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Abstract

Many real-world applications are associated with striedutata, where not only
input but also output has interplay. However, typical diésstion and regres-
sion models often lack the ability of simultaneously expigrhigh-order inter-
action within input and that within output. In this paper, weesent a deep
learning model aiming to generate a powerful nonlinear fional mapping from
structured input to structured output. More specificallg, propose to integrate
high-order hidden units, guided discriminative pretnagniand high-order auto-
encoders for this purpose. We evaluate the model with thatssdts, and obtain
state-of-the-art performances among competitive meth@ds current work fo-
cuses on structured output regression, which is a lessrexplrea, although the
model can be extended to handle structured label clasgificat

1 Introduction

Problems of predicting structured output span a wide rangéietdls, including natural lan-
guage understanding, speech processing, bioinfomatieage processing, and computer vision,
amongst others. Structured learning or prediction has Bpproached with many different mod-
els[1,5, 8,9, 12], such as graphical models [7], large nmabgised approaches [17], and conditional
restricted Boltzmann machines [11]. Compared with stmgctdabel classification, structured out-
put regression is a less explored topic in both the machiamnileg and data mining community.
Aiming at regression tasks, methods such as continuoustmoral random fields [13] have also
been successfully developed. Nevertheless, a propertgdiy most of these previous methods
is that they often make explicit and exploit certain struesuin the output spaces, which is quite
limited.

The past decade has seen the great advance of deep neumlkseatwmodeling high-order, non-
linear interaction. Our work here aims to extend such suct@sonstruct nonlinear functional
mapping from high-order structured input to high-ordenstred output. To this end, we propose a
deep High-order Neural Network with Structured Output (HBD). The upper layer of the network
implicitly focuses on modeling interaction among outpuithva high order anto-encoder that aims
to recover correlations in the predicted multiple outpulse lower layer network contributes to
capture high-order input structures, using bilinear tepsoducts; and the middle layer constructs
a mapping from input to output. In particular, we introduagiscriminative pretraining approach to
guiding the focuses of these different layers of networks.

To the best of our knowledge, our model is the first attemptdiestruct deep learning schemes
for structured output regression with high-order intaérmact We evaluate and analyze the proposed

*The three authors contributed equally.



model on multiple datasets: one from natural language stateding and two from image process-
ing. We show state-of-the-art predictive performanceswfproposed strategy in comparison to
other competitive methods.

2 High-Order Neural Modelswith Structured Output

We regard a nonlinear mapping from structured input to ftined output as consisting of three
integral and complementary components in a high-orderatenwgtwork. We name it as High-
order Neural Network with Structured Output (HNNSO). Sfieally, given aD x N input matrix
[X1,...,Xp]T and aD x M output matrix(Yy, ..., Yp]?, we aim to model the underlying mapping
f between the inpuk; € R and the output; € R . Figure 1 presents a specific implementation
of HNNSO. Note that other variants are allowed; for examtie, dot rectangle may implement
multiple layers.
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Figure 1: A specific implementation of a high-order neuralmek with structured output.

The top layer network is a high-order de-noising auto-ercdthe green portion of Figure 1). In
general, an auto-encoder is used for denoising input dataud model, we use it to denoise the
predicted outpuy") resulting from the lower layers, so as to capture the inégrpimong output.
Similar to the strategy employed by Memisevic in [10], dgrimaining, we randomly corrupt a
portion of gold labels, and the perturbed data are then fatidcauto-encoder. The hidden unit
activations of the auto-encoder are first calculated by d¢omd two versions of such corrupted
gold labels, using a tensdr° to capture their multiplicative interaction. Subsequerttie hidden
layer is used to gate the top tengot to recover the true labels from the perturbed gold labels. As
a result, the corrupted data force the encoder to reconstreitrue labels, in which the tensors and
the hidden layer encode the covariance patterns among thetaluring reconstruction.

The bottom layer (red portion of Figure 1) describes a bdimensor-based network to multiplica-

tively relate input vectors, in which a third-order tensoc@amulates evidence from a set of quadratic
functions of the input vectors. In our implementation, ali®], each input vector is a concatena-
tion of two vectors. Unlike [16], we here concatenate a&pendentectors: the input unitX

(X € RY) and its non-linear, first-order projected vectqrX). Hence, the model explores the

high-order multiplicative interplay not just amot{ but also with the non-linearly projected vector

h(X).

We also leverage discriminative pretraining to help cardtour functional mapping from structured
input to structured output, in which we guide HNNSO to motiel interdependency among output,
among input, as well as that between input and output, whffezeht layers of the network focus
on different types of structures. Specifically, we pretthimnetworks layer-by-layer in a bottom-up
fashion, using the gold output labels. The input to the sédayer and above are the output of the
layer right below it, except for the top layer where the cpted gold output labels are used as input.
Doing so, the bottom layer is able to focus on capturing tipeitistructures, and the top layer can
concentrate on encoding complex interaction patterns gnootput. Importantly, the pretraining



also makes sure that when fine-tuning the whole networks lp@itliscussed later), the input to the
auto-encoder has closer distributions and structurednpatas that of the true labels (as will be seen
in the experimental section). Consequently, the premgihielps the auto-encoder to have input with
similar structures in both learning and prediction. Fipalte perform fine-tuning to simultaneously
optimize all the parameters of the three layers. Unlike & phetraining, we use the uncorrupted
output resulting from the second layer as the input to the-aatoder.

Model Formulation and Learning As illustrated in thered portion of Figure 1, HNNSO first
calculates quadratic interaction among the input and itdimear transformation. In detail, it first
computes the hidden vector from the provided ingut For simplicity, we apply a standard linear
neural network layer (with weightV* and bias ternb®) followed by thetanh transformation:

h* = tanh(W*X + b*) wheretanh(z) = <=°—. Next, the first layer output is calculated as:

e*+e—*
x1" . [x X
YO = tanh( [hm] T [hw} +w© [hw} + ) )

The term(W (©) [})Li
term is a bilinear tensor product with a third-order terfgér The tensor relates two vectors, each
concatenating the input unk with the learned hidden vectar. The computation for the second
hidden laye®” (") is similar to that of the first hidden lay&f(®). When learning the de-nosing auto-
encoder layerdreenportion of Figure 1), the encoder takes two copies of thetinpamelyY (),
and feeds their pair-wise products into the hidden tensor,the encoding tensare:

he = tanh([y W) Te[yV]) 2

+b(©) here is similar to the standard linear neural network lake addition

Next, a hidden decoding tenspf is used to multiplicatively combink® with the input vecto” (1)
to reconstruct the final outpt(?). Through minimizing the reconstruction error, the hiddemsbrs
are forced to learn the covariance patterns within the finghat Y (2):

Y@ = tanh([y V)T T [Re]) 3)

In our study, we use an auto-encoder with tied parametersforenience. That is, the same tensor
for 7¢ and 7. Also, de-noising is applied to prevent an overcompleteémdlayer from learning
the trivial identity mapping between the input and outpattie de-noising process, the two copies
of input are corrupted independently. In our implementatil model parameters can be learned
by gradient-based optimization. We minimize over all inimgtances X;, Y;) the sum-squared loss
error (note: cross-entropy will be used for classificatasks) between the output vector on the top
layer and the true label vector:

N
10) = Ei(X;,Yi:0) + A 0I5 (4)

i=1

Also, we employ standardl, regularization for all the parameters, weightedoyFor our non-
convex objective function here, we deploy the AdaGrad [3edarch for the optimal model param-
eters.

3 Experiments

Baselines

We compared HNNSO's predictive performance, in terms oftRéean Square Error (RMSE), with

six regression models: (1) the Multi-Objective Decisioeds (MODTS) [2, 6]; (2) a collection of

Support Vector Regression (denoted as SVM-Req) [15] with-RBrnel, each for one target at-
tribute; (3) a traditional neural network, i.e., the Mulép.ayer Perceptron (MLP) with one hidden
layer and multiple output nodes; (4) the so-called multatgrmultiple regression (denoted as Mul-
tivariateReg), which takes into account the correlatiom®@g the multiple targets using a matrix
computation; (5) an approach that stacks the MultivariateBn top of the MLP (denoted MLP-

MultivariateReg); and (6) the Gaussian Conditional Randieids (GaussianCRF) [4, 13, 14], in

which the output from a MLP was used as the CRF’s node feataresthe square of the distance



SSTB MNIST USPS
Methods RMSE | relative error|| RMSE | relative error]| RMSE | relative error
reduction reduction reduction

MODTs 0.0567 34.2% 0.0739 33.1% 0.6487 13.8%
SVM-Reg 0.0452 17.4% 0.0602 17.9% 0.5977 6.4%
MLP 0.0721 48.2% 0.0800 38.2% 0.6683 16.3%
MultivariateReg 0.0614 39.2% 0.1097 54.9% 0.6169 9.3%
MLP-MultivariateReg|| 0.0705 47.0% 0.0791 37.5% 0.6059 7.7%
Gaussian-CRF 0.0706 47.1% 0.0800 38.2% 0.6047 7.5%
HNNSO 0.0373 - 0.0494 - 0.5591 -

Table 1: Ten-fold averaged RMSE scores of models on the SSINBST, and USPS data. The
differences of HNNSO from other models are statisticalgngicant at the 95% significance level.
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Figure 2: Effect of pretraining: the distributions of theegictedY () s with pretraining (middle)
were closer to the true labels (right), compared to the netrained version (left).

between two target variables was modeled by an edge fedtuvar experiments, all the parameters
of these baselines have been carefully tuned.

Datasets

There recently have been a surge of interests in using edagd, low-dimentional vector to rep-
resent a word or a sentence in the natural language proge@sirP). Our first experiment was
set up in such a circumstance. Specifically, we used the @thifentiment Tree Bank (SSTB)
dataset [16] that contains 11,855 movie review sentencasthd best embeddings reported in
[16], each sentence is represented by a 25-dimensionabrveée obtained these vectors from
http://nip.stanford.edu/sentiment/, and used the firstléfhents to predict the last 10 dimensions.
Our second experiment used 10,000 examples from the test B#IST digit databasé. On pur-
pose, we employed PCA to reduce the dimension of the data t@8ating in 30 PCA components
that are pair-wise, linearly independent to each other. uinexperiment, we used the first 15 di-
mensions to predict the last 15 dimensions. Our last exgerimased the USPS handwritten digit
databasé. We randomly sampled 1100 images from the original dateasetused the first half of
the image (128 pixels) to predict the second half (128 p)xafishe image.

General Performance

Table 1 presents the performance of different regressiotetamn the SSTB, MNIST, and USPS
datasets. The results show that the HNNSO achieves sigrilfidtawer RMSE scores in comparison
to other models. On all three datasets, the relative erchratéon achieved by HNNSO over other
methods was at least 6.4% (ranging between 6.4% and 54.9%).

Detailed Anaylsis

We use the SSTB dataset to gain some insights into the HNN8@Qdeling behavior. Performance-
wise, we have shown above that the HNNSO model achieved a R84St of 0.0373 on the
SSTB data. Without pretraining, the error increases redbtiby 9.4%. Figure 2 further depicts
the distribution of the first output variable of the data. Tigure indicates that the distribution
of the input with pretraining (middle), compared to thatheitit pretraining (left), is closer to the

Yhttp:/fyann.lecun.com/exdb/mnist/
2http:/iwww.cs.nyu.edu/ roweis/data/uspls mat
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Figure 3: Effect of the auto-encoder: transformFigure 4: Errors made by the SVM-Reg ap-
ing input (gray) to output (light blue); the true proach (green) and HNNSO method (red) for
labels are highlighted in purple. each target.

Figure 5: Predicting the right half of a digit using the leétitin the USPS data

distribution of the true labels (right). Such structuredtg@as are important for the encoder as
discussed earlier.

In Figure 3, we also show the input (gray boxes) and outpghidblue) of the auto-decoder in
HNNSO as well as the true labels (dark-blue) on the SSTB dath box in each color group
represents one of the ten output variables in the same dfidgrre 3 shows that the patterns of the
light-blue boxes are similar to that of the dark-blue boxXBsis suggests that the encoder is able to
guide the output predictions to follow similar structureattprns as that of the true labels.

In Figure 4, we further depict the errors made by the HNNSO &Wil-Reg (the second best
approach). Each box in each color group represents the ealoulated as predicted value minus
its true value, achieved on each of the ten output variabléss same order. Figure 4 suggests that
the errors on each output target made by HNNSO has narrowaarsistent variances across the ten
output targets. On the contrary, the variances of errorgrtize ten output targets obtained by the
SVM-Reg are obviously larger, suggesting that SVM-Reg mal@od prediction on some output
targets without considering the interaction with othegéds.

Visualization

Figure 5 plots three digits from the USPS data, includingtihe images (right) and their predictions
made by HNNSO (left) and MLP (middle). The figure shows thatNBO was able to recover the
images well. In contrast, MLP yielded some missing pixelstanright halves of the images.

4 Conclusion

We propose a deep high-order neural network to construdinaam functional mappings from struc-
tured input to structured output for regression. We aim iatp achieve the goal with complemen-
tary components that focus on capturing different typestefrdependency. Experimental results on
three benchmarking datasets show the advantage of our meeteteveral competing approaches.
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