill-climbing method
also used for optimizing grammars for efficiency to find a grammar which fits the observed orderings,
in the sense that it maximizes the fraction of pairs of dependents of the same head that are ordered in
the same order as in the attested order. We then evaluated these for DL and IL. Results are shown in
Figure S25.
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Figure S25: Comparing efficiency of the attested orderings with ordering grammars fitted to the attested
orderings for each language. The fitted grammars are subject to exactly the same representational con-
straints as the baseline and approximately optimized grammars; in particular, they are a deterministic
fucntion of the sentences and the syntactic relations between them. Similar to the observed orderings,
fitted orderings tend to be more efficient than the baseline orderings, inhabiting the region between the
baselines and the Pareto frontier. Note that, due to their design, the subject-object position congruence of
fitted grammars is either 0 or 1. Observed orderings tend to be even more efficient than fitted grammars,
suggesting that human languages use word order flexibility to achieve higher efficiency.
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