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Abstract

We explore how linguistic categories extend over time as novel items are assigned

to existing categories. As a case study we consider how Chinese numeral classifiers

were extended to emerging nouns over the past half century. Numeral classifiers are

common in East and Southeast Asian languages, and are prominent in the cognitive

linguistics literature as examples of radial categories. Each member of a radial category

is linked to a central prototype, and this view of categorization therefore contrasts with

exemplar-based accounts that deny the existence of category prototypes. We explore

these competing views by evaluating computational models of category growth that draw

on existing psychological models of categorization. We find that an exemplar-based

approach closely related to the Generalized Context Model provides the best account

of our data. Our work suggests that numeral classifiers and other categories previously

described as radial categories may be better understood as exemplar-based categories,

and thereby strengthens the connection between cognitive linguistics and psychological

models of categorization.
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1. Introduction

Language users routinely face the challenge of categorizing novel items. Over the

past few decades, items such as emojis, blogs and drones have entered our lives and

we have found ways to talk about them. Sometimes we create new categories for novel

items, but in many cases we assign them to existing categories. Here we present a5

computational analysis of the cognitive process by which categories extend in meaning

over time.

Lakoff and other scholars [1, 2, 3, 4] have suggested that linguistic categories grow

over time through chaining, a process that links novel items to existing items that are

semantically similar, hence forming chain-like structures of meaning [1]. Although10

Lakoff briefly suggests how chaining applies to semantic categories (e.g. the concept

of “climbing’), his two most prominent examples of chaining involve grammatical

categories. The first example is the classifier system of Dyirbal (an Australian Aboriginal

language), which groups together nouns that may not seem closely related on the surface.

For instance, the word balan may precede nouns related to women, fire and dangerous15

things. The second example is the Japanese classifier hon, which can be applied to a

variety of long thin objects such as pencils, sticks and trees. Where an English speaker

might say “one pencil,” a Japanese speaker must insert the appropriate classifier (here

hon) between the numeral and the noun. Although hon is most typically applied to

long thin objects, it can also be applied to martial arts contests using swords (which20

are long thin objects), and to medical injections (which are carried out using long, thin

needles). Martial arts contests and medical injections have little in common, but both

can be connected to central members of the hon category through a process of chaining.

In Lakoff’s work the notion of chaining is coupled with the notion of centrality,

which proposes that a category is organized around a central core. Combining chaining25

with centrality leads to the notion of a radial category, or one that can be characterized

as a network of chains that radiate out from a center [1, 5]. Subsequent work in cognitive

linguistics relaxes the idea of a single center and allows that radial categories may have

“several centers of comparable importance” (Palmer & Woodman, 2000, p 230), but is

still committed to the idea that some members of a radial category are privileged by30
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virtue of their centrality. In principle, however, the notions of chaining and centrality

can be decoupled. Consider, for example, a category that is constructed by starting with

one element and repeatedly adding a new element that is similar to a randomly chosen

member of the category. This generative process seems consistent with the notion of

chaining, but the categories it produces may take the form of sprawling networks rather35

than collections of chains radiating out from a center.

Many discussions of chaining within cognitive linguistics are heavily influenced

by Rosch and her prototype theory of categorization (e.g., Geeraerts, 1997), but this

literature has been largely separate from the psychological literature on computational

models of categorization [7, 8]. The modeling literature includes many comparisons40

between exemplar models and prototype models of categorization, and the question of

whether categories have a central core lies at the heart of the difference between the

two approaches. Exemplar models proposes that the representation of a category is no

more than an enumeration of all members of the category, but prototype models propose

that category representations incorporate some additional element such as a prototype,45

a central tendency or a set of core examples.1 Decoupling chaining from centrality

means that the process of chaining is potentially compatible with both prototype-based

and exemplar-based accounts of categorization, and opens up the possibility of formal

accounts of chaining that build on exemplar models like the Generalized Context Model

(GCM, Nosofsky, 1986) that have achieved notable success as psychological models of50

categorization. Here we evaluate a suite of formal models, including a prototype model

and a family of exemplar models, and find that an exemplar model closely related to the

GCM provides the best account of category growth over time. Our results are broadly

consistent with previous work on computational models of categorization, which often

finds that exemplar theory outperforms prototype theory when instances of the two are55

put to the test.

Following Lakoff we focus on grammatical categories, and as a case study we

1In her later work Rosch explicitly suggested that “prototypes do not constitute a theory of representation

for categories” (Rosch, 1978, p 40). Much of the literature on prototype theory, however, does make

representational claims.
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consider how Chinese numeral classifiers have been applied to novel nouns over the

past fifty years. As for Japanese classifiers, Chinese classifiers are obligatory when

a noun is paired with a numeral, e.g., one [classifierx] person or two [classifiery]60

documents. Although we focus on Chinese classifiers, numeral classifiers are found in

many other languages around the world, and have been extensively studied by cognitive

psychologists, linguists, and anthropologists [11, 1, 12, 13, 14, 1]. For instance, Allan

(1977) has suggested that classifiers across languages often capture perceptual properties

such as shape and size, and Aikhenvald (2000) has suggested that classifiers also65

capture more abstract features such as animacy. Although previous scholars have

explored how people assign classifiers to nouns [15, 16], most of this work has not been

computational. Our approach goes beyond the small amount of existing computational

work [17, 18, 19, 20, 21] by analyzing historical data and focusing on the application of

classifiers to novel nouns.70

There are at least three reasons why numeral classifiers provide a natural venue for

testing computational theories of category extension. First, they connect with classic

examples such as Lakoff’s analysis of hon that are central to the cognitive linguistics

literature on chaining and category extension. Second, classifiers are applied to nouns,

which form a broad and constantly-expanding part of the lexicon, and therefore offer75

many opportunities to explore how linguistic categories are applied to novel items.

Third, the item classified by a term like hon is typically the noun phrase that directly

follows the classifier, which makes it relatively simple to extract category members from

a historical corpus (e.g., via part-of-speech tags).

Our work goes beyond Lakoff’s treatment of classifiers in three important ways. First,80

we present a computational framework that allows us to evaluate precise hypotheses

about the mechanism responsible for chaining. Second, we test these hypotheses

broadly by analyzing a large set of classifiers and their usage in natural contexts,

instead of considering a handful of isolated examples. Third, as mentioned already our

space of models includes exemplar-based approaches that have not been explored in85

depth by previous computational accounts of chaining. Previous scholars have given

exemplar-based accounts of several aspects of language including phonetics, phonology,

morphology, word senses, and constructions [22, 23, 24, 8, 25, 26], and our approach
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builds on and contributes to this tradition.

Our approach also builds on recent computational work that explores formal models90

of chaining in the historical emergence of word meanings. In particular, Ramiro et al

(2018) demonstrated that neighbourhood-based chaining algorithms can recapitulate

the emerging order of word senses recorded in the history of English. This work found

that the best-performing algorithm was a nearest-neighbour model that extends the

semantic range of a word by connecting closely related senses. Two earlier studies95

report that the same nearest-neighbour model also accounts for container naming across

languages [28, 29]. This paper compares a suite of models including the nearest-

neighbour model that was successful in previous work. We find that our historical

data on the growth of Chinese classifiers is best explained by a model that adjusts the

nearest-neighbour approach in several ways that are consistent with the GCM [10], an100

influential exemplar-based model of categorization. Our results therefore suggest that

the same categorization mechanisms studied in lab-based tests of the GCM may help to

explain how real-world linguistic categories extend over time.

2. Theoretical framework

Figure 1 illustrates how semantic chaining might influence which Chinese classifier105

is applied to a novel noun. We begin by assuming that nouns correspond to points in a

semantic space. Given a novel noun, the classifier for that noun can then be predicted

based on classifiers previously applied to nearby nouns in the space. In Figure 1 the

novel noun is referendum, which entered the Chinese lexicon around the year 2000.

Nearby nouns in the space have two different classifiers: 次 (cì) is used for nouns like110

“employment,” “funding” and “speech” (shown as orange circles) and 项 (xiàng) is

used for nouns like “extension” and “estimate” (shown as blue triangles). The year in

which each noun emerged has been estimated from a corpus described later, and in this

corpus the first appearance of “referendum” happens to be paired with cì (the orange

classifier).115

The notion of chaining suggests that “referendum” is classified by linking it with

one or more previously encountered nouns that are similar in meaning. In Figure 1,
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“referendum” has been linked with 11 nearby nouns. According to the corpus, the nouns

closest to “referendum” tend to be paired with cì, which may explain why cì is also

used for “referendum.” Iterating this process through time leads to chaining because the120

classification of “referendum“ influences classifications of subsequently encountered

nouns – in particular, assigning cì to “referendum“ means that the same classifier is

more likely to be used for novel nouns near “referendum.”

The informal characterization of chaining just presented leaves many details un-

specified, and the following sections attempt to fill in some of these gaps. The next125

section presents a formal framework for modelling category growth over time. We

then specify a set of competing hypotheses about the function that determines how the

classifications of nearby nouns influence the classification of a novel noun. A subsequent

section discusses the nature and origin of the semantic space that captures similarity

relationships between the nouns.130
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Figure 1: An illustration of chaining in Chinese classifiers. “Referendum” entered the language around 2000,

and nearby nouns in semantic space are shown as orange circles or blue triangles depending on which of two

classifiers our corpus pairs them with. The closest nouns belong to the orange category, and “referendum”

is also assigned to this category. For visual clarity only selected nouns in the space have been labeled. The

background colors indicate how strongly each classifier is favored in each region. The blue category is favored

in the darker regions near the top, and the orange category is favored elsewhere in the space.

2.1. A probabilistic formulation of category extension

Let c denote an existing category (e.g. a classifier), x denote an item (e.g. a noun), and

t and t+ denote current and future time respectively. We formulate category extension

as the problem of assigning a novel item x∗ to an existing category:

p(c|x∗)t+ ∝ f (x∗|c)t × p(c)t (1)
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Equation 1 casts category extension as sequential probabilistic inference, where the

goal is to predict future category labels at time t+ given the likelihood f (x∗|c)t and prior

p(c)t at the current time t. This formulation postulates that the probability of assigning

x∗ to category c is jointly influenced by the probability of seeing that item given the135

category, and the prior probability of choosing that category.

The general framework in Equation 1 can be used to explore how categories from

many parts of speech (including nouns, adjectives, verbs, and adverbs) are applied to

novel items. Here we focus on classifiers, and therefore assume that category c is a

classifier and that item x∗ is a noun.140

2.2. Formal hypotheses about chaining

To formally characterize the chaining mechanism we must specify the likelihood

function in Equation 1, which captures how novel nouns relate to existing nouns, and

the prior distribution in Equation 1, which captures the a priori probability of each

classifier. We will evaluate a set of models that make different assumptions about these145

two components.

2.2.1. Likelihood function f (x∗|c)t

We considered thirteen likelihood functions that specify how nouns x previously

paired with a classifier c (i.e., x ∈ c) might influence whether the classifier is applied to

a novel noun x∗. Representative examples of these likelihood functions are illustrated in

Figure 2. Each function assumes that classifier choice depends on similarity relationships

between the novel noun and familiar nouns, where similarity is defined by exponentiating

the negative Euclidean distance d(·, ·) between nouns in semantic space [30, 30, 31, 10]:

sim(n1,n2) = exp(−d(n1,n2)
2) (2)

Most previous computational models of chaining [28, 29, 27] rely on a nearest-

neighbour (1nn) approach that assigns a novel item to the same category as the nearest

familiar item. Let nk
c denote the number of items with category label c among the k
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items most similar to x. 1nn can then be formulated using the function

f (x∗|c) =

 1 if n1
c = 1

0 otherwise.
(3)

1nn corresponds exactly to previous computational work on chaining [28, 29, 27],

but we suspected that the 1-neighbor assumption might be too strict. We therefore

evaluated a set of k-nearest-neighbor classifiers that assign a category label to x that

matches the most common label among the k items most similar to x:

f (x∗|c) =

 1 if nk
c = max

c′∈C
nk

c′

0 otherwise,
(4)

where C is the set of all categories and max
c′∈C

nk
c′ is the frequency of the most common

category among the k items most similar to x. We evaluated a total of 10 different

models (including 1nn) that set k to all integers between 1 and 10 inclusive.150

Although some exemplar-based models rely on a nearest neighbor approach, the

dominant exemplar-based approach considers relationships between a novel item and all

previously encountered items, weighting each one by its similarity to the novel item:

f (x∗|c) = ∑
x∈c

sim(x∗,x) = ∑
x∈c

exp(−d(x∗,x)2) (5)

In the psychological literature the most influential exemplar-based model is the

Generalized Context Model (GCM) [10]. The GCM can be formulated as a Bayesian

model [32] that relies on the exemplar approach and includes a sensitivity parameter s

that controls the rate at which similarity decreases with distance in semantic space:

f (x∗|c) = ∑
x∈c

exp(−sd(x∗,x)2) (6)

Large values of s mean that similarity falls off rapidly with distance, which in turn

means that only the nearest exemplars to a novel item influence how it is classified.

Smaller values of s lead to broader regions of influence. We will refer to the likelihood

function in Equation 6 as the exemplar approach, and the function in Equation 5 as the

exemplar (s=1) approach.155

All likelihood functions introduced so far are broadly compatible with the exemplar-

based view of categories. As mentioned earlier, however, many cognitive linguists view
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chaining as a mechanism for generating radial categories, and the notion of a radial

category is derived from Rosch’s prototype theory. Ideally we would like to evaluate a

prototype model with a likelihood function that captures Lakoff’s views about radial

categories, and in particular his view of classifier categories like Japanese “hon.” To

our knowledge such a model has never been formulated, but the psychological literature

does include simple prototype models of categorization. Here we evaluate one such

model which assumes that the prototype of a category is the average of all exemplar

types that belong to the category [33].

prototypec =
1
|c|∑x∈c

x (7)

f (x∗|c) = sim(x∗,prototypec) = exp(−d(x∗,prototypec)
2) (8)

This approach allows the prototype of a category to change over time as new

exemplars are added to the category, and postulates that category extension occurs by

linking a novel item to the prototype that is closest in semantic space. Even if a novel

item lies closer to the prototype of category A than that of category B, the handful of

exemplars closest to the item may belong to category B, which means that the prototype160

and exemplar models sometimes make different predictions. Although the prototype

model evaluated here is useful as a starting point, developing and evaluating more

sophisticated computational models of prototype theory is an important challenge for

future work, and we return to this issue in the general discussion.

Although the thirteen likelihood functions capture different assumptions about165

chaining, they are comparable in model complexity. The only parameter tuned in

our model comparison is s, the sensitivity parameter used by the exemplar model.

To avoid giving this model an unfair privilege we set this parameter based on held-

out data. In principle one could consider sensitivity-weighted versions of the other

likelihood functions, but for our purposes these variants turn out to be equivalent to170

the versions without sensitivity weights. We will evaluate our models based on the

proportion of correct classifications that they predict, and adding sensitivity weights

to the nearest-neighbour and prototype models changes the confidence associated with

their classifications but not the classifications themselves.
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a) 1NN b) 5NN

c) Exemplar d) Prototype

?

? ?P

?

P

Figure 2: Illustrations of four likelihood functions. Each panel assumes that there are two categories shown

as circles and triangles, and that a novel item shown as a question mark must be assigned to one of these

categories. Edges show relationships between the novel item (question mark) and previously encountered

item. In (c), the edges differ in thickness because items closer to the novel item are weighted more heavily. In

(d), the two nodes labelled “P” are prototypes of the two categories.

2.2.2. Prior distributions175

We used two prior distributions over classifiers. The first is uniform, and the second

is a size-based prior that assumes that the prior probability of a classifier is proportional

to the number of different nouns a classifier was paired with previously, i.e., type

frequency. The size-based prior connects with the idea that categories or words tend to

attract new items according to a rich-get-richer process [34, 35, 36].180

Combining the two priors with the thirteen likelihoods produces a set of 10 possible

models. For comparison with these models we considered two additional baselines.

The first is a random guess model that assigns each novel item to a classifier chosen

uniformly at random. The second is a max-category model that assigns a novel item at

11



time t+ to the classifier with maximum type frequency up to time t (i.e. the classifier185

that has been paired with the greatest number of different nouns). These baselines can

be interpreted as models that use either a uniform or a size-based prior but assume that

the likelihood function in Equation 1 is constant.

3. Exemplar vs Prototype models: Simulated data

Although the exemplar and prototype models are formally different, it is possible190

that they lead to categories with similar statistical properties. For example, even though

an exemplar-based category includes no central core, it is still possible that categories

grown according to the exemplar model tend to end up roughly convex in shape with

members arranged around a central region. To examine whether and how the exemplar

and prototype models produce different kinds of categories, we compared these models195

using simulated data.

Simulation procedure.

We simulate category growth in a continuous two-dimensional space bounded by

[0,1] along each dimension. Each run begins with three randomly chosen points that

serve as seed exemplars for three categories. We then generate additional random points,200

one at a time, and record the category labels assigned to each point by the exemplar

and prototype models. In addition to the prototype model described above, we also

consider a static prototype model where the category prototypes are fixed throughout

time and correspond to the three seed exemplars. Figure 3 illustrates one simulation run

and shows category growth according to the three models over 100 iterations. Although205

all three models are given the same sequence of points, they produce different category

systems by the end of the run. We used two quantitative measures to compare systems

produced by the models: category size and category discriminability.

Expected category size.

The first measure quantifies the average size of categories generated by each models.210

The prototype models are consistent with the notion of radial categories, and we expected

that they would tend to produce compact categories with members arranged around a

central prototype. The exemplar model, however, allows more scope for categories that
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consist of elongated chains or other arbitrary shapes.

We measured category size as the area of the convex hull that includes all members215

of a category. Expected category size is then computed as the average of this quantity

across the three categories in the simulation. Figure 3 shows that expected category size

is greater for the exemplar model than for the two prototype models, supporting the

intuition that exemplar-based categories tend to be less compact than radial categories.

Figure 4 (left panel) confirms this finding across 500 simulated runs. We found that220

the exemplar model generally produces an expected category size that is substantially

greater than the prototype model with a moving core, and both of these models generate

categories that are larger on average than those produced by the static prototype model.

Category discriminability.

The second measure quantifies the degree to which categories are discriminable (or225

separable) under each model. High discriminability means that there are relatively few

ambiguous cases near the boundary between two categories, and near-optimal systems

of categories will tend to have high discriminability. If exemplar-based categories tend

to be elongated, one might expect that they intertwine in complex ways and are therefore

less discriminable than the more convex categories produced by the prototype models.230

We quantify category discriminability using an extension of Fisher’s linear discrim-

inant that allows for more than two categories. Given k = 3 categories with category

means m1,m2,m3 and covariances Σ1,Σ2,Σ3, we compute Fisher’s discriminant ra-

tio r by weighing the cross-category separability (of the means) against the pooled

within-category variabilities (based on the covariance determinants):

r =
d(m1,m2)+d(m1,m3)+d(m2,m3)

|Σ1|+ |Σ2|+ |Σ3|
(9)

Here d() represents Euclidean distance. A high discriminability value indicates that the

categories are highly separable, and is achieved, for example, if inter-category distances

are high and within-category variability is low.

Figure 3 shows that the exemplar and prototype models both produce categories

with equally high discriminability, and that both models produce more discriminable235

categories than the static prototype model. Even though exemplar-based categories are

less compact than prototype-based categories, Figure 3 suggests that this difference in
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compactness has no implications for discriminability, which is consistent with previous

findings from container naming that neighbourhood-based chaining tends to yield

categories that are near-optimally structured for efficient communication [29].240

Taken together, our simulations suggest two general messages. First, the fact

that exemplar and prototype models produce category systems with similar levels of

discriminability suggests that the two models lead to outcomes that are similar in key

respects. As a result, careful analyses may be needed to distinguish between these two

competing models of category growth. Second, the results for category size reveal that245

exemplar and prototype models do lead to patterns of category growth with statistically

different properties. This finding means that analyses of real-world categories (e.g.

Chinese classifiers) can plausibly aim to determine whether the process underlying the

growth of these categories is closer to an exemplar model or a prototype model.
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Figure 3: Simulated category growth under the exemplar and prototype models. A static version of the

prototype model is also considered where the prototype remains fixed (as opposed to dynamic) over time.
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Figure 4: Category compactness and discriminability analysis of the exemplar and prototype models. Category

size (left panel) and Fisher discriminant ratio (right panel) is calculated under each model over multiple

simulation runs with random initial points. Shaded areas correspond to 95% confidence bands.

4. Analysis of Chinese classifiers through time250

We next applied the models to the growth of Chinese classifiers through time. Doing

so required three primary sources of data: a large repository of web-scraped Chinese

(classifier, noun) pairs ; 2) historical time stamps that record the first attested usage of

each (classifier, noun) pair; and 3) a semantic space capturing similarity relationships

between nouns.255

4.1. Classifier data

We worked with a comprehensive list of (classifier, noun) pairs compiled by Morgado

da Costa, Bond, & Gao (2016), who kindly made their data available. This resource

includes a total of 57966 classifier-noun pairs that incorporate 185 classifiers and 32414

unique nouns. To reduce noise we removed 28473 classifier-noun pairs that appeared260

only once according to the frequency tags. We also removed classifiers that were paired

with fewer than 10 distinct nouns and are therefore highly specific.

4.2. Historical time stamps

To time stamp the (classifier-noun) pairs, we used N-gram data from the Google

Books corpus of simplified Chinese [37], which tracks the frequency of each word pair265

16



over the period 1940-2003. We specifically searched for (classifier,noun) pairs that had

a “_NOUN” tag for their noun part.

4.3. Semantic space

The likelihood term in Equation 1 requires some representation of semantic relations

among nouns. Although several choices are available for specifying a semantic space,270

including dictionary definitions [27] and human similarity judgments, we chose to focus

on word embeddings derived from large-scale natural language use.

We used pre-trained word2vec embeddings of English translations of the Chinese

nouns. Chinese word embeddings are also available, but English embeddings are

preferred for our purposes because the Chinese embeddings are based on a contemporary275

corpus that includes the same noun-classifier pairings that our models are aiming to

predict. 2

To establish mappings between nouns in Chinese and word embeddings in English,

we used Google Translate to identify English equivalents of the Chinese nouns. Some

Chinese nouns are mapped to English phrases, and we included only cases where a280

Chinese noun could be paired with a single English word. 3 We worked with 4045

unique nouns that were available both in the English word2vec model through translation

and in the Google N-grams, yielding 8371 total pairs of classifier-noun usages for our

analyses.

4.4. Model evaluation285

Each of the models described previously was evaluated based on its ability to predict

classifiers assigned to novel nouns over the period 1951 to 2003. We assessed these

predictions incrementally over time: for each historical year where a novel classifier-

noun usage appeared according to the time stamps, we compared the held-out true

classifier with the model-predicted classifier that had the highest posterior probability290

2We thank an anonymous reviewer for pointing out that Chinese embeddings smuggle in information about

noun-classifier pairings.
3Three native speakers of Mandarin Chinese independently inspected a sample of 100 Chinese-English noun

pairs and considered 98, 97, and 95 of those translations to be acceptable, respectively.
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(i.e., term on the left of Equation 1) given the novel noun. In cases where a noun

appeared with multiple classifiers, we excluded classifiers that had previously appeared

with the noun when computing model predictions (i.e., we only make predictions about

classifers that are paired with a noun for the first time). This procedure ensures that

there are no repeated predictions from any of the models.295

To estimate the sensitivity parameter s of the exemplar models, for each year, we

used data from the years before (i.e. data from 1941 until that year) and performed

an optimization within the range of 0.1 to 100 to identify the s that maximized the

performance of the model for the nouns that emerged during the previous year. 4

Appendix A includes the estimated values of the sensitivity parameter for these models.300

4.5. Results

Figure 5 summarizes the overall predictive accuracies of the models. The best

performing model overall was the exemplar model (s = 1) with size-based prior. All

models are based on types rather than tokens: for example, P(c) is proportional to the

number of types that classifier c is paired with rather than the combined count of tokens305

of these types. Appendix B includes results for token-based models and shows that they

perform uniformly worse than their type-based equivalents. We return to this finding in

the general discussion, but focus here on the results for type-based models, and begin

by considering the contribution made by each component of these models.

Contribution of the prior.310

The baseline model with size-based prior and constant likelihood achieved an

accuracy of 29.6%, which is substantially better than random choice (accuracy of 1.6%

among 127 classifiers). Figure 5 shows that the size-based prior led to better performance

than the uniform prior. In 12 out of 13 cases, a size-based model performed better than

the same model with uniform prior (p < 0.002,n = 13,k = 12 under binomial test). 5
315

4A line search was performed with a step size 0.1 in the range 0.1–1.0 and a step size of 1.0 in the range

1.0–100.0.
5In all k-nearest-neighbor models, we used the size-based prior when there is a tie among the classifier

categories when they share the same number of nearest neighbors to a noun. In the uniform-prior case, we

randomly choose a classifier if there is a tie.
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Our results therefore support the idea that being paired with many types of nouns in the

past makes a classifier especially likely to be applied to novel nouns.
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Figure 5: Summary of predictive accuracies achieved by all models under the two priors.

Contribution of the likelihood function.

Figure 5 (right panel) shows that the prototype likelihood function leads to worse

performance than the exemplar model (s = 1). Recall, however, that the prototype320

models evaluated here are extremely simple, and that more sophisticated formulations

of prototype theory could well perform better.

The results show that optimization of the sensitivity parameter (s) did not improve

performance of the exemplar model. This parameter is not a free parameter but was

rather optimized based on held-out data, and the fact that this optimization did not325

improve on the default setting s = 1 suggests that the optimization process probably

led to overfitting. Alternative methods for optimizing s may be able to improve on the

default setting, but for our purposes the key result is that there is a clear gap between

the exemplar model and both the prototype and nearest neighbour models.

Previous formal approaches to chaining have often used a 1NN approach [27, 29],330

but our results suggest that considering more than one neighbor of a novel item may

be beneficial in the case of classifier extension. None of the k-nearest-neighbor models

performed better than the exemplar model (or the prototype model), but the incremental
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performance from 1 neighbor to high-order neighbors suggests that approximation of

neighborhood density matters in the process of chaining. The exemplar model can be335

considered as a soft but more comprehensive version of the k-nearest-neighbor model

class, where all semantic neighbors are considered and weighted by distance to the

novel item in prediction.

Figure 6 confirms our findings by showing the time courses of predictive accu-

racy for the models, highlighting three aspects: 1) models with the size-based prior340

generally achieved better performance than models with a uniform prior; 2) the best

overall exemplar model (s = 1) with the size-based prior is consistently superior to the

other competing models (including the prototype model) through the time period of

investigation; 3) increasing the order of nearest neighbors improves model prediction.

Our results therefore support a key theoretical commitment of the GCM, which proposes345

that categorization judgments are made by computing a weighted sum over all previous

category exemplars.
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Figure 6: Predictive accuracies of representative models in the use of 127 Chinese classifiers at 5 year intervals

between 1955 and 2000.

Results for individual classifiers.

Table 1 shows examples of classifiers paired with nouns that emerged relatively

recently along with predictions of the best model (the exemplar model s = 1). For350

example, the noun 网民 (netizen) emerged in 2001 according to our data, and the

model successfully predicts that 名 (classifier for people) is the appropriate classifier.

The model makes sensible predictions of classifier usage even when it was considered

incorrect. For instance, 并购 (merger) was paired with 宗 (classifier for events
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involving transactions or business related things) in our data, and the model predicts 起355

, which is a classifier used for describing events.

Figure 7 shows precision and recall for individual classifiers based on the same

model. The model achieves high precision for a classifier if it is mostly correct when it

chooses that classifier. For example, 尊 is typically applied to sculpture, and the model

is always correct when it chooses this classifier. High recall is achieved for a classifier if360

the model chooses that classifier in most cases in which it is actually correct. The recall

for 尊 is low, suggesting that the model fails to apply this classifier in many cases in

which it is correct.

The classifier with highest recall is 个, which is a generic classifier that is extremely

common. Recall tends to be greatest for the most frequent classifiers, which is expected365

given that the model uses a frequency-based prior. The classifiers with highest precision

are specialized classifiers that are relatively rare, which means that they are rarely chosen

by the model in cases where they do not apply.

Table 1: Examples of novel nouns, English translations, ground-truth Chinese classifiers and predictions of

the exemplar model (s = 1) with size-based prior.

Noun English translation Year of emergence True classifier Model-predicted classifier

博客 blog 2003 个 个

网民 netizen 2001 名 名

公投 referendum 2000 次 次

帖子 (Internet) post 1999 篇 名

股权 equity 1998 批 项

并购 merger 1998 宗 起

网友 (Internet) user 1998 名 个

机型 (aircraft) model 1997 款 位

玩家 player 1997 名 名
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Figure 7: Precision and recall of individual classifiers based on the best exemplar model. Marker size is

proportional to category size (i.e., number of different nouns paired with a classifier).

5. Discussion

We presented a principled computational account of the historical extension of370

linguistic categories. Our approach is based on a probabilistic framework that allowed

us to formulate and test a large space of models that make predictions about how

Chinese classifiers were extended to novel nouns over the past half century. The

results suggest that classifications of novel nouns are influenced by classifier frequency

and by classifications of previous nouns that are similar in meaning. As suggested375

earlier, our approach connects with and extends prior work in cognitive linguistics and

categorization, and we now elaborate on some of these connections.

5.1. Connections with cognitive linguistics

Classifiers are prominently discussed by Lakoff and others as examples of categories

that grow through a process of chaining, but most work in this area focuses on quali-380
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tative analyses of a handful of examples. Our work builds on previous treatments by

considering a set of computational models of chaining and evaluating them across a

relatively large historical corpus.

To our knowledge, our work is the first to apply a computational model of chaining

to the domain of numeral classifiers, but previous papers have used formal models385

of chaining to study container naming [28, 29] and word senses in a historical dictio-

nary [27]. Each of these contributions evaluates several formal models including a

weighted exemplar approach and finds that a nearest-neighbour approach performs best.

In contrast, we found that a weighted exemplar approach closely related to the GCM

provided the best account of our data. The reasons for these different conclusions are390

not entirely clear. As suggested earlier, the weighted exemplar approach reduces to

a nearest-neighbour approach when the sensitivity parameter s becomes large, which

means that the weighted exemplar approach should always perform at least as well as

the nearest-neighbour approach for some value of s. For generic values of s, it seems

possible that the nature of the semantic representation influences the performance of395

the weighted exemplar approach. Previous models of chaining used semantic represen-

tations based on human similarity judgments [28, 29] and a taxonomy constructed by

lexicographers [27], and it is possible that the word embeddings used in our work are

especially well suited to a weighted exemplar approach.

The literature on cognitive linguistics suggests some directions in which our work400

can be extended. Lakoff presents chaining as a mechanism that leads to radial categories,

which are organized around one or more central cores and therefore qualify as prototype

categories. We evaluated a simple prototype model drawn from the psychological litera-

ture, and found that this model performed worse than an exemplar-based approach. This

result provides some initial support for the idea that numeral classifiers are best under-405

stood as exemplar-based categories, but definitive support would require the evaluation

of more sophisticated prototype models that better capture the way in which linguists

think about radial categories. A key challenge is to develop semantic representations

that better capture the full richness of word meanings (e.g., multi-modal representations

that combine linguistic and extra-linguistic cues such as visual and conceptual relations).410

For example, consider Lakoff’s proposal that Japanese hon is extended from long thin
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objects to medical injections because injections are given using long, thin needles. Our

work represents nouns as points in a semantic space, and although useful for some

purposes this representation does not adequately capture the way in which multiple

concepts (e.g. the purpose of an injection, the setting in which it might occur, and415

the instrument by which it is administered) come together to create a richly-textured

meaning. Developing improved semantic representations is a major research challenge,

but one possible approach is to combine the word embeddings used in our work with

more structured representations [38] that identify specific semantic relations (e.g. agent,

patient, instrument) between concepts.420

A second important direction is to extend our approach to accommodate mechanisms

other than chaining that lead to meaning extension over time. For example, metaphor

(e.g., grasp: “physical action”→“understanding”) has been proposed as a key cognitive

force in semantic change [39], and recent work provides large-scale empirical evidence

of this force operating throughout the historical development of English [40]. An425

apparent difference between chaining and metaphor is that chaining operates within

localized neighborhoods of semantic space, but metaphoric extension may link items

that are relatively remote (as in the case of grasp). Metaphorical extension (e.g., mouse:

“rodent”→“computer device”) could also rely on perceptual information that is beyond

the scope of our current investigation. As suggested already, a richer representation of430

semantic space will be needed, and it is possible that the chaining mechanisms proposed

here will capture some aspects of metaphorical extension when operating over that

richer representational space.

5.2. Connections with the categorization literature

Our work is grounded in the psychological literature on categorization, and joins a435

number of previous projects [41, 42, 43] in demonstrating how computational models

can be taken out of the laboratory and used to study real-world categories. Our best

performing model is a weighted-exemplar approach that is closely related to the GCM

and that goes beyond nearest-neighbor models in two main respects. First, it classifies a

novel item by comparing it to many previously-observed exemplars, not just a handful440

of maximally-similar exemplars. Second, it uses a prior that favors classifiers that have

24



previously been applied to many different items. Both ideas are consistent with the

GCM, and our results suggest that both are needed in order to account for our data as

well as possible.

Our best model, however, differs from the GCM in at least one important respect.445

Throughout we focused on type frequency rather than token frequency. For example, the

size-based prior in our models reflects the number of types a classifier was previously

paired with, not the number of previous tokens of the classifier. Models like the GCM can

be defined over types or tokens [44], but it is more common and probably more natural

to work with tokens rather than types. The empirical evidence from the psychological450

literature on type versus token frequencies is mixed: some studies find an influence of

type frequency [45], but others suggest that token-based models perform better than

type-based models [44, 46]. It seems likely that type frequencies and token frequencies

both matter, but predicting how the two interact in any given situation is not always

straightforward.455

Our finding that the exemplar model performed better given type frequencies rather

than token frequencies is broadly compatible with an extensive linguistic literature on

the link between type frequency and the productivity of a construction [47, 48, 49, 50].

For example, consider two past-tense constructions that both include a slot for a verb. If

the two constructions occur equally often in a corpus (i.e. token frequency is equal) but460

one construction occurs with more different verbs (i.e. has higher type frequency) than

the other, then the construction with higher type frequency is more likely to be extended

to a novel verb. The link between type frequency and productivity is supported by

both corpus analyses and modeling work. For example, our results parallel the work of

Albright & Hayes (2003), who present a model of morphological learning that achieves465

better performance given type frequencies instead of token frequencies.

Although the link between type frequency and productivity has been clearly es-

tablished, token frequency also affects linguistic generalizations. For instance, Bybee

(1985) suggests that high token frequency is negatively related to productivity, because a

construction that appears especially frequently with one particular item may be learned470

as an unanalyzed whole instead of treated as a structure with slots that can be filled by

a range of different items. Items with high token frequencies may also be treated as
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category prototypes [53, 49], which means that token frequency will be relevant when

developing prototype models more sophisticated than the one evaluated here. Previous

theories [47, 54, 48, 55] and computational models [56, 57] of language learning have475

incorporated both type frequency and token frequency, and extending our approach in

this direction is a natural goal for future work.

The psychological literature suggests at least two additional directions that future

work might aim to pursue. We considered how an entire speech community handles

new items that emerge over a time scale of years or decades, but psychological models480

often aim to capture how individuals learn on a trial-by-trial basis. Accounting for the

classifications made by individual speakers is likely to require ideas that go beyond

our current framework. For example, individuals might be especially likely to reuse

classifiers that have recently occurred in a conversation, and there may be kinds of

selective attention that operate at a timescale of seconds or minutes and are not well485

captured by the models used in our work. Psychologists have studied how numeral

classifiers are applied in the lab [15, 16], and there is an opportunity to combine this

experimental approach with the modeling approach that we have developed. A second

important direction is to explore how children acquire numeral classifiers over the

course of development. If applied to a corpus of child-directed speech, our model could490

potentially make predictions about errors made by children as they gradually learn the

adult system of numeral classifiers.

6. Conclusion

We presented a framework for exploring how linguistic categories change over

time. We took numeral classifiers as a case study, and evaluated the claim that these495

categories grow through a process of chaining. Our results support this claim but

suggest that the underlying mechanism is more like a weighted exemplar model than

the nearest-neighbor approach advocated by previous work on chaining. Although

numeral classifiers are often described as radial categories, our results provide some

initial evidence that the growth of these categories may be better captured by exemplar500

theory than by prototype theory.
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Although we focused on numeral classifiers, our approach is relatively general, and

could be used to explore how other linguistic categories change over time. In recent

years historical corpora have become more accessible than ever before, and we hope

that future work can build on our approach to further explore how linguistic change is505

shaped by cognitive processes of learning and categorization.
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Appendix A. Estimated values of the sensitivity parameter

Figures A.8 and A.9 show the estimated values of the sensitivity parameter for the

exemplar models under different choices of prior and semantic space, based on types

and tokens separately.515
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Figure A.8: Estimated optimal values of the sensitivity parameter (s) from the type-based models.
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Figure A.9: Estimated optimal values of the sensitivity parameter (s) from the token-based models.

Appendix B. Token-based models

The models in the main text are based on types rather than tokens, and Figure B.10

shows corresponding results for token based exemplar and prototype models (keeping

k-nearest-neighbor models the same because token-based results for low-order k’s are

effectively invariant and similar to a type-based 1nn model). For the prototype model,520

we defined the prototype of a category as the frequency-weighted average:

prototypec = E[x|c] = ∑
x∈c

x p(x|c) = ∑
x∈c

x
freq(x)

∑x′∈c freq(x′)
(B.1)

.
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Figure B.10: Summary of predictive accuracies achieved by all token-based models under the two priors.

Appendix C. Supplementary material

Code and data used for our analyses are available on GitHub at https://github.

com/AmirAhmadHabibi/ChainingClassifiers. Pre-trained English word2vec em-525

beddings are available at https://code.google.com/archive/p/word2vec/ [58,

59, 60], and the N-gram data we used from the Google Book corpus are available at

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html [61].
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