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Abstract

Combinatorial auctions, where bidders are allowed to
put bids on bundles of items, are preferred to single-item
auctions in the resource allocation problem because they
allow bidders to express complementarities (substitutabil-
ities) among items and therefore achieve better social ef-
ficiency. Although many works have been conducted on
combinatorial auctions, most of them focus on the winner
determination problem and the auction design. A large un-
explored area of research in combinatorial auctions is the
bidding strategies. In this paper, we propose a new adaptive
bidding strategy in multi-round combinatorial auctions in
static markets. The bidder adopting this strategy can adjust
his profit margin constantly according to bidding histories
to maximize his expected utility. Experiment results show
that the adaptive bidding strategy performs fairly well when
compared to the optimal fixed strategy in different market
environments, even without any prior knowledge.

1 Introduction

With the increasing popularity of centralized and dis-
tributed computing technologies, the Internet has become
a powerful computing platform where different users can
use existing computing resources to perform their own tasks
[6]. This kind of resource allocation problem, that is, how
to allocate these resources among a group of users, is an
important issue. Internet Auction is a good solution for this
problem because it allocates resources to bidders who value
them most and gets the efficient allocation from the view of
economics [3].

Among all types of auctions, combinatorial auctions,
where bidders are allowed to put bids on bundles of re-
sources, receive much attention from researchers in both
computer science and economics [5]. Combinatorial auc-

tions can lead to more economical allocations of resources
than traditional single-item auctions when bidders have
complementarities (substitutabilities) among them. Such
expressiveness can lead to an improvement of efficiency,
which has been demonstrated in airport landing allocation
and transportation exchanges [10][12].

In recent ten years, most works on combinatorial auc-
tions concentrate on the winner determination problem and
the auction design. Winner determination problem is to
compute the optimal allocation of resources among bidders
and is proved to be NP-hard [11]. Many works have been
conducted to solve this problem, including finding optimal
solutions and approximate solutions [13][7]. Auction de-
sign involves the designing of different protocols for combi-
natorial auctions, such as single-round versus multi-rounds
and sealed-bid versus open-bid [9][4].

Another area of research on combinatorial auctions is the
designing of bidding strategies. As combinatorial auctions
are incorporated with the first-price sealed-bid auction pro-
tocol in many applications [4], we are especially interested
in bidding strategies in this kind of auctions. However, un-
like the Vickrey Auction, where bidding truthfully is the
dominant strategy, no dominant strategy exists in first-price
sealed-bid combinatorial auctions [8]. In a market com-
posed of self-interested bidders, the general unwillingness
of information sharing makes this decision problem com-
plex. For example, a bidder is not able to get the informa-
tion beforehand that will benefit himself when participating,
such as bidding bundles and prices of others’ and the num-
ber of bidders competing for resources in the market.

An intuitive solution to this decision problem is that in
different market environments, it is better for a bidder to
use different strategies. For example, when the demands are
far greater than supplies, which means that bidders compete
severely for resources, a bidder should not bid too aggres-
sively, that is, to use a low profit margin to get a high win-
ning probability. On the contrary, when demands are less



than supplies, a bidder should use a relative high profit mar-
gin to gain a high winning utility.

In this paper, we consider a scenario where first-price
sealed-bid combinatorial auctions are employed to dis-
tribute computational resources among a group of users.
Based on the intuition described in the above paragraph,
we propose a new adaptive bidding strategy in multi-round
combinatorial auctions. The profit margin used by the bid-
der adopting this kind of strategy can be adjusted constantly
according to bidding histories, and finally approaches to
the optimal profit margin in the current market environment
even without the bidder’s prior knowledge. Experiment re-
sults show that the bidder using the adaptive strategy out-
performs bidders using other strategies and achieves good
utilities compared to the optimal strategy in different envi-
ronments.

This paper is structured as follows. Section 2 presents re-
lated work on bidding strategies in combinatorial auctions.
Section 3 presents some preliminaries. Section 4 describes
the proposed adaptive bidding strategy. Experiment results
are discussed in Section 5. Finally Section 6 concludes this
paper and highlights some possible future work.

2 Related Work

In first-price sealed-bid combinatorial auctions, a bidder
has exponential number of bundles to bid on. The problem
of deciding which bundles to choose and how much to bid
for them are referred to as the bundle strategy and the price
strategy respectively. In the following, we present a survey
on both strategies in combinatorial auctions.

The work of Berhault et al. [2] focus on the bundle strat-
egy in single-round combinatorial auctions. In their work,
combinatorial auctions are employed to allocate unexplored
terrains to robots distributed in a large field. Four bidding
strategies are proposed for robots: Three-Combination,
Smart-Combination, Greedy and Graph-Cut. Through ex-
periments they show that combinatorial auctions achieve
better efficiencies than single-item auctions and generate
good results compared to optimal centralized allocations.
They also show the influences of bundle strategies on team
performances, where the Graph-Cut strategy clearly outper-
forms the other three.

An et al. [1] also study the bundle strategy in single-
round combinatorial auctions. They propose two bundle
strategies: Internal-Based and Competition-Based. Bidders
using the former strategy only bid on bundles for which they
have higher valuations, while bidders using the latter strat-
egy only bid on bundles for which they have higher ratios
of valuations to their competitors’ according to their prior
estimations. Simulation results show that wise bidders us-
ing these two strategies outperform naive bidders, who only
submit single-item bids.

Schwind et al. [14] attempt to solve the computational re-
source allocation problem using multi-round combinatorial
auctions. They study the situation where bidders use virtual
currencies, which are obtained by selling unused resources,
to get accesses to computational resources needed for ac-
complishing their own tasks. They propose price strategies
for two kinds of bidders: impatient bidders and quantity
maximizing bidders. Experiment results show that for the
first kind of bidders, it is better to bid high prices to get fast
accesses to resources, while the second kind of bidders had
better bid low prices and keep on waiting for resources.

Although these existing works addressed price strategies
in combinatorial auctions, their results focus on posterior
analysis and the proposed price strategies are not adaptive.
To the best of our knowledge, this paper is the first attempt
to design an adaptive bidding strategy for combinatorial
auctions, which is the main contribution of this work.

3 Preliminaries

3.1 Combinatorial Auction Mechanism
For Resource Allocation

The combinatorial auction mechanism for the resource
allocation problem can be described as follows. Multi-
ple users (bidders) need some types of resources to per-
form their own tasks. There is a resource manager (auc-
tioneer) who controls all resources. Suppose there are N
users and M different types of resources. For each type of
resource j, there is a capacity cj denoting the total num-
ber of units that are available. There is a demand con-
straint D = (d1, d2, ..., dm), where dj is the maximum
number of units of resource j that each bidder can re-
quest for. Each user i submits a sealed-bid bi = (S, pi),
where S = (s1, s2, ..., sm) denotes a resource bundle, with
sj being the number of units of resource j user i needs,
0 ≤ sj ≤ dj , ∀j ∈ M , and pi is a positive number which
denotes the price user i will pay for getting S. After re-
ceiving bids from all users, the resource manager solves the
winner determination problem, that is to find a feasible allo-
cation which maximizes the auctioneer’s revenue. A feasi-
ble allocation means that for each type of resource, the total
number of units allocated cannot exceed the capacity of that
resource. Each winning user i pays pi, gets accesses to the
resources in the bundle he bids for, performs his own task,
and then returns them to the resource manager. We refer
to the process from the beginning of bid submission to the
end of resource return as a round of combinatorial auctions.
Because resources are reusable, the combinatorial auction
can be repeated for multiple rounds before it is closed by
the resource manager.

We list some assumptions used in this paper. First, we
assume that the combinatorial auction market is static. A



combinatorial auction market is said to be static if ratios of
supplies and demands of different resources are kept con-
stant in the whole process of the auction before it finishes.
Second, each user only submits one bid in a round, denot-
ing the number of different resources needed for the current
task. This corresponds to the situation that each bidder has
time sequences on tasks that the task which arrives earlier
must be accomplished before later tasks are executed. Fi-
nally, in every round of combinatorial auctions, winners of
the previous round submit new bids, while losers continue
to submit the lost bids. A bidder will drop a bid if it has
been lost for consecutive τ rounds and then submit a new
bid for the next round, which means that the bidder will not
keep on waiting for a resource bundle forever.

3.2 Valuation Model

The value of a resource bundle S, denoted as vi(s), com-
prises two parts: the sum of individual values of resources
in the bundle and the synergy value among resources in
the bundle, which are denoted as vindi(S) and vsyn(S) re-
spectively. The synergy value can be positive or negative.
Resources in a bundle are said to have positive (negative)
synergy, if their combined value for the bidder is larger
(smaller) than the sum of their individual values. Suppose
there is a bidder i who values a bundle containing 2 units of
resource R1 and 3 units of resource R2 at $19, but only $4
and $3 for each unit of R1 and R2. In this case, the com-
bined value of these resources is greater the sum of individ-
ual values, which is 18 only, and there is a synergy value of
positive 1 for this resource bundle.

Each bidder i has a private value vij for a single unit of
resource j, ∀j ∈ M . For a resource bundle S, vindi(S) is
defined as the sum of valuations of all types of resources in
the bundle and vsyn(S) is defined as the product of synergy
seed and vindi(S). The synergy seed is a function of S
synseed : A1×A2× ...×Am → [µ, ν], where Aj is integer
of 0 or 1, that Aj=1 if and only if resource j is requested in
bundle S, ∀j ∈ M . The values of µ and ν are the upper and
lower bounds for the synergy seed.

According to this valuation model, the value of a re-
source bundle S is hence:

vi(S) = vindi(S) + vsyn(S)
= vindi(S) + vindi(S)× synseed(S)
= vindi(S)× (1 + synseed(S))

=
∑

1≤j≤m

vijsj × (1 + synseed(S))

(1)

From equation (1), we can see that the value of a bun-
dle is 1 + µ times the sum of individual values at least and
1 + ν times the sum of individual values at most. In ad-
dition, if we refer to |S| as the number of different types

of resources in bundle S, we assume synseed(S) = 0 if
|S| = 1, which means that there is no synergy value in bun-
dle S when only one type of resource is contained. This
valuation model conforms to our common sense that bun-
dles containing same types of resources values more as the
numbers of units for resources increase, e.g., a bundle with
2 units of resource R1 and 3 units of resource R2 values
more than a bundle with 1 unit of resource R1 and 2 units
of resource R2.

4 Adaptive Bidding Strategy

As mentioned above, each bidder will pay the price he
bids for a resource bundle if he is a winner. The utility
(profit) for bidder i of winning bundle S is computed as:

ui(S) = vi(S)− pi(S) (2)

where ui(S), vi(S) and pi(S) are his winning utility, valu-
ation and price for bundle S respectively.

When bidding for a resource bundle, a rational bidder
will use a bid value which is greater than zero and less than
his valuation of that bundle. That is, suppose the valuation
of bidder i for bundle S is vi(S), then his bidding price is
(1− pm)×vi(S), where 0 < pm < 1. Here, we refer to the
value of pm as profit margin. Note that pm is greater than
zero to ensure that the bidder will have a positive utility
and pm is less than one to make the bidding price positive.
Combined with (2), the utility of bidder i is hence:

ui(S) = vi(S)− pi(S)
= vi(S)− (1− pm)× vi(S)
= pm× vi(S)

(3)

A bidder faces a dilemma in deciding what profit margin
to use in combinatorial auctions: bidding with a low profit
margin will necessarily lead to a high chance of winning,
but will only result in a low utility if he wins; on the other
hand, bidding with a high profit margin will of course gen-
erate a high utility if he wins, but will decrease his winning
probability. If a bidder can get some prior knowledge about
the market, he can probably make the decision benefitting
himself with the information. For example, consider a mar-
ket where supplies are greater than demands. A bidder who
has prior knowledge about the market will use a lower profit
margin when bidding. This is because in this kind of mar-
ket, bidders face little competition from others, and bidding
with a low profit margin will lead to a winning utility while
the winning probability is virtually unaffected. However,
having prior knowledge is not always possible in a real mar-
ket, because each bidder is self-interested and generally un-
willing to share information with others who are also com-
peting for resources. As a result, we make an assumption in



this paper that the available information for each bidder is
his bidding information only, that is, the information about
his own bids in previous rounds.

4.1 Basic Concepts

In order to explain the adaptive bidding strategy, we first
introduce some basic concepts.

Definition 1 A reference record of a bid b for bidder i is
a tuple rrb = (S, vi(S), pmb, loseb, winb), where S is the
requested bundle in b, vi(S) is the bidder’s valuation of this
bidder, pmb is the profit margin for bid b, loseb is the num-
ber of rounds the bidder keeps on bidding before bid b is
won or dropped and winb is a integer of 0 or 1 denoting
whether this bid is won or dropped. If winb=1, then this bid
is won, else it is dropped.

In the definition, the minimum value of waitb is 0, when
the bidder wins the requested resource bundle at the first
round after he submits it, and the maximum value of waitb
is τ , when he keeps on losing all the time and finally drops
the bid. Note that winb=0 if and only if waitb equals to τ .

Definition 2 A bidding history of a bidder, denoted as bh,
is the sequence of recent κ reference records.

For different bids in the bidding history, a bidder can use
different profit margins, e.g., for two reference records rrbm

and rrbn
in a bidding history, their profit margins pmbm

and
pmbn

can be different.

Definition 3 A consistent bidding history of a bidder, de-
noted as cbh, is a bidding history in which all reference
records share the same profit margin.

Every time when a bid is won or dropped, a new bidding
history is formed. However, we say that it is consistent only
when the all reference records share the same profit mar-
gin. Consider a bidder who uses a fixed profit margin for all
reference records, then all his bidding histories are consis-
tent. On the contrary, if a bidder never uses the same profit
margin for two consecutive reference records, none of his
bidding history is consistent.

Definition 4 The expected utility function of bidder i on a
consistent bidding history cbh, denoted as uex(cbh), is de-
fined as:

uex(cbh) = pmcbh ×
∑

rrb∈cbh winb∑
rrb∈cbh(winb + waitb)

(4)

where pmcbh is the common profit margin used in this con-
sistent bidding history, and waitb and winb are the same as
in the definition of reference record.

The reason why we refer to this function as expected util-
ity function is explained as follows. When the value of κ is
infinitely large, the second factor in the function is the win-
ning chance of the bidder if he uses the profit margin of
pmcbh to bid in the auction. If we multiply it by the profit
margin, the product is thus the scaled utility of the bidder in
the consistent bidding history.

4.2 Adaptive Strategy

Based on the basic concepts defined above, we describe
the adaptive strategy. The general idea is that every time
when a new consistent bidding history is formed, the profit
margin used by the bidder is increased or decreased accord-
ing to the bidder’s 1st and 2nd most recent consistent bid-
ding histories. The new profit margin is used by the bidder
when he bids in subsequent rounds until the next consistent
bidding history is formed. This process is referred to as an
adaptation of the profit margin. Through adaptations, the
profit margin used will converge to the optimal profit mar-
gin. Here, the optimal profit margin is the profit margin that
will maximize the expected utility when κ is infinitely large.

We refer to the increase and decrease of the profit mar-
gin as a positive and negative adjustment respectively, and
use a 0 or 1 variable δ to indicate the previous adjustment
of the profit margin: if δ = 1, then the previous adjustment
is positive, otherwise negative. We use u and u′ to denote
the expected utilities of the 1st and 2nd most recent consis-
tent bidding histories. We also use pm to denote the current
profit margin, and use pm′ to denote the profit margin be-
fore the previous adjustment.

The adaptive strategy is illustrated in Algorithm 1.
We first give a general view of two functions: Decreas-

eStep (line 7) and ProfirMarginReset (line 19) before the
adaptive strategy is illustrated. In function DecreaseStep,
step is decreased under some conditions, and in function
ProfitMarginReset, pm is reset to a value according to re-
cent consistent bidding histories when certain conditions
hold. We will introduce them later in the paper.

The adaptive strategy can be explained as follows. At the
beginning, pm, step, δ and u′ are initialized. During the
process of the auction, the value of pm is used by the bid-
der to bid in the auction, and is changed every time when
a new consistent bidding history is formed. On deciding
how to change this value, the bidder first computes the ex-
pected utility of the newly formed consistent bidding his-
tory, which is denoted by uex(cbh), record this value in u,
and then changes the profit margin according to the value of
δ and the relationship between u and u′ (line 8-12). If the
previous adjustment of the profit margin, which is recorded
by δ, leads to a decrease of the expected utility, an opposite
adjustment will be made (line 8-9), otherwise, a same ad-
justment will be made (line 10-11). An opposite adjustment



Algorithm 1 Adaptive strategy
1: pm = η, step = θ, δ = 1 and u′ = 0.
2: while auction does not finish do
3: Use profit margin of pm to bid for the current

round
4: if a new consistent bidding history cbh is formed

and step > ε then
5: Compute uex(cbh).
6: u = uex(cbh) and pm′ = pm.
7: DecreaseStep ();
8: if u < u′ then
9: pm = pm− δ × step

10: else if u ≥ u′ then
11: pm = pm + δ × step
12: end if
13: if pm > pm′ then
14: δ = 1
15: else if pm < pm′ then
16: δ = −1
17: end if
18: u′ = u
19: ProfitMarginReset ();
20: end if
21: end while

means that the previous and next adjustment of the profit
margin are different, e.g., one is positive and the other is
negative, and a same adjustment means that both the previ-
ous and next adjustment are positive or negative. The value
of pm is changed from time to time in the auction and will
gradually converge because of the decrease of step. The
adaptation is stopped when step is smaller than a threshold
ε and the bidder use the profit margin at that time for all
subsequent rounds until the auction finishes.

Next, we will describe the two functions in the adaptive
strategy in detail: DecreaseStep and ProfitMarginReset.

4.2.1 DecreaseStep

As mentioned above, the second factor in the expected util-
ity function is the winning probability if κ is infinitely large.
From Algorithm 1, we can see that the bidder using this
strategy will change his profit margin every κ reference
records. In this case, κ cannot be set to a large value be-
cause the bidder also needs to adapt to the environment in a
timely manner. By such constraint, the second factor can be
only regarded as an approximation of the winning probabil-
ity. If we refer to pwin(pm) as the winning probability of
the bidder who bids with the profit margin of pm, then the
larger the value of κ is, generally the closer to pwin(pm)
the second factor is. Thereby, we say that the second factor
is vulnerable to noises and the expected utility is inaccurate

when κ is small.
We need an algorithm that is robust against noises to de-

cide when to decrease step. Before it is introduced, the
concept of profit margin history is defined as the notion of
goes towards is given.

Definition 5 A profit margin history, which is denoted as
pmh, is a sequence of λ real numbers, in which the kth
element, pmhk, is the profit margin used for the kth most
recent consistent bidding history.

We also give the notion of “going towards” as follows.
The profit margin pm is said to go towards a value π if
1) pm<π and the next adjustment for pm is positive or 2)
pm>π and the next adjustment for pm is negative.

The function of DecreaseStep is given in Algorithm 2.
On whether or not to decrease step, the bidder first com-
putes mean, the mean value of elements in pmh. For
each pmhk, there is a variable ωk that equals to 1 if
|pmhk−mean|≤step, otherwise 0 (line 2-8). Then step is
decreased by γ if all the three conditions are satisfied.

Algorithm 2 Function: DecreaseStep

1: Compute mean = 1
λ

∑λ
k=1 pmhk.

2: for k = 0 to λ do
3: if |pmhk −mean| ≤ step then
4: ωk = 1
5: else
6: ωk = 0
7: end if
8: end for
9: if

∑λ
k=1 ωk ≥ φ

and ω1 = 1
and pm goes towards mean then

10: Decrease step by γ
11: end if

We illustrate these three conditions as follows. When the
first condition that

∑λ
k=1 ωk ≥ φ is satisfied, it means that

the profit margins in pmh fluctuate around mean. In this
case, the value of mean is regarded as an approximation of
the optimal profit margin. The second condition that ω1 = 1
and the third condition that pm goes towards mean guaran-
tee that the optimal profit margin can be further approached
in the next adaptation if step is decreased.

4.2.2 ProfitMarginReset

Just as its name implies, this function resets the value of
pm if it deviates too much from the optimal profit margin.
Here, pm is said to deviate from a value π if 1) pm < π and
the next adjustment for pm is negative or 2) pm > π and
the next adjustment for pm is positive. Because the optimal



profit margin is not known in advance, we use the same way
as in Algorithm 2 to get its approximation.

The reason for the deviation can be explained as follows.
From Algorithm 1, we can see that given δ, the next adjust-
ment of the profit margin is determined by the relationship
between u and u′. However, when step is small, this re-
lationship mainly depends on the relationship between the
second factors in the expected utility function, which are
vulnerable to noises as mentioned above.

However, the profit margin should not be reset all the
time. For example, if the profit margin has been consec-
utively reset from higher or lower values for a number of
times, then it is quite possible that the value, which the profit
margin is reset to, is not close to the optimal profit margin.
This corresponds to our common sense that if we always
get wrong answers to a problem with a solution, we tend to
believe that the solution itself may be improper and needs
to be corrected.

Before we describe the function of ProfitMarginReset
condition, the concept of profit margin history center is
given as follows.

Definition 6 The profit margin history center of a profit
margin history is the mean value of elements in pmh if the
condition that

∑λ
k=1 ωk≥φ in line 9 of Algorithm 2 is sat-

isfied, otherwise, it does not exist.

We use cen′ to denote the most recent profit margin his-
tory center, and use resl and resh to denote the number
of times that the profit margin is consecutively reset from
lower and higher values respectively.

The function of ProfitMarginReset is described in Algo-
rithm 3.

Algorithm 3 Function: ProfitMarginReset
1: Compute d = pm - cen′.
2: if |d| > ψ × step then
3: if d>0 then
4: Set resl = 0 and resh = resh + 1.
5: if resh < χ then
6: Set pm = cen′

7: else
8: Set cen′ = pm and resh = 0.
9: end if

10: else
11: Set resh = 0 and resl = resl + 1
12: if resl < χ then
13: Set pm = cen′

14: else
15: Set cen′ = pm and resl = 0.
16: end if
17: end if
18: end if

The algorithm can be explained as follows. First, the
bidder computes the difference between pm and cen′. If
the absolute value of this difference is more than ψ × step,
it is regarded that the profit margin has deviated too much
from the optimal one. Values of resl and resh are updated
according to the value of d (lines 4 and 11). If the upper
bound of consecutively reset time χ has not been reached,
the profit margin is reset to cen′, the most recent approxi-
mation of the optimal profit margin (lines 6 and 13). Other-
wise, it is regarded that this approximation is inappropriate,
in which case it is replaced by pm (lines 8 and 15).

5 Experiment Evaluation

To evaluate the performance of the adaptive strategy, two
sets of experiments are conducted. In the first set of ex-
periments, the performances of different fixed strategies are
compared in different markets. A fix strategy is a strategy
that a same profit margin is used by the bidder for all refer-
ence records. In the second set of experiments, the perfor-
mances of the random strategy (RS), the adaptive strategy
(AS) and the best fixed strategy (BFS) are compared. Ran-
dom strategy is a strategy that a random profit margin is
used for each reference record. Best fixed strategy is the
fixed strategy that generates the highest utility among all
fixed strategies used in the first set of experiments. We refer
to the best fixed profit margin as the the profit margin used
by the best fixed strategy. In addition, we also show the typ-
ical adaptation process of the profit margin in a single run
in different markets.

5.1 Experiment Setup

In our experiments, each combinatorial auction is re-
peated for 500 rounds and an iteration of 500 rounds is re-
ferred to as a run. Motivated by other works [1][14], in
each run, we have one test bidder using strategy X and oth-
ers bidding their true valuations. Here, X can be the adap-
tive strategy, the random strategy or any fix strategy. The
performances of different strategies are compared through
accumulated utilities of the test bidder in a static market in
100 runs.

Settings of these experiments are as follows. Four types
of resources with capacities of 60, 40, 40, 20 respectively
are provided by the resource manager. Numbers of units
that a bidder requests for different types of resources are in-
tegers randomly drawn from uniform distributions [0, 3], [0,
2], [0, 2] and [0, 1] respectively. That is to say, the demand
constraint is D = (3, 2, 2, 1). At the beginning of each run,
each bidder initializes his valuations for all bundles: his val-
uations for a single unit of different types of resource are
real numbers randomly drawn from uniform distributions



[3, 6], [4, 8], [4, 8] and [6, 10] respectively, and his syn-
ergy seeds for different bundles are real numbers randomly
drawn from a uniform distribution [-0.2, 0.2].

We use the ratio of total supplies and demands to denote
a market type and a market is said to be a 1:n market if
such ratio equals to 1:n. In our experiments, because the
total supplies are fixed, we use different value of N to de-
note different market types. For example, when N=40, the
expected total demands are 60, 40, 40 and 20, which equal
to the total supplies, and we say that this is a 1:1 market.
We use four values of N=30, 40, 50 and 60 to denote the
1:0.75, 1:1, 1:1.25 and 1:1.5 market respectively.

Parameters used in experiments are showed in Figure 1.

Parameter Value Description
τ 3 maximum lost round
κ 5 length of a bidding history
η 0.05 initial value of pm
θ 0.1 initial value of step
ε 0.01 threshold for step to stop adaptation
λ 10 length of a profit margin history
φ 6 see Algorithm 2 and Definition 6
γ 2 degree of decrease for step
ψ 3 see Algorithm 3
χ 3 maximum consecutive reset time

Figure 1. Parameters used in experiments

5.2 Experiment Results and Analysis

Figure 2 shows the results of the first set of experi-
ments. In Figure 2, each curve represents a different mar-
ket type, and for each market type, the accumulated util-
ities of the test bidder using 10 different fixed strategies
with profit margins of pmi, i = 1, 2, ...10, where pmi =
(i− 1)× 0.1 + 0.05 are compared.

Figure 2. Utilities of the test bidder using 10
different fixed strategies in different markets

From Figure 2, we can see that the more competitive the
market is, the smaller the value of the best fixed profit mar-
gin is. For example, in the 1 : 0.75 market, where bidders
face few competitions from others, the best fixed profit mar-
gin is 0.95, and in the 1 : 1.5 market, where bidders face
fierce competitions from others, the best fixed profit mar-
gin is 0.25. This corresponds to our common sense that it is
better for a bidder to use different profit margins in different
markets: in a market that is short of competition, it is better
for a bidder to use a high profit margin to obtain a high util-
ity, while in a market that is highly competitive, it is better
for a bidder to use a low profit margin to beat others.

Figure 3 shows the results of the second set of experi-
ments. Here, RS corresponds to the random strategy, AS
corresponds to the adaptive strategy, and BFS corresponds
to the optimal fixed strategy.

Figure 3. Utilities achieved by the test bidder
using strategies of RS, AS and BFS

From Figure 3, we can see that the adaptive strategy per-
forms fairly well when compared to the best fixed strategy,
and outperforms the random strategy much in different mar-
ket environments. As described above, the best fixed strat-
egy is the strategy that performs best among all fixed strate-
gies. The bidder using the best fixed strategy should be re-
garded as having prior knowledge about the market environ-
ment and is able to use the best fixed profit margin to obtain
a high utility. On the contrary, the bidder using the random
strategy can be regarded as not having any prior knowledge
about the market and will use a random profit margin for
every reference record. Therefore, it is impressive that the
bidder using the adaptive strategy, can still obtain utilities
that is about 90% compared to the utilities obtained by the
bidder using the best fixed strategy in different market envi-
ronments. As the bidder using the adaptive strategy does not
need to know the market type in advance, we can draw the
conclusion that the performance of the adaptive strategy is
good, even without any prior knowledge about the market.

In addition, we also show the typical adaptation pro-



cesses of the profit margin in a single run in different mar-
kets. For each type of market, the horizontal line represents
the optimal fixed profit margin in that type of market.

1:0.75 Market 1:1 Market

1:1.25 Market 1:1.5 Market

Figure 4. The typical adaptation process of
the profit margin in a single run in different
markets

From Figure 4, we can see that for each type of market,
the profit margin in the adaptive strategy has converged to
a values, which is very close to the best fixed profit margin
in that market type. This means that the adaptive strategy
is capable of adapting in different markets. In addition, the
convergence speed is fast: for each market type, the profit
margin has converged at about the 150th round and a value
that is close to the optimal fixed profit margin is found. This
value is used by the bidder to bid in subsequent rounds,
which guarantees that the adaptive strategy can generate a
very good utility when compared to both the optimal fixed
strategy and the random strategy.

6 Conclusion and Future Work

In this paper, we propose a new adaptive bidding strategy
in multi-round combinatorial auctions for the resource allo-
cation problem in static markets. The bidder adopting this
strategy can adjust his profit margin constantly according to
bidding histories and finally adapts to the market environ-
ment. Experiment results show that 1) the adaptive strategy
performs fairly well compared to the optimal fixed strategy
and the random strategy in different market environments.
2) the bidder using the adaptive strategy can still obtain a
very good utility, even without any prior knowledge about
the market. 3) the adaptive strategy is capable of adapting
to different markets and the convergence speed is fast.

In the future, we intend to design an adaptive strategy for
dynamic markets, where the ratios of supplies and demands

change from time to time. In this type of market, an intelli-
gent bidder should perceive and respond to the environment
in a more timely manner, which makes the designing of the
adaptive strategy more complex. In addition, from the re-
sults we can see that although the adaptive strategy performs
fairly well, there is still room for improvement. We also in-
tend to explore the influences of different parameters on the
performance of the adaptive strategy.
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