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ABSTRACT
Combinatorial auctions, where bidders are allowed to put
bids on bundle of items, are the subject of increasing re-
search in recent years. Combinatorial auctions can lead to
better social efficiencies than tractional auctions in the re-
source allocation problem when bidders have complemen-
tarities and substitutabilities among items. Although many
works have been conducted on combinatorial auctions, most
of them focus on the winner determination problem and the
auction design. A large unexplored area of research in com-
binatorial auctions is the bidding strategies. In this paper,
we propose a Q-learning based adaptive bidding strategy
for combinatorial auctions in static markets. The bidder
employing this strategy can transit among different states,
gradually converge to the optimal one, and obtain a high
utility in the long-term run. Experiment results show that
the Q-learning based adaptive strategy performs fairly well
when compared to the optimal strategy and outperforms the
random strategy and our previous adaptive strategy in dif-
ferent market environments, even without any prior knowl-
edge.

Categories and Subject Descriptors
K.4 [Computers and Society]: Electronic Commerce; I.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence–
Intelligent agents, Multi-agent systems

General Terms
Economics, Algorithm

Keywords
Bidding Strategy, Adaptive , Q-Learning, Combinatorial Auc-
tions
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With the increasing demands of computational resources
for complex scientific computing problems, such as astro-
nomical calculation and biological calculation, the utiliza-
tion of computing power provided by centralized and dis-
tributed infrastructures is receiving more and more attention
from computer scientists and researchers in recent years. In-
ternet is a case example of such infrastructure where differ-
ent users can use the provided computational resources to
perform their own tasks [12]. This kind of resource alloca-
tion problem, that is, how to allocate these resources among
a group of users, is becoming an important issue. Com-
pared with other approaches for resource allocation[8][20],
Internet Auction has a significant advantage that it allo-
cates resources to bidders who value them most and gets
the efficient allocation from the view of economics [9].

Among all types of auction, combinatorial auctions, where
bidders can bid on combination of items, called “packages”,
rather than just individual items[10], has received much at-
tention from researchers in both computer science and eco-
nomics [11]. Combinatorial auctions can lead to more eco-
nomical allocations of resources than traditional single-item
auctions when bidders have complementarities and substi-
tutabilities among them. Such expressiveness will result in
an improvement on efficiency, which has been demonstrated
in many applications [23][26][3].

There has been a lot of works on combinatorial auctions in
the last decade. The most two widely studied problems are
the winner determination and the auction design. Winner
determination problem is to compute the optimal allocation
of resources among bidders and is proved to be NP-hard [25].
Many works have been conducted to solve this problem, in-
cluding finding optimal solutions and approximate solutions
[27][13][34][5][15]. Auction design involves the designing of
different protocols for combinatorial auctions, such as single-
round versus multi-rounds, sealed-bid versus open-bid and
false-name-proof [22][10][33][24][4]. In addition, the compu-
tational mechanism design for combinatorial auctions, that
is to design a computational feasible while truthful mecha-
nism for combinatorial auctions, is also a vibrant research
area [19][21][18][2][14].

Another area of research on combinatorial auctions is the
design of bidding strategies. As combinatorial auctions are
incorporated with the first-price sealed-bid auction protocol
in many applications [10], we are especially interested in bid-
ding strategies in this kind of auction. Unlike the Vickrey
Auction, where bidding truthfully is the dominant strategy,
no dominant strategy exists in the first-price sealed-bid com-



binatorial auctions [17], which makes the design of bidding
strategies a nontrivial problem. Although there are some
previous works addressing this problem[7][1][28][29], those
proposed strategies are not adaptive, which means that the
results are built on some posterior analysis and are very re-
strictive to certain circumstances.

Based on the principles of Q-learning [31][32], we propose
a Q-learning based adaptive bidding strategy in this paper.
The bidder adopting this strategy can transit among differ-
ent states according to his bidding history, and thus per-
ceive and respond to the market. The bidder does not need
to have prior knowledge about the markets and the mar-
kets are not restricted to certain types. In other words,
our strategy generalizes well. Furthermore, the proposed Q-
Learning based adaptive strategy is not restricted to com-
binatorial auctions. Actually, such a strategy can be used
in any repeated auctions, which will be further discussed in
the conclusion section. Through simulations, we show that
the Q-learning based adaptive strategy performs well and
generates high utilities in different markets when compared
with the random strategy and our previous adaptive strat-
egy. We also compare the performances of the Q-learning
based adaptive strategy and the previous adaptive strategy
in detail. In addition, we also show that the bidder using this
strategy can converge quickly to the optimal state in differ-
ent markets, and thus be capable of learning and adapting,
even without any prior knowledge.

This paper is structured as follows. In Section 2 we present
some related work on bidding strategies in combinatorial
auctions. In Section 3 we present the combinatorial auction
model and the Q-learning model. In Section 4, we describe
the proposed Q-learning based adaptive bidding strategy. In
Section 5, we show some experiment results and make some
discussions, and finally, In Section 6, we conclude this paper
and highlights some possible future work.

2. RELATED WORK
In first-price sealed-bid combinatorial auctions, a bidder

has exponential number of bundles to bid on. The problem
of deciding which bundles to choose and how much to bid
for them are referred to as the bundle strategy and the price
strategy respectively. In this section, we present a survey on
both strategies in combinatorial auctions.

The work of Berhault et al. [7] focus on the bundle strat-
egy in single-round combinatorial auctions. They use com-
binatorial auctions to allocate unexplored terrains to robots
distributed in a large field and propose four bidding strate-
gies: Three-Combination, Smart-Combination, Greedy and
Graph-Cut. Through experiments they show that combi-
natorial auctions achieve better efficiencies than single-item
auctions and generate good results compared to optimal cen-
tralized allocations. They also show the influences of bun-
dle strategies on team performances, where the Graph-Cut
strategy clearly outperforms the other three.

An et al. [1] also study the bundle strategy in single-round
combinatorial auctions. They propose two bundle strategies:
Internal-Based and Competition-Based. Bidders using the
former bid on bundles for which they have higher valuations,
while bidders using the latter bid on bundles for which they
have higher ratios of valuations to their competitors’ accord-
ing to their prior estimations. Simulation results show that
wise bidders using these two strategies outperform naive bid-
ders, who only submit single-item bids. They also analyze

the impact of these two strategies on the auctioneer’s rev-
enues in combinatorial auctions.

Schwind et al. [28] attempt to solve the computational
resource allocation problem with the multi-round combi-
natorial auctions. They study the situation where bidders
use virtual currencies, which are obtained by selling idle re-
sources, to get accesses to computational resources needed
for accomplishing their own tasks. They propose price strate-
gies for two kinds of bidders: impatient bidders and quantity
maximizing bidders. Experiment results show that for the
first kind of bidders, it is better to bid with high prices to
get quick accesses to the resources, while the second kind of
bidders had better bid with low prices and keep on waiting
for resources.

In our previous work [29], we also use the multi-round
combinatorial auctions to distribute computational resources
among a group of users. We propose an adaptive bidding
strategy for bidders in static markets where the ratios of sup-
plies and demands are kept constant during the whole pro-
cedure of the auction. The bidder adopting this strategy can
adjust his profit margin constantly according to his bidding
history, and finally converge to the optimal one even with-
out prior knowledge. Through simulations, we show that the
adaptive strategy outperforms other strategies and generate
high utilities when compared with the optimal strategy in
several static markets.

3. PRELIMINARIES

3.1 Combinatorial Auctions
In this paper, we consider a scenario where the first-price

sealed-bid combinatorial auctions are employed to distribute
computational resources among a group of users. Suppose
m type of resources are provided by a resource manager
(auctioneer) to n users (bidders). For each type of resource
j ∈ {1, 2, ..., m} or M , the capacity cj denotes the total
number of units that are available.

At any time during the auction, each user i ∈ {1, 2, ..., n}
may need certain types of resources to perform his current
task, and for each type of resource j, the maximum number
of units that he can require for is dj . He can submit a sealed-
bid bi = (T, pi(T )), where T = (t1, t2, ..., tm) is a resource
bundle, with tj being the number of units that resource j
is requested by i and satisfying 0 ≤ tj ≤ dj , ∀j ∈ M , and
pi(T ) is a positive number denoting the price i will pay for
getting T .

After receiving bids from all users, the resource manager
solves the winner determination problem, which is given by:

max

n
∑

i=1

∑

T⊆M

pi(T )xi(T )

s.t.

n
∑

i=1

∑

T⊆M,T∋j

xi(T ) ≤ 1 ∀j ∈ M

xi(T ) ∈ {0, 1}

(1)

where xi(T ) = 1 if bidder i is allocated T .
Each winning user i pays pi(T ), gets accesses to the re-

sources, performs his own task, and returns the access con-
trol back to the resource manager. We refer to the process
from the beginning of bids submission to the end of access
control return as a round of a combinatorial auction. Be-
cause the resources are reusable, the combinatorial auction



can be repeated for multiple rounds before closed by the
resource manager.

We list some assumptions used in this paper. First, we as-
sume that the information available to each bidder is his past
bidding information only, e.g., his bidding bundles, bidding
prices and bidding results of wins or loses. Any information
of other bidders is not disseminated. Second, we assume
that the combinatorial auction market is static. A combina-
torial auction market is said to be static if ratios of supplies
and demands for different types of resources are kept con-
stant during whole process of the auction. Finally, we only
consider the simplest case that each bidder only submit a
single bid per round, which means that no bidding language
is used. The winner of the previous round submits a new
bid, while each loser continues to submit the lost bid. How-
ever, a same bid will be dropped if it has been submitted
for τ consecutive rounds, which means that the bidder has
a limited patience on waiting.

3.2 Q-Learning
Q-learning [31][32] is a reinforcement learning [16][30] used

for solving tasks modeled by Markov Decision Processes. It
works by learning an action-value function that gives the
expected utility of taking a given action in a given state and
following a fixed policy thereafter. The most two significant
strengthes of the Q-learning are that it can compare the
expected utility of the available actions without modeling
the environment and it can be used on-line. Q-Learning is
well suited for solving sequential decision problems, where
the utilities of actions depends on a sequence of decisions
made and there exists uncertainty about the dynamics of
the environment.

In the Q-learning framework, the environment which the
agent interacts with, is a finite-state, discrete-time, stochas-
tic dynamic system. The interaction between the agent and
the environment at time t consists of the following sequence:

• The agent senses its state st ∈ S.
• Based on the state st, the agent choose an action at ∈

A.
• With probability of Prst,s∗t

(at), the agent transmits to
a new state of s∗t ∈ S.

• The environment gets a reward r(st, at) as the conse-
quence of agent choosing at at st.

• The reward r(st, at) is passed back to the agent and
the process is repeated.

The objective of the agent is to determine an optimal pol-
icy π∗, that will maximize the total expected discounted
reward, which is given by:

V
π(s) = E{

∞
∑

t=0

β
t
r(st, π(st))|s0 = s} (2)

where E is the expectation operator, 0 ≤ β < 1 is a dis-
counted factor, and π is a policy S → A. V π(s) is often
called the value function of state s.

Recall Prst,s∗t
(at), equation 2 can be rewritten as:

V
π(s) =E{r(s0, π(s0))|s0 = s}+

E{
∞

∑

t=1

β
t
r(st, π(st))|s0 = s}

=R(s, π(s)) + β
∑

s∗

Prs,s∗(π(s))V π(s∗)

(3)

where R(s, π(s)) = E{r(s, π(s))} is the mean of r(s, π(s)).
Equation 3 indicates that the value function of state s can

be represented in terms of the expected immediate reward of
the current action and the value function of the next state.

According to Bellman’s optimality criterion [6], there is al-
ways an optimal policy π∗ that satisfies equation 3. The ob-
jective is to find out the optimal policy without prior knowl-
edge about R(s, π(s)) and Prs,s∗(π(s)). For a policy π, a Q
value is defined as:

Q
π(s, a) = R(s, a) + β

∑

s∗

Prs,s∗(a)V π(s∗) (4)

which is the expected discounted reward for executing action
a at state s and then following policy π thereafter.

Let

Q
∗(s, a) = Q

π∗(s, a)

= R(s, a) + β
∑

s′

Prs,s∗(a)V π∗

(s∗) (5)

Then we can get

V
∗(s) = max

a
[Q∗(s, a)] (6)

Thus the optimal value function V ∗ can be obtained from
Q∗(s, a), and in turn Q∗(s, a) may be expressed as:

Q
∗(s, a)

= R(s, a) + β
∑

s′

Prs,s∗(a)[max
a∗

Q
∗(s∗, a∗)] (7)

where s∗ is the new state reached with probability of Prs,s∗(a)
when doing action a at state s.

The Q-learning process tries to find Q∗(s, a) in a recursive
way using (s, a, s∗, R(s, a)), and the rule is:

Q(s, a) = (1 − α) · Q(s, a) + α · [r(s, a) + β · M] (8)

where M = maxa∗ Q(s∗, a∗) and 0 ≤ α < 1 is the learning
rate.

4. THE Q-LEARNING BASED ADAPTIVE
BIDDING STRATEGY

As described in the above section, each winner need to
pay the price he has bid to get resources, and each loser
pays nothing. The utility of bidder i is computed as follows:

ui(T ) =

{

vi(T ) − pi(T ) if i wins
0 otherwise

(9)

where ui(T ), vi(R) and pi(T ) are his valuation, his winning
utility and his bidding price for bundle T respectively.

When putting a bid on a resource bundle, a rational bidder
will use a positive value which is less than his valuation for
that bundle, otherwise he will get a negative utility when
winning. That is to say, if the valuation of bidder i for
bundle T is vi(T ), then his bidding price pi(T ) is pi(T ) =
(1−pmi)× vi(T ), where 0 < pmi < 1. We refer to pmi here
as bidder i’s profit margin. Combined with equation 9, the
utility of bidder i is hence:

ui(T ) =

{

pmi × vi(T ) if i wins
0 otherwise

(10)

Now, there is a dilemma faced by a bidder on deciding
what profit margin to use when bidding for resource bundles:
bidding with a low profit margin will increase his winning



probability, but decreases his winning utility at the same
time; bidding with a high profit margin will lead to a high
winning utility, but under a high risk of losing. If a bidder
is able to get some prior knowledge about the market en-
vironment, e.g., the ratio of supplies and demands, he may
probably use these information to help his decision. For ex-
ample, a bidder who has prior knowledge about the market
that the there are more supplies of resources than demands
will use a high profit margin when bidding. This is because
in this kind of market, competitions for resources among
bidders are not severe and bidding with a high profit mar-
gin will lead to a high winning utility while the probability
of winning is almost unaffected. However, by our assump-
tion, the information available to each bidder is very limited.
Our aim here is to design an adaptive bidding strategy based
on the principle of Q-learning such that the bidder adopt-
ing it can perceive and responds to the market in a timely
manner even with limited information, and this is the main
contribution of this work.

4.1 Basic Concepts
We first introduce some basic concepts used in the Q-

learning based adaptive bidding strategy.

Definition 1. A bidding record of a bid b for bidder i is
a tuple brb = (Tb, vi(Tb), pmb, waitb, winb), where Tb is the
requested bundle in b, vi(Tb) is i’s valuation for Tb, waitb is
the number of rounds the bidder has kept on waiting before
b is accepted or dropped, and winb is an integer of 0 or 1
indicating the bidding result for b, that winb equals to 1 if
b is finally accepted, otherwise 0.

From the definition, we can see that the maximum value
for waitb is τ and the minimum value for it is 0. In the
former case, the bidder keeps on waiting for τ rounds and
finally dropped the bid, and in the latter case, the bid b is
accepted at the first round when submitted by the bidder.
In addition, the value of winb can also be inferred from the
value of waitb, that winb = 0 if and only if waitb = τ .

Definition 2. A bidding history of a bidder, denoted as
cbhρ, is the sequence of the most recent ρ bidding records.
However, we say that it is consistent if and only if all these
ρ bidding records share the same profit margin.

Suppose ρ > 1, every time when a bid is accepted or
dropped, the bidding history is updated that the oldest bid-
ding record is removed from the bidding history and the
newest one is inserted into the bidding history. However,
the bidding history is said to be consistent only when the
all the containing bidding records use the same profit mar-
gin. If a bidder uses a fixed profit margin for all bidding
records, then each history is consistent; if he never uses the
same profit margin for two consecutive bidding records, then
none of his bidding history is consistent.

Definition 3. A state of a bidder, denoted by s, is the
profit margin currently used by this bidder.

During the auction, the bidder can change his profit mar-
gin by either increasing or decreasing, which will trigger the
transition of his state.

Definition 4. A action of a bidder at the state of s,
denoted by a, is a non-zero real number, by which his state

will transit from s to s∗ = s + a for the following rounds
before the next transition, where the new state s∗ satisfies
that 0 < s∗ < 1.

From the definition, we can see that every time when an
action a is made at the state of s, the bidder will transit
to a new state s∗ because of the non-zero property of a,
which means the bidder will use a new profit margin for
the following rounds before the next transition, with the
constraint that 0 < s∗ < 1.

Definition 5. The reward that a bidder receives from
the environment when making an action of a at the state of
s, denoted as r(s, a), is defined as:

r(s, a) = s
∗ ×

∑

brb∈cbhρ∗ winb
∑

brb∈cbhρ∗ (winb + waitb)
(11)

where s∗ is the new state when choosing the action of a at
the state of s, and cbhρ∗

is the consistent bidding history
formed when the bidder remains at state s∗.

4.2 The Core Algorithm
Based on the basic concepts defined above, we will de-

scribe the core algorithm of the Q-learning based adaptive
strategy. The main idea is that every time when a consistent
bidding history is formed, the bidder computers the reward,
updates the Q-values, and chooses an action according to
the updated Q-values. By doing is iteratively, the bidder
will transit among different states, and finally approach to
the optimal state, which maximizes the bidder’s accumu-
lated utility in the long term run. We first give a notation
and a definition.

Notation 1. We say that state s is θ close to state s∗,
denoted as s <θ s∗, if and only if |s − s∗| < θ.

Definition 6. The Q-value of the state set-action pair
(L, a), where L ⊆ S, is defined as the average Q-values of
pair (s, a), where s ∈ L. That is:

Q(L, a) =
1

|L|

∑

s∈L

Q(s, a) (12)

The adaptive strategy is illustrated in Algorithm 1. We
use s to denote the bidder’s current state, which is obtained
by doing action a′ at state s′, and use s∗ to denote the next
state if action a′ is carried on s. We also use r and r′ to
denote the reward obtained by the bidder when reaching the
state of s′ and s respectively. In addition, we use a variable
of VQ(s,a) to indicate the number of times that the state-
action pair (s, a) has been visited, which is initialized with
0 at the beginning of the algorithm.

The adaptive strategy is illustrated in Algorithm 1.
At the beginning, state set S and action set A are initial-

ized with {sini} and {+θ, −θ} respectively, and then some
variables used in the algorithm are also initialized (line 1
and 2). During the process the auction, the bidder remains
at the current state of s, and transit to a new state every
time when 1) a new consistent bidding history with length
ρ is formed and 2) θ is greater than the threshold value of ǫ.
The bidder first computes the reward of the previous state-
action pair r(s′, a′) according to equation 11 (line 6), then



Algorithm 1 The Core Algorithm

1: S←{sini}, A←{+θ, −θ}
2: r′ = 0, s′ = s = sini, Q(s, +θ) > 0.
3: while auction does not finish do

4: Keep at the state of s
5: if a new cbhρ is formed and θ > ǫ then

6: Set s′ = s and compute r = r(s′, a′).
7: Update Q(s′, a′) with equation 13 and Q(s′, a′)++.
8: q = Q(s, a′), update Q(s, a′) with equation 14 and

Q(s, a′)++.
9: if Decreaseθ() = true then

10: θ = θ/γ
11: if θ /∈ A then

12: A← A
⋃

{+θ,−θ}
13: end if

14: end if

15: if VQ(s,a′) > 0 and VQ(s,−a′) > 0 then

16: a = arg maxa∗∈A,|a∗|=θQ(s, a∗)

17: else if VQ(s,a′) = 0 and VQ(s,−a′) = 0 then

18: a = arg maxa∗∈A,|a∗|=θ·γQ(s, a∗)/γ
19: else

20: if r ≥ r′ then

21: a = a′

22: else

23: a = −a′

24: end if

25: end if

26: Q(s, a′) = q and Q(s, a′)−−.
27: s = s + a, r′ = r
28: if s /∈ S then

29: S ← S
⋃

{s}
30: end if

31: FillUpQValues ().
32: end if

33: end while

updates the Q-values for pairs (s′, a′) and (s, a′) using the
following equations (line 7 and 8):

Q(s′, a′) =







(1 − α) · Q(s′, a′) + α · [r(s′, a′) + β · M]
if VQ(s′,a′) > 0

r(s′, a′) otherwise

(13)

where M = maxa Q(L, a) for L = {s#|s# <θ s} and

Q(s, a′) =







(1 − α) · Q(s, a′) + α · [r(s′, a′) + β · M]
if VQ(s,a′) > 0

r(s′, a′) otherwise

(14)

where M = maxa Q(L, a) for for L = {s#|s# <θ s∗} and
s∗ = s + a′.

Note that here we save the value of Q(s, a′) to a variable
of q before updating. This is because that actually, r(s′, a′)
should be used to update Q(s′, a′) rather than Q(s, a′). Up-
dating Q(s, a′) with r(s′, a′) means that we transcendentally
believe that doing action a′ at the state of s will bring the
bidder the same reward as that of doing action a′ at the
state of s′. The updated Q(s, a′) will be used for deciding
the action at the state of s, after which it is restored to
original value of q (line 26).

Then the bidder check the decreasing condition for θ and
decrease its value if necessary (line 9 to 14), and choose an
action according to the following rules (line 15 to 25): I)
if both state-action pairs of (s, a′) and (s,−a′) have been
visited before, the bidder will choose the action with the

higher Q-value; II) if neither of them have been visited be-
fore, which means that θ has just been decreased, the bidder
will first choose the action assuming that decrease of θ does
not happen, and then decrease the chosen action by γ; III)
otherwise, if r ≥ r′, which means that doing action a′ has
led to an increase on reward, then we continue this action;
else if r < r′, which means that doing action a′ has led to a
decrease on reward, then we opposite oppose this action.

After that, the bidder transits to the new state according
to the selected action (line 27), updates the state set S if
necessary (line 28 to 30) and call the function of FillUpQ-
Values (line 31), by which a transition of state has finished.
Such a transition will be repeated until θ is smaller than a
threshold ǫ, after which the bidder will remain at that state
for all subsequent rounds until the auction finishes.

Next, we will introduce the two functions of Decreaseθ
and FillUpQValues in detail.

4.3 Function of Decreaseθ
The value of θ is decreased to make sure that the bidder’s

state can be more approached to the optimal state.

Definition 7. The state history, which is denoted as sh,
is a sequence of λ real numbers, in which the kth element,
shk, is the bidder’s kth most recent state.

Definition 8. The θ history, denoted as θh, is a se-
quence of λ real numbers, in which the kth element θhk, is
the action used when when the bidder transits from shk−1

to shk.

Notation 2. We say that s ⇒ π if 1) s < π and the next
action of the bidder a > 0 or 2) s > π and the next action
of the bidder a < 0.

The function of Decreaseθ is given in Algorithm 2. At
first, we compute the mean value of the elements in sh (line
1), then for each element we check whether the distance
between shk and mean is no more than θhk and use a 0 or 1
variable ωk to indicate the result (line 2 to 7). On deciding
whether to decrease θ, we check three conditions (line 8):
the first one checks whether at least φ elements in sh are
close to mean in terms of the action chosen then, by which
we regard mean as an approximation of the optimal state,
and the second and the third ones together guarantee that
the optimal state can be further approached if θ is decrease.
If all conditions hold, true is returned.

Algorithm 2 Function: DecreaseΘ

1: Compute mean = 1
λ

∑λ
k=1 shk.

2: for k = 0 to λ do

3: ωk = 0
4: if |shk −mean| ≤ θhk then

5: ωk = 1
6: end if

7: end for

8: if
∑λ

k=1 ωk ≥ φ and ω1 = 1 and s⇒ mean then

9: return true
10: end if

4.4 Function of FillUpQValues
As the name denotes, we fill up the Q-values for some

state-action pairs in this function according to others values



in the Q-matrix. This is because according to our defini-
tion of reward in equation 11, for two state-action pairs of
(s1, a1) and (s2, a2), their rewards, and also their Q-values
if combined with the definition in equation 7, should be the
same if s1 + a1 = s2 + a2 when ρ∗ is infinitely large. In ad-
dition, the Q-values for some pairs should be close to those
for some others, e.g. the Q-values for state-action pairs of
(0.8, 0.04) and (0.75, 0.1) should be close to each other, al-
though 0.8 + 0.04 6= 0.75 + 0.1.

Based on the above ideas, we illustrate the function of
FillUpQValues in Algorithm 3. For each state in s ∈ S
and each action in a ∈ A, if its Q-value Q(s, a) has not been
visited before, then we compute the state set whose elements
are θ close to s+a (line 4). If such state set is not empty, we
first approximate the Q-value of the state-action pari (s, a)
with that of this state set-action pair (L, a) (line 6), and
then add the value of VQ(s,a) by 1 (line 7).

Algorithm 3 Function: FillUpQValues

1: for each s ∈ S do

2: for each a ∈ A do

3: if VQ(s,a) = 0 then

4: L = {s#|s# <θ s + a}
5: if |L| > 0 then

6: Q(s, a) = Q(L, a)
7: VQ(s,a)++.
8: end if

9: end if

10: end for

11: end for

5. SIMULATIONS
To evaluate the performance of the Q-learning based adap-

tive strategy, we conducted two sets of experiments. In the
first set of experiments, we approximate the optimal strat-
egy in different types of markets with a set of fix strategies.
A fix strategy is a strategy that keeps the bidder remaining
at a same state during the process of the auction. In the
second set of experiments, we compare the performances of
the adaptive strategy (AS), the Q-learning based adaptive
strategy(Q-AS), the random strategy (RS), and the optimal
strategy (OPT). The Adaptive strategy is a strategy that we
proposed in our previous work [29], which also achieve good
results in different markets. The random strategy is a strat-
egy that the bidder randomly transit among different states
for different bidding records. The optimal strategy is the
strategy that artificially generated according to the results
of the first set of experiments. As the adaptive strategy also
performs well in different markets, we compare the adap-
tive strategy and the Q-learning based adaptive strategy in
detail. In addition, we also show the typical convergency
process of the state of the bidder who uses the Q-learning
based adaptive strategy in a single run in different markets.

5.1 Experiment Setup
In our experiments, each combinatorial auction is repeated

for 500 rounds and an iteration of 500 rounds is referred to
as a run. Motivated by other works [1][28], in each run, we
have one test bidder using strategy X and others bidding
their true valuations. Here, X can be the adaptive strategy,
the random strategy, the Q-learning based adaptive strat-
egy or the optimal strategy. The performances of different

strategies are compared through accumulated utilities of the
test bidder in 100 runs.

Settings of these experiments are as follows. A group of
n = 60 users are competing for m = 4 types of resources
provided by a resource provider. For each bidder, numbers
of units that he can request for different resources are in-
tegers randomly drawn from uniform distributions of [0, 3],
[0, 2], [0, 2] and [0, 1]. At the beginning of each run, each
bidder initializes his valuations for resource bundles. His
valuations for single unit of different resources are real num-
bers randomly drawn from uniform distributions of [3, 6],
[4, 8], [4, 8] and [6, 10]. For a resource bundle T , which
contains more than one type of resource, a synergy seed,
syn(T ) is randomly drawn from a uniform distribution of [-
0.2, 0.2], and his valuation for that bundle is the product of
sum valuations of individual resources and 1 + syn(T ). Pos-
itive synergy seed means there are complementarities among
resources and negative synergy seed means there are substi-
tutabilities among them.

In our settings, because the expected total demands of
users are fixed, we modify the supplies of resources and use
a capacity factor cf to denote different market types: if the
ratio of total supplies and demands in the market is equal
to cf : 1, we say that this is a cf : 1 market. For example,
when the capacities of resources are 90, 60, 60 and 30, the
total supplies and expected demands are equal. In this case,
we say that the market is a 1 : 1 market.

Parameters used in experiments are showed in Figure 1.

Parameter Value Description
τ 3 Maximum waiting round
ρ 5 Length of a bidding history

sini 0.05 Bidder’s initial state
θ 0.1 Initial value for θ

ǫ 0.01 Threshold for θ to stop transition
λ 10 Length of a profit margin history
φ 7 Threshold to decrease θ

γ 1.4 Degree of decrease for θ

Figure 1: Parameters used in experiments

In addition, we use fixed learning rate of α = 0.2 and
discount rate of β = 0.1.

5.2 Experiment Results and Analysis
In the first set of experiments, our aim is to approximate

the optimal strategy in different types of market with a set
of fixed strategies. Here, we use 19 different fixed strategies
in which the bidder’s state is kept at s1, s2, ... s19, where
sl = l × 0.05 for l = 1, 2, ...19.

Figure 2 shows the results for the first set of experiments.
Each red point represents the fixed strategy that performs
best in that type of market, e.g. the red point (0.7, 0.2)
means that in the 0.7 : 1 market, the fixed strategy that
keeps the bidder at the state of 0.2 performs best among all
fixed strategies. From this figure, we can see that the less
competitive the market is for resource consumers, the higher
value of the state that the bidder is kept at. For example, in
the 1.2 : 1 market, where bidders face few competitions from
others, the strategy that the bidder’s state is kept at 0.95
performs best; while in the 0.5 : 1 market, where bidders
face fierce competitions from others, the strategy that the
bidder’s state is kept at 0.15 performs best. This accords



with our intuition that in a market short of competition,
it is better for a bidder to remain at the state with a high
profit margin to gain a high utility, while in a market full of
competition, it is better for him to remain at the state with
a low profit margin to beat others.

Figure 2: Estimation of The Optimal Strategy

Based on these red points, we estimate the optimal strate-
gies in different markets with a regression method. We use
a piecewise function sopt(cf) to fit the red points, which is
given by:

sopt(cf) =

{

a × bcf + c cf < d
e cf ≥ d

(15)

The result of the regression is that a = 0.0001382, b =
2561.574, c = 0.1683, e = 0.95 and d = 1.109873, which is
shown by the blue line in Figure 2. We can see that it fits
the red points very well, and in the following, when talking
about a market with type cf , we will use the function value
as the optimal state.1

Figure 3 shows the results for the second set of experi-
ments. Here, performances of three other different strategies
are compared through the ratio of the accumulated utilities
achieved by them and that achieved by the optimal strategy
generated according to equation 15. Note that in equation
15, the maximum value for state that the bidder can remain
at is 0.95, so to make the comparison fair, we also set up the
same upper bound of 0.95 for these three strategies.2

From Figure 3, we can see that both the adaptive strat-
egy and the Q-learning based adaptive strategy perform
well, and outperform the random strategy much in different
market environments. What is more, the Q-learning based
adaptive strategy has an improvement on performances to
the adaptive strategy from 2% to 5%. As described above,
the optimal strategy artificially generated according to a set

1Here, an exponential function is used as the left part of
the regression function, and actually, it does not matter too
much if we use other functions. This is because in the second
set of experiments, we never use equation 15 to estimate the
optimal strategy in a market whose cf falls out of [0.5, 1.2],
and the estimated optimal strategy will not vary much if
other fit functions are used.
2Actually, setting this upper bound does not affect the per-
formance of the adaptive strategy. This is because without
this constraint, when the optimal profit margin is a value in-
finitely close to 1, the profit margin generated by the adap-
tive strategy is also very close to 1, and the bidder using the
adaptive strategy does not losing utility at all.

Figure 3: Utilities achieved by the test bidder using

strategies of AS, Q-AS and RS

of fixed strategies, so the bidder using this strategy can be
regarded as having prior knowledge about the market envi-
ronment and is able to remain at the optimal state to obtain
a high utility. On the contrary, the bidder using the random
strategy can be regarded as not having any prior knowledge
about the market and will transit randomly among differ-
ent state for different bidding records. Therefore, it is very
impressive that performances of the adaptive strategy and
the Q-learning based adaptive strategy can be as high as
about 90% of that of the optimal strategy in different mar-
ket environments. As the bidder using the adaptive strategy
or the Q-learning based adaptive strategy does not need to
know the market type in advance, we can draw the conclu-
sion that the bidder using either strategy performs well in
different markets, even without any prior knowledge.

To explore the reason that the Q-learning based strategy
outperforms the adaptive strategy, we conduct the following
experiment. We test the performances of another strategy
Q-AS-NoF, which is the same as the Q-learning based adap-
tive strategy except that we do not call the FillUpQValues
function in the algorithm (line 31), and show its performance
with the green line in Figure 3. Recall the algorithm of the
adaptive strategy, we find that it shares the same principle
with Q-AS-NoF but with a few differences, and it is also
reasonable that it performs comparably with Q-AS-NoF.
Summarizing the above results, we can come to a conclu-
sion that the function FillUpQValues mainly contributes to
the improvement of the Q-learning based adaptive strategy
on performances to the adaptive strategy, by which the bid-
der will make correct choices on his action according to the
historical information.

We also compare the performances of the adaptive strat-
egy and the Q-learning based adaptive strategy in each run
in eight types of market from 0.5:1 to 1.2:1, whose results
are shown in Figure 4. For each type of market, the di-
agonal red line is a line that a point on which means the
performances of the adaptive strategy and the Q-learning
based adaptive strategy are the same, and the X-coordinate
and Y-coordinate are the utilities achieved by the test bid-
der using the adaptive strategy and the Q-learning based
adaptive strategy respectively. From Figure 4, we can see
that for each type of market, the points falling into the left
part of the line are more then those falling into the right
part of the line, which means that in most cases, the per-
formance of the Q-learning based adaptive strategy is bet-



Figure 4: Comparison of Q-AS and AS in a single run in different markets

ter than that of the adaptive strategy. However, there are
still cases in which the adaptive strategy outperforms the
Q-learning based adaptive strategy, which needs further ex-
plorations in future works.

In addition, we also show the typical convergency process
of the state of the bidder who uses the Q-learning based
adaptive strategy in a single run in four types of market:
0.6:1, 0.8:1, 1.0:1 and 1.2:1. For each type of market, the
horizontal line represents the optimal state that the bidder
should remain at in that type of market.

Figure 5: The typical convergency process of the

bidder’s state in a single run in different markets

From Figure 5, we can see that for each type of market,
the transited state of the Q-learning based adaptive strat-
egy has finally converged to the optimal state in that market
type, which means the Q-learning based adaptive strategy is
capable of learning and adapting in different markets. In ad-
dition, the convergence speed is fast: for each market type,
the test bidder’s state has converged at about the 100th
round. The bidder keeps remaining at that state in subse-
quent rounds, which guarantees the Q-learning based adap-
tive strategy can generate a very good utility compared to
the optimal strategy.

6. CONCLUSIONS
In this paper, we propose a Q-Learning based adaptive

bidding strategy in combinatorial auctions. The bidder adopt-
ing this strategy can transit among different states accord-
ing to bidding histories and finally converge to the optimal
state. Experiment results show that 1) the Q-learning based
adaptive strategy performs fairly well compared to the opti-
mal strategy and the outperforms the adaptive strategy and
the random strategy in different market environments. 2)
the bidder using the Q-learning based adaptive strategy can
generate a high utility when compared with that generated
by the optimal strategy, even without any prior knowledge
about the market. 3) the bidder using the Q-learning based
adaptive strategy is capable of learning and adapting, and
the convergency speed is fast.

Besides more extensive empirical evaluations, this work
can be extended in the following several directions. First,
although generally the Q-learning based adaptive strategy
outperforms the adaptive strategy, there are still cases in
which the adaptive strategy performs better. We are in-
terested in exploring such situations in detail and trying to
improve the Q-learning based adaptive strategy. Second, in
this work, we use the fixed value for learning rate and dis-
count rate. Next step, we want to make them also adaptive
within our algorithm, such that the Q-learning based adap-
tive strategy can be used in dynamic markets, where re-
source capacities and the number of bidders vary over time.
Another direction is that, as we have mentioned above, the
Q-Learning based adaptive bidding strategy is not restric-
tive to combinatorial auctions. Actually, for any type of
auction, maybe even more generally, any type of repeated
game, this strategy can help the player to behave strategi-
cally and achieve good performance in the game if the reward
function is appropriately defined. In the future, we are in-
terested in applying this strategy into other type of auction
and analyze its performance. Finally, in this paper, we use
the single-agent model, which means that only one bidder
uses the Q-Learning based adaptive strategy and the oth-
ers fix their strategies. An interesting problem is what will
happen when more bidders use this strategy simultaneously.
Our guess is that when all the bidders adopt this strategy,
a Nash Equilibrium will be achieved.
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