
Simulation of Gate Circuits with Feedback in Multi-Valued Algebras

Janusz Brzozowski
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada N2L 3G1

email: brzozo@uwaterloo.ca

Yuli Ye
Department of Computer Science

University of Toronto
Toronto, ON, Canada M5S 3G4

email: y3ye@cs.toronto.edu

Abstract

Simulation of gate circuits is an efficient method of de-
tecting hazards and oscillations that may occur because of
delays. Ternary simulation consists of two algorithms, A
and B, and is well understood. It has been generalized to an
infinite algebra C and finite algebras Ck, k ≥ 2, where C2

is ternary algebra. Simulation in C has been studied exten-
sively for feedback-free circuits, for which Algorithm A al-
ways terminates and Algorithm B is unnecessary. We study
the simulation of gate circuits with feedback in finite alge-
bras Ck. The gate functions are restricted to a set that in-
cludes all the 1- and 2-variable functions and multi-input
AND, OR, NAND, NOR, XOR and XNOR functions. We prove
that Algorithm B in Algebra Ck, for k > 2, provides no more
information than in ternary algebra. Thus, for any gate in
any circuit, the final result of Algorithm B is always one
of the binary values, 0 or 1, or the “uncertain” value; the
remaining values of Ck never appear. This permits us to re-
place Algorithm B in Ck by the same algorithm in ternary
algebra, and to reduce the simulation time.

1 Introduction

Gate circuits with feedback continue to be of interest;
see, for example, [2, 3, 6, 7]. We study the following anal-
ysis problem. Suppose a circuit is started in a stable state
and some of its inputs change once, and are kept at their fi-
nal values. We call this a transition of the circuit. We wait
an appropriately long time [3] and observe the gate outputs.
Some gates may remain in their initial states, others may
change one or more times, and still others may oscillate,
that is, they may take on the values 0 and 1 infinitely often.

Hazards are undesirable pulses that may occur during a
transition under some distributions of gate and wire delays.
A static hazard exists in a gate if the gate output is the same
before and after the transition, but takes on the complemen-
tary value temporarily during the transition. A dynamic haz-

ard exists if a gate is supposed to change from its initial
value to the complementary value only once, but changes
several times instead. In general, hazards and oscillations
are undesirable, because they may lead to errors.

It is possible to detect hazards and oscillations using an
analysis based on Boolean algebra [3]. Because such meth-
ods are exponential in the number of gates and wires, sev-
eral multi-valued algebras have been proposed to find an
efficient simulation to detect these phenomena [2].

The first algebra with more than two values was ternary.
Ternary simulation [4] uses the “uncertain” value Φ in ad-
dition to the binary values 0 and 1. It has two parts, called
Algorithms A and B, which always terminate for any cir-
cuit; the resulting states of the gates after the algorithms are
denoted yA and yB . The circuit is started in a stable binary
state and some inputs change. The changing inputs are set
to Φ in Algorithm A. The circuit is then analyzed in ternary
algebra to determine whether some gate outputs become Φ
as well. If a gate retains its binary value in yA, then it does
not change during the transition. If it becomes Φ, then it
may change, depending on the relative delays in the circuit.
In Algorithm B, the circuit starts in state yA, and the inputs
that are Φ are set to their final binary values. The circuit
is again analyzed in ternary algebra. If a gate is Φ in yB ,
then it may have a nontransient oscillation – one that can
persist indefinitely. If a gate has the same value in the initial
state and in yB , but is Φ in yA, then it has a static hazard.
Ternary simulation is unable to detect dynamic hazards.

Ternary simulation was generalized [2] to an infinite al-
gebra C and finite algebras Ck, for k = 2, 3, . . .. These al-
gebras include all the successful multi-valued algebras used
in the past, and C2 is ternary algebra. Algebra C uses the
set of transients as the underlying set, where a transient is a
nonempty word of alternating 0s and 1s.

Simulation in Algebra C was studied for feedback-free
circuits [2, 5, 8]. Algorithm A in C always terminates for
these circuits, detects all hazards, permits us to count the
number of signal changes occurring under worst-case con-
ditions, and has time complexity that is polynomial in the



number of gates. The results of the simulation are easily
understood. For example, if a gate has the transient 1010 in
yA, then the gate’s initial value is 1, its final value is 0, and
it may change three times during the transition.

If Algorithm A does not terminate for a circuit with feed-
back, Algorithm B is not applicable. However, it is possible
to use an algebra Ck, for any k > 1, in which Algorithm A
always terminates. The underlying set of values for Ck is the
set of all transients of length < k together with Φk, which
represents all the transients of length ≥ k.

Since Algorithm A always terminates in Ck, Algorithm B
is again applicable. Here we characterize the results of Al-
gorithm B in Algebra Ck, for k > 2. We study functions
from the set G, where G = H∪H̃, H = {OR, XOR}, and H̃
is the set of functions obtained by complementing any num-
ber of inputs and/or the output of functions from H. Since
we allow OR and XOR gates with any number of inputs, in-
cluding one, G contains all the 1- and 2-variable functions
and multi-input AND, NAND, NOR and XNOR functions. We
prove that the results obtained from Algorithm B in Alge-
bra Ck contain the same information as those obtained using
the ternary algebra C2.

2 Gate Networks

Gate networks are defined in terms of directed graphs [1]
and Boolean functions. A digraph (directed graph) D is an
ordered triple D = (V,E, ψ), where V is a nonempty set
of vertices, E is a set (disjoint from V ) of arcs, and ψ is
an incidence function assigning to each arc of D an ordered
pair of (not necessarily distinct) vertices of D. If e ∈ E,
u, v ∈ V , and ψ(e) = (u, v), then e joins u to v, t(e) = u
is the tail of e, and h(e) = v is the head.

For r ≥ 1, we define [r] = {1, . . . , r}. A di-
rected walk in D is a finite, nonempty sequence W =
v0, e1, v1, . . . , er, vr, whose terms are alternately vertices
and arcs, such that for each i ∈ [r], ei joins vi−1 to vi; v0
is the origin of W , vr is its terminus, and v1, . . . , vr−1 are
internal vertices. The length of a walk W is r; note that v0

is a walk of length 0. A directed trail is a directed walk in
which all the arcs are distinct. A directed path is a directed
trail in which all the vertices are distinct. A directed walk
is closed if r ≥ 1 and vr = v0. A directed cycle is a closed
directed trail whose origin and internal vertices are distinct.
Since we deal only with directed graphs, we say walk for
directed walk, etc.

Suppose D = (V,E, ψ) is a digraph. We assume that D
has at least one vertex of indegree 0 and at least one vertex
of indegree> 0. The vertices with indegree 0 are (external)
inputs, and are labeled x1, . . . , xm; let Vx = {x1, . . . , xm}.
The remaining vertices are labeled y1, . . . , yn and are gates.
Let Vy = {y1, . . . , yn}; then V = Vx ∪ Vy. Thus D =
(Vx ∪ Vy , E, ψ), where Vx ∩ Vy = ∅.

Let B = {0, 1} be the set of the two binary values. A to-
tal state is an assignment s : V → B, and is denoted by an
(m + n)-tuple s = (s1, . . . , sm+n). The state si of vertex
vi in total state s is also denoted by s(vi). The state of an
arc e from u to v in total state s is denoted by s(e) and is
defined as the state of vertex u, that is, s(e) = s(t(e)).

Arcs ei1 , . . . , eini
such that h(ei1) = . . . = h(eini

) =
yi ∈ Vy are the ni inputs of gate yi, ni > 0; these are
all the arcs with head yi. We assign a Boolean function
fi : Bni → B to each gate yi; this is its excitation function.

A (gate) network is a 4-tuple N = (Vx ∪ Vy, E, ψ, f),
where (Vx ∪ Vy, E, ψ) is a digraph as above, and f =
(f1, . . . , fn) is the n-tuple of excitation functions. We de-
note OR by ∨, AND by ∧, and complement by −.

3 Extensions of Boolean Functions

A transient [2] is a nonempty binary word of alternating
0s and 1s, that is, it is an element of the set T = (01)∗ ∪
(10)∗∪(01)∗0∪(10)∗1. Transients are denoted by boldface
letters. If x is a transient, then α(x), and ω(x) are the first
and last letters of x, respectively. Also z(x) and u(x) are
the numbers of 0s and 1s in x, respectively, and l(x) is the
length of x.

We extend a Boolean function f : Bn → B to a
Boolean function f : Tn → T as follows. For an n-
tuple x = (x1, . . . ,xn) of transients, the digraph F (x)
of a Boolean function f has as vertices all the n-tuples
v = (v1, . . . ,vn) of transients, where vi is a nonempty
prefix of xi, for all i ∈ [n]. There is an arc from ver-
tex v = (v1, . . . ,vn) to vertex v′ = (v′

1, . . . ,v
′

n) if and
only if v and v′ differ in exactly one coordinate, say i, and
v′

i = vic, where c ∈ B. Graph F (x) shows all possi-
ble orders in which the n variables can change along paths
from the initial vertex (α(x1), . . . , α(xn)) to the final ver-
tex (x1, . . . ,xn). Moreover, with each vertex v we asso-
ciate an output f(ω(v1), . . . , ω(vn)).

A contraction of a binary word w is a transient obtained
by replacing all sequences of consecutive 0s by a single 0
and all sequences of consecutive 1s by a single 1. For ex-
ample, the contraction of 011000111 is 0101. In the graph
F (x) for a Boolean function f , the output of a path π is
the sequence of outputs of the vertices of π; it is denoted
as w(π). The transient of a path π is the contraction z(π)
of w(π). The value of the extension f(x1, . . . ,xn) of f is
the longest possible path transient in F (x). It represents the
longest transient that might occur during the input change
from (α(x1), . . . , α(xn)) to (x1, . . . ,xn).

Proofs of the results stated below can be found in
[J. A. Brzozowski and Y. Ye, Gate Circuits with Feedback in
Finite Algebras of Transients, TR 2006–1, September 2006.
http://maveric.uwaterloo.ca/publication.html.]

2



Proposition 1 Suppose n ≥ 1, and let f, g :
Bn → B be any two Boolean functions. If, for all
x1, . . . , xn ∈ Bn, f(x1, . . . , xi−1, xi, xi+1, . . . , xn) =
g(x1, . . . , xi−1, xi, xi+1, . . . , xn), then, for all
x1, . . . ,xn ∈ T, f(x1, . . . ,xi−1,xi,xi+1, . . . ,xn) =
g(x1, . . . ,xi−1,xi,xi+1, . . . ,xn).

This result permits us to consider a gate realizing f as a
composition of an inverter for xi and a gate realizing g.

Proposition 2 Let n ≥ 1 and let f, g : Bn → B
be Boolean functions. If, for all x1, . . . , xn ∈ Bn,
f(x1, . . . , xn) = g(x1, . . . , xn), then for all x1, . . . ,xn ∈
T, f(x1, . . . ,xn) = g(x1, . . . ,xn).

This proposition permits us to consider a gate realizing f

as a composition of a gate realizing g and an inverter.

Definition 1 Let n > 1 and let f : Bn → B be a Boolean
function. A value d ∈ B of argument xi of f is dominant
for f if the value of f is independent of the other arguments
when xi = d, that is, if f(x1, . . . , xi−1, d, xi+1, . . . , xn) =
f(y1, . . . , yi−1, d, yi+1, . . . , yn), for all xj , yj ∈ Bn−1,
j ∈ [n], j 6= i. Let the value of f when xi = d be fxi=d.

If f is the extension of f , then a transient value t of ar-
gument xi is dominant for f if the value of f is independent
of the other arguments when xi = t.

For example, if f(x1, x2) = x1 ∨ x2, then x1 = 0 and
x2 = 1 are dominant.

Proposition 3 [2] Let n ≥ 1, let f : Bn → B be a
Boolean function that depends on each of its arguments. If
none of the xi is a letter, then the length of f(x1, . . . ,xn) is
at least the maximum of the lengths of the xi.

Proposition 4 Let n > 1, let f : Bn → B be a Boolean
function that depends on each of its arguments. A transient
value xi = t is dominant for f if and only if it is binary, say
t = d, and xi = d is dominant for f . Also, if xi = d is
dominant for f , then fxi=d = fxi=d.

Remark 1 Definition 1 and Proposition 4 can be extended
to tuples of argument values. For example, consider
f(x1, x2, x3) = (x1 ∧ x3)∨ (x2 ∧ x3), which is not in G. If
x1 = 1 and x2 = 1; then f(1, 1, x3) = 1, independently of
x3, but neither x1 = 1 nor x2 = 1 is dominant.

In general, for h < n, we define an h-tuple t of argument
values of a Boolean function of n variables to be dominant
if the value of the function depends only on the values in the
h-tuple, and no subtuple of t has this property.

Note that the OR function with two or more arguments
has only dominant 1-tuples, namely, every xi = 1 is a dom-
inant value. The XOR function with two or more arguments
has no dominant tuples. It follows that every function in G

with two or more arguments has either no dominant tuples
or only dominant 1-tuples.

In what follows, we single out one of the inputs, say
xi, of a function f : Tn → T, n > 1, as the main in-
put, and the remaining inputs are called side inputs. We
study the relation between the length of xi and the length of
f(x1, . . . ,xn), with the side inputs as parameters.

An OR function of n variables is 1 if at least one of the
variables is 1; thus a 1-argument OR function is the identity
function. Recall [2] that, if f : Bn → B is the OR function,
n ≥ 1, then y = f(x1, . . . ,xn) is the word in T determined
by the conditions

α(y) = α(x1) ∨ . . . ∨ α(xn) (1)
ω(y) = ω(x1) ∨ . . . ∨ ω(xn) (2)

z(y) =

{

0, if ∃h ∈ [n] xh = 1
1 +

∑n
h=1

(z(xh) − 1), otherwise. (3)

Lemma 1 If f : Bn → B, n > 1, is the OR function, then

1. l(f(x1, . . . ,xn)) < l(xi), if and only if l(xi) > 1 and
one of the side inputs is 1.

2. l(f(x1, . . . ,xn)) = l(xi), if and only if one of the fol-
lowing conditions holds:

(a) xi = 1.

(b) xi = 0 and one (or more) of the side inputs is 1.

(c) xi = 0 and all the side inputs are 0.

(d) xi = (01)i, i > 0, and all the side inputs are
either 01 or 0.

(e) xi = (01)i0, i > 0, and all the side inputs are 0.

(f) xi = (10)i, i > 0, and all the side inputs are
either 10 or 0.

(g) xi = (10)i1, i > 0, and all the side inputs are
101, 01, 10 or 0.

3. l(f(x1, . . . ,xn)) > l(xi) if and only if the conditions
in Parts 1 and 2 are not satisfied.

A XOR function of n variables is 1 if an odd number of
the variables is 1; thus a 1-argument XOR function is the
identity function. Recall [2] that, if n ≥ 1 and f : Bn → B
is the XOR function, then f(x1, . . . ,xn) is the word y in T

satisfying the conditions

α(y) = f(α(x1), . . . , α(xn)) (4)
ω(y) = f(ω(x1), . . . , ω(xn)) (5)

l(y) = 1 +

n
∑

h=1

(l(xh) − 1). (6)

3



Lemma 2 If f : Bn → B, n > 1, is the XOR function, then

1. l(f(x1, . . . ,xn)) = l(xi), if and only if all the side
inputs are binary.

2. l(f(x1, . . . ,xn)) > l(xi) if and only if at least one
side input is not binary.

The following results are consequences of Lemmas 1 and 2,
and Propositions 1 and 2.

Proposition 5 If n > 1 and f : Bn → B is in G, then
l(f(x1, . . . ,xn)) < l(xi) if and only if l(xi) > 1 and one
of the side-input values of f is dominant.

Corollary 1 Let n > 1, and let f : Bn → B be in G. If
f has no dominant side-input values, and l(xi) ≥ k > 1,
then l(f(x1, . . . ,xn)) ≥ k.

4 Simulation in Algebra Ck

The change-counting algebra [2] (also called algebra of
transients [5]) is defined as C = (T,∨,∧,− , 0, 1), where ∨
is defined by Equations 1–3, the complement of a transient
t = c1 . . . cr is t = c1 . . . cr, and t ∧ s = t ∨ s.

For k ≥ 2, relation ∼k is defined on T: For x,y ∈ T,
x ∼k y if either x = y or x and y are both of length ≥ k.
This relation is a congruence on C, and the quotient algebra
Ck is defined over the set Tk = {[x] | l(x) < k} ∪ {Φk},
where Φk = {x | l(x) ≥ k}. Since all the classes except
Φk are singletons, we simply write Tk = {x | l(x) <
k} ∪ {Φk}, and refer to elements of Tk as transients.

Every function f : Tn → T in C is now also defined in
Ck as follows: f([x1], . . . , [xn]) = [f(y1, . . . ,yn)], where
yi is any representative of the class [xi], for i ∈ [n].

We define the prefix order ≤ on Tk: [y] ≤ [x] if either
(a) [y] and [x] are singleton classes and y is a prefix of x,
or (b) [x] = Φk. The length l([x]) of a class [x] is l(x) if
[x] = {x}, and l(Φk) = k. The suffix order � is similar.

A network is initially in the stable total state (â, b), that
is, f(â, b) = b, and then the input m-tuple â changes to a.
If âi, ai ∈ B, and âi = ai, then âi ◦ ai = ai. Otherwise,
âi ◦ ai = âiai, if k > 2, and âi ◦ ai = Φ2, if k = 2. For
tuples, the ◦ operation is performed component-wise.

Algorithm A is shown below, where f : Tm+n
k → Tn

k

is the tuple of excitation functions. Each gate variable is
non-decreasing in the prefix order in this algorithm, and the
algorithm always terminates. Its result is denoted by yA.
It follows from [2] that yA is the least fixed point of the
function f(a,x) over b with respect to the prefix order, i.e.,
f(a,yA) = yA and y ≥ b & f(a,y) = y ⇒ yA ≤ y.

In Algorithm B below, each gate variable is non-
increasing in the suffix order. The result of the algorithm
is yB . It follows from [2] that Algorithm B in Algebra Ck

Algorithm A

h := 0;
a := â ◦ a;
y0 := b;
repeat
h := h+ 1;
yh := f(a, yh−1);

until yh = yh−1;

computes the greatest fixed point of function f(a,x) below
yA with respect to the suffix order, that is, f(a,yB) = yB

and y � yA & f(a,y) = y ⇒ yB � y.

Algorithm B

h := 0;
y0 := yA;
repeat
h := h+ 1;
yh := f(a, yh−1);

until yh = yh−1;

Complexity issues related to Algorithms A and B are dis-
cussed in detail in [2]. In Algebra Ck, Algorithm A runs in
O(m+ n2k log k) time, where m is the number of network
inputs and n is the number of gates; this applies to networks
with or without feedback. The total time required for Algo-
rithm B is O(n2k log k).

In Tables 1 and 2, we show the simulations in C2 and
C5 of the network defined by the excitation equations: f1 =
x, f2 = x∧y1, f3 = x∨y2, f4 = y3∨y4, f5 = y4, f6 =
y4 ∧ y5, f7 = y6 ∨ y7. From Algorithm A in C2 we learn
that each variable may change during the transition. From
Algorithm B we know that y1 changes from 1 to 0, and y3,
from 0 to 1 (but we don’t know whether there are dynamic
hazards), there is a static hazard in y2, and y4, . . . ,y7 may
oscillate. From Algorithm A in C5, we learn that the change
in y1 is free of hazards, the static hazard in y2 is 010, and
y3 has a dynamic hazard, 0101.

5 Active Paths and Cycles

In this section, the total state is s = (s1, . . . , sm+n) ∈
Tm+n. The state of vertex vi is s(vi) = si, and the state
of arc e from u to v is s(e) = s(t(e)). There are three sta-
ble states: the initial state (â, b), the state (a,yA) at the end
of Algorithm A, and the state (a,yB) at the end of Algo-
rithm B. We refer to these as stable states b, yA and yB .

Let T = v0, e1, y1, . . . , er, yr be a path or cycle in a
network, where v0 is an input or a gate, and y1, . . . , yr are
gates. Any arc joining a node w 6∈ {v0, y1, . . . , yr} to a

4



Table 1. Simulation in C2.
x y1 y2 y3 y4 y5 y6 y7

(â, b) 0 1 0 0 0 1 0 0
Φ2 1 0 0 0 1 0 0
Φ2 Φ2 Φ2 Φ2 0 1 0 0
Φ2 Φ2 Φ2 Φ2 Φ2 1 0 0
Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 0

(a,yA) Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2

1 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2

1 0 Φ2 1 Φ2 Φ2 Φ2 Φ2

(a,yB) 1 0 0 1 Φ2 Φ2 Φ2 Φ2

Table 2. Simulation in C5.

x y1 y2 y3 y4 y5 y6 y7

(â, b) 0 1 0 0 0 1 0 0
01 1 0 0 0 1 0 0
01 10 01 01 0 1 0 0
01 10 010 01 01 1 0 0
01 10 010 0101 01 10 01 0
01 10 010 0101 0101 10 010 01
01 10 010 0101 Φ5 1010 Φ5 0101

(a,yA) 01 10 010 0101 Φ5 Φ5 Φ5 Φ5

1 10 010 0101 Φ5 Φ5 Φ5 Φ5

1 0 10 1 Φ5 Φ5 Φ5 Φ5

(a,yB) 1 0 0 1 Φ5 Φ5 Φ5 Φ5

node yi, 1 ≤ i ≤ r is a side input of gate yi. Let e′i =
e′i1 , . . . , e

′

ini−1
be the (ni − 1)-tuple of side inputs of gate

yi; the inputs of gate yi are the side inputs together with the
main input ei: the arc from v0 to y1, if i = 1, and the arc
from yi−1 to yi, otherwise. There is no loss of generality in
assuming that the main input is the last input of yi.

Definition 2 An arc e from u to v is active in stable state s

if no side input to gate v is dominant in s; otherwise, e is
inactive. A path or cycle T = v0, e1, v1, . . . , er, vr is active
in stable state s if all of its arcs are active. We say that
vertex vi activates vertex vj in stable state s if there is an
active path or cycle of length greater than 0 from vi to vj .

‘Activates’ is a transitive relation. An arc leading to an
identity gate or an inverter is always active, since such a
gate has no side inputs. An arc leading to a XOR gate is
always active, since XOR has no dominant inputs.

In a cycle C = v0, e1, v1, . . . , er, v0, if C is active in
some state, then every vertex activates itself, and ‘activates’
is reflexive. If vi and vj are two vertices in C, then vi acti-
vates vj , and vice versa; thus ‘activates’ is also symmetric,
and hence an equivalence relation.

Proposition 6 LetN be a network with excitation functions
in G. IfN is in a stable state s andC is an active cycle, then
all the vertices in C have transients of the same length.

6 Interior Values

Let k ≥ 2; a value x ∈ Tk is exterior if x ∈ {0, 1,Φk};
otherwise, it is interior. In ternary algebra, k = 2 and there
are no interior values.

Lemma 3 If a vertex has an interior value in yB , then it
has the same value in yA.

Proof: Since Algorithm B is non-increasing in the suffix
order, if a variable has values si in yA and ti in yB , then ti

is a nonempty suffix of si. If yB(vi) is interior, then yA(vi)
could only be Φk or interior. If yA(vi) 6= yB(vi), the length
of vi must decrease during Algorithm B. Thus suppose the
value of vi is the same at step j − 1 of Algorithm B as
it is in yA, but the length of vi decreases in step j. By
Proposition 5, vi has a dominant input in step j−1. But then
vi also has that dominant input in yB , since a binary value
cannot change in Algorithm B. This would make yB(vi)
binary, contradicting that yB(vi) is interior. Thus the value
of vi in yA is the same as in yB .

Let I be the set of all vertices of a network N that have
interior values in yB . For u, v ∈ I , let u ∼ v if u = v or
u activates v and v activates u. Clearly, ∼ is an equivalence
relation on I . Equivalence class [u] activates equivalence
[v], if and only if u = v or u activates v. The relation
‘activates’ on I/ ∼ is a partial order. An equivalence class
[u] is primary in this partial order if [v] activates [u] implies
[v] = [u]. Since we are dealing with finite network graphs,
there always exists at least one primary class. A primary
class cannot consist of a single state that does not appear in
any cycle, because such a vertex must depend only on the
external network inputs, and its value is binary in yB .

Theorem 1 For every k > 2, the result of Algorithm B is
the same in Ck as in ternary simulation.

Proof: Let P be a primary equivalence class of interior val-
ues in yB . All the vertices of P are binary in state b, but
interior in yB and, by Lemma 3, also interior in yA. Sup-
pose the values of all the vertices in P are the same at step
j − 1 of Algorithm A as they are in b, but vi is interior in
step j. Then at least one of the vertices, say ui 6∈ P , joined
by an arc to vi has an interior value in step j − 1, and also
in yA. (It cannot be Φk, for then vi would be Φk in yA.)

Now yB(ui) cannot be Φk, for then the values in P
would be Φk, by Corollary 1. It cannot be interior, for then
it would be in another equivalence class Q that activates
P , contradicting that P is primary. Thus yB(ui) must be
binary. Since Algorithm B is non-increasing in the suffix

5



order, yA(ui) ends in yB(ui). Since Algorithm A is non-
decreasing in the prefix order, yA(ui) begins with b(ui).

Suppose first that vi is an OR gate. Because vi belongs
to an active cycle in yB , we have yB(ui) = 0, as shown
in Fig. 1(c) and (f). (The gate may have other inputs that
are not shown; all such inputs must be 0 in yB .) Let the in-
cycle predecessor of vi be vi−1; in case the cycle consists
of a single state, we have vi = vi−1. Clearly, vi−1 is also in
P , and cannot be 1 in state b, because this would prevent vi

from changing. Hence b(vi−1) = 0, as in Fig. 1(a) and (d).
Case 1: b(vi) = 0. Since (â, b) is stable, b(ui) = 0, as

in Fig. 1(a). Since yA(ui) must begin with b(ui), end with
yB(ui) and be of length at least 2, yA(ui) has the form
(01)h0, where h ≥ 1, as in Fig. 1(b). Also, yA(vi−1) must
begin with b(vi−1), and be of length at least 2; thus vi−1

begins with 01. Since vi has no dominant inputs, Part 1 of
Lemma 1 does not apply. Also, the inputs 01x and (01)h0
do not fit any of the patterns of Part 2. Thus Part 3 applies,
vi cannot be stable in yA, and this case cannot occur.

(a, yA)

(â, b)(d) (a, yA)(e) (f) (a, yB)

vi

ui

0
0

0

0

(01)h0

vi

ui

1
1

0

0

(10)h

01x

01xvi−1

vi−1

(â, b)(a) (a, yB)(c)(b)

Figure 1. OR gate in an interior cycle.

Case 2: b(vi) = 1. Then there is a vertex, say ui, con-
nected to vi by a side-input arc, that is initially 1 (there may
be other such vertices) and is interior in step j − 1 (as must
be the other such vertices). Now yA(ui) begins with 1, ends
with 0 and is of length at least 2; thus it has the form (10)h,
where h ≥ 1. As in Case 1, vi−1 must be of the form 01x.
Part 1 of Lemma 1 does not apply. If h > 1, then Part 2
does not apply. Thus vi cannot be stable in yA, and this
case cannot occur. There remains the possibility that h = 1,
that is, yA(ui) = 10. By Part 2 of Lemma 1, vi−1 must be
of the form (10)h or (10)h1, h ≥ 1, for in all other cases
vi cannot be stable in yA. This contradicts that vi−1 begins
with 0, and this case cannot occur. In summary, the gate
which changes first in Algorithm A cannot be an OR gate.

Now suppose that vi is a XOR gate; then it has no domi-
nant inputs. Since yA(ui) is interior, by Lemma 2, the cycle
cannot be stable in yA. This is a contradiction.

The argument for other functions in G follows from
Propositions 1 and 2. Altogether, we have shown that no
variable can have an interior value in yB . It is now easy to

verify that Algorithm B in C2 produces the same value for
each variable as Algorithm B in Ck for every k > 2.

7 Conclusions

We have the following three types of simulation results:
1) Algorithm A terminates in C, and Algorithm B is unnec-
essary. There may be static and dynamic hazards, but no
oscillations. Every feedback-free circuit has this behavior.
2) Algorithm A does not terminate in C. For any k, after
Algorithm A in Ck, Algorithm B results in binary values.
The circuit has feedback, but its behavior is combinational.
Hazards and transient oscillations [3] may exist.
3) Algorithm A does not terminate in C. For any k, after
Algorithm A in Ck, Algorithm B results in at least one Φk.
Thus, at least one variable has a nontransient oscillation.

In view of our result, the worst-case time complexity of
Algorithm B can be reduced fromO(n2k log k) to O(2n2),
if ternary algebra C2 is used instead of Ck.

Acknowledgement This research was supported by
the Natural Sciences and Engineering Research Council of
Canada under grant No. OGP0000871 and under a Post-
graduate Scholarship, and by a Graduate Award from the
Department of Computer Science, University of Toronto.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with
Applications American Elsevier, 1976.

[2] J. A. Brzozowski and Z. Ésik, “Hazard Algebras,” For-
mal Methods in System Design, 23(3), pp. 223–256,
2003.

[3] J. A. Brzozowski and C-J. H. Seger, Asynchronous Cir-
cuits, Springer, 1995.

[4] E. B. Eichelberger, “Hazard detection in combinational
and sequential switching circuits,” IBM J. Research and
Development, 9, pp. 90–99, 1965.

[5] M. Gheorghiu and J. Brzozowski, “Simulation of
feedback-free circuits in the algebra of transients,”
Int. J. of Found. of Comp. Sci., 14(6), 1033–1054, 2003.

[6] M. D. Riedel, Cyclic Combinational Circuits, PhD Dis-
sertation, Department of Electrical Engineering, Cali-
fornia Institute of Technology, May 2004.

[7] T. R. Shiple, “Formal Analysis of Synchronous Cir-
cuits,” PhD Thesis, Univ. of California, Berkeley 1996.

[8] Y. Ye and J. A. Brzozowski, “Covering of Transient
Simulation of Feedback-Free Circuits by Binary Analy-
sis,” Int. J. Found. of Comp. Sci., 17(4), 949-973, 2006.

6


