Quantifying informativeness of names in visual space
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Abstract

The human lexicon expresses a wide array of concepts with a
limited set of words. Previous work has suggested that seman-
tic categories are structured compactly to enable informative
communication. Informativeness is typically quantified with
respect to an entire semantic domain and not at the level of
individual names. We develop a measure of name informa-
tiveness using an information-theoretic framework grounded
in visual object representations derived from natural images.
Our approach uses computer vision models to characterize in-
formativeness of individual names with respect to large-scale
data in a naturalistic setting. We show that our informativeness
measure predicts degrees of specificity in lexical categories
more precisely than alternative measures based on entropy and
frequency. We also show that name informativeness jointly
captures within-category similarity and distinctiveness across
categories. Our analyses suggest how the variability of names
from a broad part of the lexicon may be understood through
the lens of information theory.

Keywords: lexicon; naming; visual object representation; in-
formativeness; information theory

Introduction

The lexicon uses a limited set of names to describe a po-
tentially infinite range of objects. How names encode con-
cepts can vary from word to word, and the link between the
lexicon and our conceptual system is not one-to-one (Malt,
Sloman, Gennari, Shi, & Wang, 1999; Murphy, 2004). For
example, classic work on concepts and categories suggests
that words encode categories with different levels of speci-
ficity (e.g., “sparrow” is more specific than “bird”, which in
turn is more specific than “animal”) and that specificity inter-
acts with the structure of the categories themselves (Brown,
1958; Rosch & Mervis, 1975; Rosch, Mervis, Gray, John-
son, & Boyes-Braem, 1976; Jolicoeur, Gluck, & Kosslyn,
1984). More specific words encode more specific categories,
and thus provide more information about the intended refer-
ents. However, the more specific a word is, the less usable
it is in communication, since fewer objects fall under its de-
notation. How do we determine the information capacity of
words in the lexicon? An attempt to tackle this problem is
found in Kireyev (2009), where word informativeness is es-
timated through text by means of Latent Semantic Analysis.
Here we offer an information-theoretic approach to quantify
the informativeness of individual words based on data about
naming visually presented objects.

man (10), batter (10), baseball player (5),
player (5), person (3)

Figure 1: Example image from the ManyNames dataset
(Silberer, ZarrieB3, & Boleda, 2020), with corresponding nam-
ing responses and counts in parentheses.

Our theoretical starting point is a recent line of work that
explores semantic category structures using an information-
theoretic approach that captures the notion of efficient com-
munication (Corter & Gluck, 1992; Kemp, Xu, & Regier,
2018; Zaslavsky, Kemp, Regier, & Tishby, 2018; Zaslavsky,
Regier, Tishby, & Kemp, 2019; Xu, Liu, & Regier, 2020;
Zaslavsky, Maldonado, & Culbertson, 2021). This line of
work is built on a simple communicative scenario involving
a speaker and a listener, and defines informativeness as the
precision at which the listener can successfully reconstruct
the intended meaning from the speaker’s utterance. Minimiz-
ing the speaker-listener meaning difference means maximiz-
ing the average informativeness of the transmitted message,
that is, the informativeness of the lexical system. Existing
research under this framework has found evidence for the hy-
pothesis that semantic categories attested in the world’s lan-
guages are more informative than alternative possible cate-
gory systems. However, these studies have typically focused
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on analyzing small, isolated, semantic domains and on mea-
suring informativeness of the entire naming system associ-
ated with a domain (Regier, Kay, & Khetarpal, 2007; Za-
slavsky et al., 2018, 2019, 2019; Xu et al., 2020; Zaslavsky et
al., 2021).

We develop a novel measure of name informativeness,
which can be used to quantify the information capacity of
individual names and to compare these names on the basis
of their informativeness. We ground our measure of name
informativeness in visual representations of natural objects
by combining computer vision models with a large-scale free
naming dataset. Figure 1 shows an example object in the re-
source we use, which was given a variety of names by partic-
ipants. To quantify name informativeness in this naturalistic
setting, we use object representations generated by computer
vision models that have been shown to capture human classi-
fication of real-world objects (e.g., Krizhevsky, Sutskever, &
Hinton, 2012).

We provide an initial exploration of our measure of name
informativeness in a series of analyses pertaining to category
specificity, as well as category homogeneity and distinctive-
ness, which are properties that are extensively discussed in
the categorization literature (Mervis & Rosch, 1981; Medin,
1983). Our analyses suggest that the information-theoretic
measure accurately captures the informativeness of names,
and can therefore contribute to a better understanding of the
relationship between words and concepts across a large part
of the lexicon.

Materials and methods
Theoretical framework

Our measure of name informativeness is formulated using a
framework that extends previous information-theoretic work
on efficient communication (Regier et al., 2007; Zaslavsky et
al., 2018). The framework is based on a hypothetical com-
municative scenario involving a speaker and a listener. We
represent the environment, or universe, as a set of objects
U." We assume that the speaker wants to communicate a
certain target object in the universe ¢ € U. This target is sam-
pled from a prior distribution P(¢) reflecting communicative
need, or the frequencies with which objects need to be com-
municated. The speaker is uncertain about the target and her
mental representation of the target is therefore a distribution
m, (u) over U, the set of objects that speaker and listener can
potentially talk about. We refer to this speaker representa-
tion as a meaning, and define it as a similarity-based distribu-
tion over U (Eisape, Levy, Tenenbaum, & Zaslavsky, 2020;
Regier, Kemp, & Kay, 2015):2

LOur notation is inspired by previous information-theoretic work
on semantic typology (Regier et al., 2007; Zaslavsky et al., 2018,
2021).

2In the original formulation, a sensitivity parameter 7y is included
in the argument of the exponential function (Eisape et al., 2020).
However, for our initial analyses, we decide to work with a sim-
plified version of Equation 1, leaving to further work the option of
optimizing the sensitivity parameter.

my (u) o< exp(Sim(t,u)), (D

The speaker communicates m; by producing a name 7, and
selects this name according to the distribution P(n|m;). The
listener hears n and tries to reconstruct the speaker’s meaning
by forming a mental representation 1, (u) that reflects an in-
ference about the speaker’s intended meaning. In particular,
for a given name n we define the listener’s representation as:

Ry (u) = Z P(my|n)my; (u), )
meM

Here M is the meaning space, or the set of meanings in-
duced by all objects in U. In other words, the listener’s men-
tal representation 1y, (1) for a specific name n, such as “cat”,
is a weighted average of the meanings induced by all objects
in U. The weights of all these meanings are computed via
Bayesian inference:

P(m;|n) o< P(n|m;)P(m;), 3)

Here the prior P(m;) is induced by the need distribution
P(t), and P(n|m,) is high for meanings m, that are commonly
expressed by generating the name “cat.”

The name n produced for the target 7 is informative for the
listener to the extent that the listener representation for that
name 7, (u) is similar to the speaker meaning m,. We for-
mulate the difference between the speaker’s intended mean-
ing and the listener’s reconstructed meaning as the Kullback-
Leibler divergence between m, and r,. We thus define the
distortion created by name »n for a target ¢ in meaning space
as follows:

N1 my (u) )
Dimy ||y ;m,(u) log <rhn(u) 4)
How suitable a name 7 is for a target object ¢ depends on
the visual similarity between ¢ and other objects that are com-
monly called n. For instance, if ¢ is visually similar to objects
that are commonly called n, then n is a highly informative
name for ¢, and using it to label # will create little distortion.
The average distortion of a name over the meaning space
is then defined as follows:

Y. P(m|n)Dlm]liny] 5)
meM
Finally, we define the informativeness of a name as the
inverse of its average distortion: a more informative name
should create less distortion in the communication between
the speaker and the listener.

Dataset

To ground and evaluate our framework comprehensively and
in a naturalistic setting, we work with the ManyNames dataset
(Silberer, ZarrieB, & Boleda, 2020). This dataset contains
25K real-world images sampled from the VisualGenome
dataset (Krishna et al., 2017) and annotated in a free-naming
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task in English, where participants were asked to “name the
object in the red frame with the first name that comes to mind”
(see Figure 1 for an example). No instructions were given to
the annotators about whether the names produced had to un-
ambiguously distinguish the target from the context objects
in the images, making the task descriptive, as opposed to dis-
criminative, in its nature. On average 31 names were col-
lected for each object, making this dataset suitable for study-
ing how multiple names suit the same object. Objects are
organized in 7 domains: animals / plants, buildings, clothing,
food, home, vehicles, and people. In the current study, we
work with the 238 names in ManyNames that have been pro-
duced for at least 20 images. We set this threshold in order to
obtain reliable representations of objects in visual space.

Model specification in visual space

The objects in the ManyNames dataset constitute the universe
of objects U. In order to apply the information-theoretic
framework described above, the first step is to decide how
to represent the space of meanings M. To leverage visual
information about natural objects in real-world settings, we
use state-of-the-art deep learning models of computer vision.
We follow Eisape et al. (2020) and use visual features derived
from a deep-learning object classification model. In particu-
lar, following the existing work of Silberer, Zarriel3, Westera,
and Boleda (2020) and Gualdoni, Brochhagen, Midebach,
and Boleda (2022b), we extract features (2048-d vectors)
for the image areas inside the red frame with the Bottom-
up attention model of Anderson et al. (2018) trained on Vi-
sualGenome (Krishna et al., 2017). Then, given a target ¢,
we compute the speaker meaning induced by the target using
Equation 1, where Sim is defined as the cosine similarity be-
tween the objects’ visual features. In the rest of the paper,
we call our proposed measure NV-Informativeness, where the
prefix indicates that the measure exploits both Naming data
and Visual information, in contrast to the baseline measure
presented in the following Section. From here on, visual
space refers to the vector space populated by the visual fea-
tures of the ManyNames objects.

Baseline measure

To evaluate the effectiveness of our measure of name infor-
mativeness, we also consider a baseline measure of informa-
tiveness that does not use any visual information. To do so,
we follow Xu et al. (2020) and define m, (u) based on the as-
sumption that the speaker has no uncertainty about the target:

e (1) :{ .

After making this adjustment, we define a baseline infor-
mativeness measure using Equations 4 and 5 in exactly the
same way as we defined our NV-Informativeness measure.
This approach amounts to defining informativeness as the in-
verse of the entropy of a name: lower entropy corresponds
to higher informativeness. We call this baseline measure N-
Informativeness throughout our analyses to contrast it with

if t=u
if t#u. ©

NV-Informativeness. N-Informativeness does not assume any
uncertainty in the speakers’ beliefs about the target and does
not make use of visual information, deriving name informa-
tiveness only from the speakers’ naming choices. We expect
this aspect to be a key limitation of N-Informativeness with
respect to capturing name informativeness of objects in the
world.

When evaluating both NV-Informativeness and N-
Informativeness, we make the simplifying assumption that
all objects in U have the same probability of being sampled,
which means that the prior P(m;,) is constant.

Results

We carry out two analyses that evaluate the effectiveness of
our informativeness measure and examine some of its proper-
ties. The first analysis asks how well the measure accounts for
category specificity, a psycholinguistic property of names that
is characterized without direct reference to visual space. The
second analysis explores the relationship between our mea-
sure and homogeneity and distinctiveness, two properties of
categories that are characterized here in terms of distributions
in visual space.

Analysis I: Category specificity

Figure 2 shows the relationship between NV-Informativeness
and N-Informativeness for three of the semantic domains in
ManyNames: people, food, and animals / plants.

NV-Informativeness captures name specificity to a large
extent. Consider, for instance, the domain people: with only
a few exceptions, our measure gives high scores to specific
names that highlight the sport played by the person depicted
in the image, such as ‘“catcher” or “soccer player”, clearly
separating these cases from more general taxonomic names,
such as “person”, “girl”, or “man”. In the domain animals
/ plants, “animal” correctly receives the lowest informative-
ness score, while names like “kitten”, “duck”, or “goose” are
labeled as more informative. Similarly, in the domain food,
generic names such as “vegetables”, “fruit” and ‘“food” re-
ceive low informativeness scores, while “apple”, “cheese”, or
“rice” receive higher scores.

Still, our measure is not perfect. For instance, if we
consider some hierarchically structured word pairs, such
as “wine”-“drink” or “sausage”-“meat”, we see that NV-
Informativeness fails to identify the first, more specific mem-
ber of each pair as more informative. Below we describe a
quantitative analysis that estimates the performance of our
measure on hierarchically structured word pairs of this kind.

The baseline measure N-Informativeness is not as good as
NV-Informativeness at measuring specificity. For instance, in
the domain people, N-Informativeness fails to separate gen-
eral taxonomic names, such as “lady” or “child”, from more
specific names, such as “player” or “skater”. This shows
the advantage of our NV-Informativeness measure: a sim-
ple measure of name entropy like N-Informativeness does not
have access to visual information, while NV-Informativeness
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Figure 2: NV-Informativeness plotted against N-Informativeness for names belonging to three domains: (a) people, (b) animals

/ plants, and (c) food.

is sensitive to important distinctions by factoring in how suit-
able names are for visually represented objects. Incorporat-
ing visual information in this way seems useful for separating
specific names, such as “baseball player” and “skier”, from
taxonomic names, that can be valid alternatives when refer-
ring to the same object, such as “man” and “woman”.

The case of “pitcher” sheds light on what happens with
a polysemous word (see Figure 2(a), lower right quadrant,
for the position on “pitcher”). In the ManyNames dataset,
“pitcher” is used for both baseball players and water jars, that
is, visually very dissimilar objects belonging to different cate-
gories. Accordingly, NV-Informativeness places it among the
least informative words. Instead, N-Informativeness —blind
to visual information— assigns a high score to it. On the other
hand, there are cases where visual information may be mis-
leading. Consider, for instance, “bear” and “statue”:> In the
ManyNames dataset, these names have been used to label vi-
sually diverse objects, such as wild bears and teddy bears for
“bear”, and artifacts representing different things for “statue”.
NV-Informativeness, leveraging the objects’ visual appear-
ance, concludes counter-intuitively that these are very gen-
eral names that can label very diverse objects. In contrast, N-
Informativeness assigns high informativeness scores to both
names, showing more robustness to these kind of cases.

Qualitative  inspection thus suggests that NV-
Informativeness is promising as a measure of category
specificity. We next perform a quantitative test of how well
the informativeness measures perform on the task of hyper-
nymy detection, which requires identifying which of the two
words in pairs like “jeep”-“car” or “woman”-“person” is the
most general one (i.e. the hypernym; the converse relation
is named hyponymy). Because hypernyms can be applied
to more diverse objects, they are less informative than hy-

3In the ManyNames dataset, “statue” belongs to the “animals /
plants” domain. Probably this is due to the fact that these images
were labeled with animal names in VisualGenome (e.g. “horse” for
a horse that is part of a statue).

ponyms (Lyons, 1977). We extract 118 hyponym-hypernym
pairs from our lexicon based on WordNet relationships
(Miller, 1994). We compute the accuracy of the measures in
predicting the hypernym according to a rule-based model that
classifies the word with the lowest score as the hypernym.
Table 1 summarizes the results. Both N-Informativeness
and NV-Informativeness classify hyponyms as more infor-
mative than hypernyms, with an accuracy score much higher
than chance: the baseline measure N-Informativeness reaches
an accuracy of 0.67, while NV-Informativeness reaches an ac-
curacy of 0.80. Thus, both measures effectively capture name
specificity, with a clear advantage for NV-Informativeness.
We further test an additional baseline, the inverse of word
frequency. This baseline obtains an accuracy of 0.64 on the
task, very close to the performance of N-Informativeness and
again well below the performance of NV-Informativeness

NV-Informativeness
0.80

N-Informativeness
0.67

Chance
0.50

Table 1: Model accuracy in hypernymy identification.

Analysis II: Category homogeneity and
distinctiveness

As described earlier, the literature on concepts and cat-
egorization has proposed that the structure of categories
jointly maximizes homogeneity, or within-category simi-
larity, and distinctiveness, or between-category difference
(Medin, 1983; Mervis & Rosch, 1981). Previous work pro-
vides separate formalizations of these two aspects of category
structure, and relies on an explicit combination function for
combining the two into a single measure of category good-
ness (Regier et al., 2007). It seems possible, however, that
homogeneity and distinctiveness are two facets of informa-
tiveness, and that a single informativeness measure can cap-
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ture them both. To explore this idea we computed homogene-
ity and distinctiveness based on the denotations of names in
our visual space, and examined how both relate to our infor-
mativeness measures.

We expect category homogeneity to be higher for more
specific names: instances of more specific categories, such
as DALMATIAN or BATTER, are visually more similar to each
other than instances of more general categories, such as DOG
or BASEBALL PLAYER. The expectation is less clear for dis-
tinctiveness. For names with similar levels of specificity, like
“penguin” and “robin”, the expectation is that distinctiveness
will correlate positively with informativeness. A name like
“penguin” is informative because after hearing this label the
listener’s probability distribution is peaked over a region in
the image space that includes only penguins. “Robin”, in-
stead, is less informative because after hearing this label the
listener’s distribution covers a region of image space that also
includes sparrows and members of other categories, as robins
are similar to other kinds of birds whereas penguins are not.

In other words, more informative names are expected to be
more isolated with respect to other names at the same hier-
archical level. However, predictions are less clear for names
that capture hierarchical relations between concepts (“robin”
- “songbird” - “bird”) or are related but not in a taxonomic
way (“boy”-“baseball player”).

N-Inform NV-Inform

-0.02 0.67*
-0.03 0.48*

corr. w. homogeneity
corr. w. distinctiveness

Table 2: Pearson’s correlation coefficient r between name in-
formativeness and category homogeneity, and between name
informativeness and category contrast. Values marked with *
are significantly different from O (o level: 0.05).

We compute the homogeneity of a name as the average
pairwise cosine similarity between objects in our visual space
that have been called by that name. To compute distinc-
tiveness, we use the visual prototypes for names we made
available in previous work (Gualdoni et al., 2022b).* The
prototype of a name is the centroid (average) of the visual
representations of the objects labeled with that name in Vi-
sualGenome, the resource from which ManyNames images
were sampled. It is a surrogate for a prototype, in Rosch and
Mervis (1975)’s sense, of the category denoted by a name
(one that only takes into account visual properties). Distinc-
tiveness is then defined as the average cosine distance be-
tween the prototype of a name and the prototypes of all the
other names in our visual space. This measure is related to
an index of crowdedness defined in Gualdoni, Brochhagen,
Midebach, and Boleda (2022a), with the difference that it ap-
plies to names as opposed to individual objects.

Table 2 shows the correlation between informativeness

4This analysis excludes 15 names in our space that do not have
prototypes in Gualdoni et al. (2022b)’s data.

and homogeneity, for both N-Informativeness and NV-
Informativeness. NV-Informativeness performs as expected,
and achieves a solid positive correlation of 0.67 with ho-
mogeneity and a more moderate correlation of 0.48 with
distinctiveness. The lower correlation with distinctiveness
may suggest that, indeed, hierarchically related and/or non-
taxonomically related concepts have a more nuanced rela-
tionship with informativeness, a possibility that further work
should explore. The baseline N-Informativeness shows no
correlation with either homogeneity and distinctiveness. Be-
cause both of these properties were defined in visual terms, it
may not be surprising that an informativeness measure blind
to visual information struggles to capture either one.

Discussion

We developed a measure of name informativeness, that we
call NV-Informativeness, based on visual representations of
objects and human naming behavior, and evaluated its abil-
ity to account for properties of categories across a substan-
tial part of the lexicon. Our evaluation included two anal-
yses that examined three prominent phenomena related to
conceptual aspects of the lexicon. The first focused on cat-
egory specificity as an example of a psycholinguistic prop-
erty of names not directly related to visual information. The
second examined category homogeneity and distinctiveness,
which were formulated in terms of distributions in visual
space. The NV-Informativeness measure is superior to a base-
line (N-Informativeness) formulated in the same information-
theoretic framework that relies on naming data but not on
visual object representations. This finding suggests that ac-
counting for object properties (and visual properties in par-
ticular) is crucial for measures of name informativeness; and
that state of the art models in computer vision provide use-
ful representations for objects, consistent with recent work on
other aspects of naming and categorization (Giinther, Marelli,
Tureski, & Petilli, 2021; Gualdoni et al., 2022b).

Using computer vision models allowed us to examine stim-
uli that are more naturalistic than those typically used in pre-
vious work on categorization and efficient communication —
for instance, color chips (Regier et al., 2007; Zaslavsky et
al., 2018) or stylized pictures of containers (Zaslavsky et al.,
2019). Our image-based approach also allows our method to
be applied on a much wider scale than previous analyses of
individual domains such as colors and containers, and opens
up the possibility of exploring the role of visual context (e.g.
the context surrounding the red frame in Figure 1). Our pre-
vious work shows how computer vision representations of vi-
sual context can be successfully used for research in cogni-
tive science (Gualdoni et al., 2022b), and developing an in-
formativeness measure that exploits these representations is a
promising avenue for future work.

An important advantage of the proposed measure is that
it is grounded in a principled framework that allows flexible
extensions. A natural direction for future work is to explore
informativeness not only at the level of individual words, as
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done, for instance, in Kireyev (2009), but at the level of indi-
vidual objects. For example, the name “batter’” may be more
informative when applied to some pictures of batters —for in-
stance, to pictures that show the stereotypical features that
people associate to batters— than to others. Our approach also
opens up future possibilities for the formalization and com-
prehensive evaluation of notions such as “basic level”, widely
discussed in the cognitive and psychological literature.

Our measure is related to metrics for name informative-
ness developed in computational linguistics, in the context of
language modeling (or word prediction). In these cases, the
notion of name informativeness is related to how predictable
words are given a linguistic context (Aina, Liao, Boleda, &
Westera, 2021; Pimentel, Maudslay, Blasi, & Cotterell, 2020;
Orita, Vornov, Feldman, & Daumé III, 2015). Our mea-
sure instead relates name informativeness to how predictable
words are given a visually represented object, that is, to the
visual properties of the object. Another promising avenue for
further research is to compare (and eventually combine) in-
formativeness derived from textual and visual data. This will
enable the exploration of further issues related to meaning
such as polysemy, which is pervasive in natural language but
occurs less in visual stimuli (cf. however the discussion on
“pitcher” above), and non-visual properties such as the origin
and function of an object in the case of “statue”.

Conclusion

Our work suggests how properties of object names across a
substantial part of the lexicon can be characterized from a vi-
sually grounded and information-theoretic perspective. Our
approach draws on both visual object representations and
naming data, and allows us to quantify the variation in in-
formativeness across individual names in the lexicon. The
initial results reported here seem promising, but future work
is needed to explore and assess the potential of our approach
to account for the organization and use of the human lexicon.
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