
Multiplicative Algorithms for Constrained Non-negative Matrix Factorization

Chengbin Peng∗, Ka-Chun Wong†, Alyn Rockwood∗, Xiangliang Zhang∗,Jinling Jiang‡, David Keyes∗
∗Computer, Electrical and Mathematical Sciences & Engineering,

King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia,
{chengbin.peng, alyn.rockwood, xiangliang.zhang, david.keyes }@kaust.edu.sa

†Department of Computer Science, University of Toronto, Toronto, Canada, wkc@cs.toronto.edu
‡ Department of Computer Science, Aalborg University, Aalborg, Denmark, jinling@cs.aau.dk

Abstract—Non-negative matrix factorization (NMF) provides
the advantage of parts-based data representation through
additive only combinations. It has been widely adopted in
areas like item recommending, text mining, data clustering,
speech denoising, etc. In this paper, we provide an algorithm
that allows the factorization to have linear or approximatly
linear constraints with respect to each factor. We prove that
if the constraint function is linear, algorithms within our
multiplicative framework will converge. This theory supports
a large variety of equality and inequality constraints, and can
facilitate application of NMF to a much larger domain. Taking
the recommender system as an example, we demonstrate
how a specialized weighted and constrained NMF algorithm
can be developed to fit exactly for the problem, and the
tests justify that our constraints improve the performance for
both weighted and unweighted NMF algorithms under several
different metrics. In particular, on the Movielens data with
94% of items, the Constrained NMF improves recall rate 3%
compared to SVD50 and 45% compared to SVD150, which
were reported as the best two in the top-N metric.

Keywords-Non-negative Matrix Factorization; Linear Con-
straints; Multiplicative Algorithm;

I. INTRODUCTION

Non-negative matrix factorization (NMF) [1], [2] has been

proposed for more than a decade. Unlike traditional matrix

factorization methods, in this algorithm no entries of the

matrices are less than 0. NMF decomposes a non-negative

matrix approximately into the product of two lower-ranked

non-negative matrices. One advantage is that it enables

parts-based representation by additive only combinations [3].

NMF has better clustering capabilities as well compared

to traditional K-means [4]. A typical approach to NMF is

iterative: alternatively fix one of the two factors and calculate

the other in successive iterations [1], [2]. The simplicity and

efficiency of this approach has made it widely adopted in

areas such as face recognition [3], text mining [3], [5], data

clustering [4], graph mining [6], [7], privacy protection [8],

speech denoising [9], item recommending [10], [11], etc.

Specifically, Ref. [12] proposed a label based constraint on

the objective function of the factorization algorithm. Ref. [4]

introduced orthogonal nonnegative matrix tri-factorization,

in which the tightness of the constraint is fixed by the algo-

rithm. However, different application domains usually have

different requirements for the NMF algorithm. Therefore, an

algorithm allowing problem-oriented constraints is eagerly

sought. In this research, we introduce a framework that can

accept a variety of equality and inequality constraints in the

NMF algorithms, and the tightness of these constraints is ad-

justable. We prove that if the constraint functions are linear,

algorithms following our the multiplicative framework must

converge. This property can greatly facilitate the adoption of

NMF algorithm in many application fields requiring different

variations of constraints.

As an example within the framework, we developped

two special constraints in Weighted and Constrained Non-

negative Matrix Factorization (WC-NMF) based on W-NMF

[11] and the Constrained Non-negative Matrix Factorization

(C-NMF) based on NMF [1]. These two constraints enhance

the formula by maintaining the upper bound of the missing

entries, as well as approximately orthogonalizing factor

matrices.

We use several metrics for comparison in the recom-

mender system example. Our C-NMF and WC-NMF al-

gorithms significantly and stably improve the performance

of NMF algorithms in top-N metric, and slightly improve

them in terms of Root-Mean-Square Error (RMSE) [13]

and Normalized Mean Absolute Error (NMAE) [11], [14]

using a squeezed lower-bound strategy. On the Movielens

data without the 6% most popular items, C-NMF achieves a

much better result in top-N metric than SVD50 and SVD150,

the most predictive method in Ref. [15].

The remainder of the paper is organized as follows:

Section II describes the algorithm of WC-NMF, and provides

the convergence guarantee for a group of NMF problem with

a variety of linear constraints. The implementation example

and the performance comparison are in in Section III and

Section IV respectively. Section V summarizes and looks

ahead for C-NMF and WC-NMF. Notations are defined in

Table I.

II. WEIGHTED AND CONSTRAINED NON-NEGATIVE

MATRIX FACTORIZATION (WC-NMF)

A. Problem Definition

A typical dimension reduction problem through non-

negative matrix factorization (NMF) can be written as V ≈
WH , where entries in W and H are all non-negative.

2012 IEEE 12th International Conference on Data Mining

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.106

402

2012 IEEE 12th International Conference on Data Mining

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.106

1068

Table I
NOTATIONS

Notation Definition Example & Remark

{·}i,j
The value of entry
(i, j) of the anterior
matrix.

Similarly, {·}i is the ith element
for a vector.

× Element-wise multi-
plication.

For vectors and matrices.

Vinculum, element-
wise division.

For vectors and matrices.

[·]+ The positive part of
the anterior matrix.

Given a real matrix A, A+

is the matrix whose entries are

A+i,j =

{
Ai,j , if Ai,j > 0

0, otherwise

If h is a vector, ∇F (h)+ and
∇2F (h)+ are the positive parts of
the gradient vector and the hessian
matrix respectively.

[·]− The negative part of
the anterior matrix.

Given a real matrix A, A− is the
matrix whose entries are

A−
i,j =

{
−Ai,j , if Ai,j < 0

0, otherwise

so that A = A+ −A−. Similarly,
∇F (h)− and ∇2F (h)− are the
corresponding negative parts.

[·](i)
Different values
of i indicate
different variables or
functions.

A(1) and A(2) could be different
matrices, but of the same meaning.

|| · || Matrix norm.
For simplicity, we use Frobenius
norm in this paper.

∇xF (·)
The derivative of
function F with
respect to matrix x.

If F (x) = ||Ax + B||2,
∇xF (x) = AT (Ax + B). If
F (x) = ||xA+B||2,∇xF (x) =
(xA + B)AT .

Often, the matrix V contains some unknown entries, and

a binary matrix M can be adopted whose entry equals 0

only if the corresponding entry of V is unknown. Therefore,

the original factorization becomes M × V ≈ M × (WH),
which can be solved by Weighted Non-negative Matrix

Factorization (W-NMF) [11]. We note that NMF is a special

case of W-NMF in which all the entries of M are 1.

Assume the data matrix is V ∈ R
m×n, and we want

to represent it by the product of two lower dimensional

matrices W ∈ Rm×k and H ∈ Rk×n.
The NMF problem with weighting is

min
W≥0,H≥0

||M × [V − (WH)]|| (1)

in which M ∈ Rm×n, and ≥ is an element-wise operator.

Ref. [11] provides the iterative formula, and we demon-

strate herein that as a special case of our algorithm, it is a

method with convergence guaranteed.

B. Algorithm

Let J(W,H) = ||M × [V − (WH)]||2. Suppose we have
a multiple constrained NMF algorithm as follows.

Algorithm
Input: Training set V , Integer k, Constraint function C

Output: Factorization result W and H
1. initialize W and H;

2. repeat
3.

W ← arg min
W≥0

J(W,H)

s.t. C(i)(W,H) = 0, i = 1, 2, 3, ...
(2)

H ← arg min
H≥0

J(W,H)

s.t. C(i)(W,H) = 0, i = 1, 2, 3, ...
(3)

4. until converged
By modifying the constraint function slightly, the La-

grange can be written as F (W,H) = J(W,H) +∑
i λi||C(i)||2. Hence, we have the following update rules

in each iteration:

W ←W × ∇WJ(W,H)− +
∑
i λi[∇W ||C(i)||2]−

∇WJ(W,H)+ +
∑
i λi[∇W ||C(i)||2]+ (4)

H ← H × ∇HJ(W,H)− +
∑
i λi[∇H ||C(i)||2]−

∇HJ(W,H)+ +
∑
i λi[∇H ||C(i)||2]+ (5)

If there are inequalities in the algorithm, we can use a non-

negative slackness variable S to transform the inequality to

be equality. For example, given the constraint C(j) ≤ 0, the
corresponding S should satisfy C(j) + S(j) = 0, so C(j) in

Eq. (4) and (5) should be replaced by C(j) + S(j) with an

additional update rule in each iteration:

S(j) ← S(j) × [C(j)]−

[C(j)]+ + S(j)
(6)

In practice, we should also add a very small epsilon to

the numerator and the denominator in the update rules to

maintain the numerical stability.

C. Convergence Analysis of the Multiplicative Algorithms

In this section, we provide a convergence proof for

the above multiplicative algorithm. In this algorithm, the

objective functions F can be written as a quadratic func-

tion.Without loss of generality, let the argument h be a

column vector of length k. If parameter matrix of the

quadratic term is non-negative, we have

F (h) = hTY +h+ Z+h− Z−h (7)

where Y +, Z+ and Z− are all non-negative matrices, and

especially, as Y is a covariance matrix, Y + is symmetric.

Then we can divide the gradient of F into two parts:

∇F (h) = ∇F (h)+ −∇F (h)− (8)

where ∇F (h)+ = 2Y +h+ Z+ and ∇F (h)− = Z−.
Now we need to prove the following theorem.

4031069

Theorem 1: The objective function F (h) in Eq. (7) is

non-increasing if its argument h is updated according to the
following rule:

ht ←ht−1 × ∇F (ht−1)−

∇F (ht−1)+
(9)

Proof:
In the proof, we use diag(·) to represent a square matrix

whose main diagonal is the vector inside the parentheses.

Assume v is an arbitrary vector of length k. Then we have

vT [diag(
∇F (h)+

h
)−∇2F (h)+]v

=

n∑

i=1

(v2i

∑n
j=1 2Y +

i,jhj + Z
+
i

{h}i)−
n∑

i=1

n∑

j=1

2(viY
+
i,jvj)

≥2

n∑

i=1

(v2i

∑n
j=1 Y

+
i,jhj

{h}i) − 2
n∑

i=1

n∑

j=1

(viY
+
i,jvj)

≥0

(10)

where the last step can be proved by multiplying diag(h)
on both side of the formula (without changing the positive

definiteness), and obtain a quadratic expression.

Consequently, as ∇2F (h)− is always a zero matrix ac-

cording to the definition in Eq. (7), we have

vT [diag(
∇F (h)+

h
) −∇2F (h)]v

=vT [diag(
∇F (h)+

h
) −∇2F (h)+]v + vT [∇2F (h)−]v

≥0
(11)

which insures that the matrix diag(∇F (h)
+

h) − ∇2F (h) is

positive semi-definite.

Then we can use the idea of an auxiliary function [1] for

further results. First we define a function

G(h(1), h(2)) = F (h(2)) + (h(1) − h(2))T∇F (h(2))

+ 0.5(h(1) − h(2))T diag(∇F (h(2))+

h(2)
)(h(1) − h(2))

(12)

By comparing it with Taylor series of the objective function

F (h(1)) =F (h(2)) + (h(1) − h(2))T∇F (h(2))

+ 0.5(h(1) − h(2))T∇2F (h(2))(h(1) − h(2))
(13)

and according to the result in Eq. (11), we find it always

holds that

G(h(1), h(2)) ≥ F (h(1)) (14)

It is also easy to see that

G(h(2), h(2)) = F (h(2)) (15)

Therefore, G(h(1), h(2)) is an auxiliary function for

F (h(1)). Hence, F (h) is non-increasing by taking the fol-

lowing update rule

ht ← argmin
h
G(h, ht−1) (16)

according to the results that F (ht) ≤ G(ht, ht−1) by

Eq. (14), G(ht−1, ht−1) = F (ht−1) by Eq. (15) and

G(ht, ht−1) ≤ G(ht−1, ht−1) by Eq. (16), similar as

Lemma 1 in Ref. [1].
Finally, according to the definition of G, we have

ht ←ht−1 − [diag(
∇F (ht−1)+

ht−1
)]−1∇F (ht−1)

=ht−1 × ∇F (ht−1)−

∇F (ht−1)+

(17)

Iterative methods described in Eq. (23), (26), and (28) are

in the framework of our updating rule, but in element format

{ht}a ← {ht−1}a × {∇F (ht−1)−}a
{∇F (ht−1)+}a (18)

If the parameter matrix Y of the quadratic term has

negative entries, a non-negative slackness may be added to

both positive and negative parts of the matrix so the that

update rule can still work according to Eq. (11).
When the argument h is a row vector, the proof is almost

the same by simply considering hT as an argument for

function F . The vector version can also be extended easily

to a matrix version.

III. SAMPLE IMPLEMENTATIONS

In this section, we give two sample constraints for the

weighted and constrained NMF problem. The first is a matrix

of upper bounds U for entries in V . The second is to require
H to be an orthogonal matrix: HHT = I .
These two constraints can be applied independently, by

choosing appropriate parameters. The first constraint should

be derived from the property of the problem itself, while

the second is established for the ease of analyzing the basis

components.

Algorithm WC-NMF
(∗ Weighted and Constrained Non-negative Matrix ∗)
(∗ Factorization ∗)
Input: Training set V , Integer k, Upper bound U
Output: Factorization result W and H
1. initialize W and H;

2. repeat
3.

W ← arg min
W≥0

||M × [V − (WH)]||2

s.t. WH ≤ U
(19)

H ← arg min
H≥0

||M × [V − (WH)]||2

s.t. HHT = I
(20)

4041070

4. until converged
In contrast to Eq. (20), in Ref. [4] the orthogonalization

part constrains only the trace, while in our algorithm, the

orthogonalization takes the whole matrix into consideration.

Theoretically, compared to NMF algorithms without con-

straints [1], [11], the computing time is almost doubled.

If only taking the orthogonalization into account, the time

complexity is similar to the algorithm in Ref. [4].

A. Procedure to Calculate H in Eq. (20)

By rewriting the optimization problem in Lagrangian

function, we get the following expression with a Lagrange

multiplier [4] equal to 0.5λH :

H =arg min
H≥0

||M × [V − (WH)]||2 + 0.5λH ||HHT − I||2
(21)

We approximate the quadratic term in the constraint by a

linear expression HHT(t−1) − I where the notation H(t−1)
represents the value of the unknown variable H in the

previous iteration. This approximation can be interpreted as

an expectation maximization method [11].

The derivative of the second term is

d(0.5λH ||HHT(t−1) − I||2)
dH

=λHHH
T
(t−1)H(t−1) − λHH(t−1)

(22)

For simplicity, by omitting the subscript (t−1) for H(t−1)
and following the approach of Eq. (5), we get

{H}a,i ←{H}a,i {WT (M × V) + λHH}a,i
{WT [M × (WH)] + λHHHTH}a,i

(23)

B. Procedure to Calculate W in Eq. (19)

First, we use a slackness variable S for the inequality in

the constraints of Eq. (19), so we have a new but equivalent

expression:

W = arg min
W≥0,S≥0

||M× [V −(WH)]||2, s.t. WH+S = U

(24)

In terms of the Lagrange function, it is

W =arg min
W≥0,S≥0

||M × V −M × (WH)||2

+ 0.5λW ||WH + S − U ||2
(25)

Similarly, we have a multiplicative expression for W

{W}i,a ←{W}i,a {(M × V)HT + λWUH
T }i,a

{M × (WH)HT + λW (WH + S)HT }i,a
(26)

As we want to minimize the error term due to the

slackness, we have

S =argmin
S≥0

||WH + S − U || (27)

Table II
LIST OF ALGORITHMS FOR COMPARISON

Without Weights
Algorithm Name Description

C-NMF
Our algorithm, NMF only with constraints but
no weights.

Pure-NMF Pure NMF algorithm [1].

EM-NMF

Expectation maximization with NMF [11]. In
the test, the numbers of outer and inner itera-
tions are both 10, and pure-NMF [1] is used
for inner iteration.

Orth-NMF
NMF with orthogonalization, initialized by K-
means [4].

Pure-SVD
Recommender simply by SVD decomposition
[15].

With Weights
Algorithm Name Description

WC-NMF
Our algorithm, NMF with weights and con-
straints.

W-NMF Weighted NMF [11].

Hybrid NMF
run EM NMF for initialization, and then run
W-NMF [11].

Hence,

{S}i,a ← {S}i,a {U}i,a
{WH + S}i,a (28)

Usually, W and H are randomly initialized, but when S
is involved and initialized by S = U −WH , W need to be

scaled to make sure that U ≥WH .

IV. APPLICATION ON MOVIELENS RATING DATA

Movielens data was adopted by a number of researchers

as a benchmark for their work [10], [11], [15], [16]. In this

work, we used the data set called MovieLens 100k 1, which

consists of 100,000 ratings from 1000 users on 1700 movies.

The smallest rating value in the data set is 1, and the largest

is 5. During the test, these data were divided into two sets:

about 98.6% for training, and about 1.4% for testing set.

We listed the algorithms for comparison in Table II.

There are also some implementation details. The number of

iterations are all 30, if not explicitly indicated. In C-NMF,

we simply use Algorithm WC-NMF by setting all the entries

in W to be 1, with U = 5, λW = 1e − 4 and λH = 1. In
WC-NMF, we use the full version of Algorithm WC-NMF
where W serves as a mask, with U = 5, λW = 1e − 4
and λH = 0.1. Each result is averaged from running for 10

times. In each run, the initial values for different algorithms

are the same.

There are several metrics for measuring recommender

system algorithms. Among those, the top-N method mea-

sures the probability that a 5-score testing movie can be in

the list when obtaining the N top-ranked movies according

to the algorithm [15]. This measurement has its practical

significance, because a recommender system is usually asked

to provide a few items that appeal to the user. The traditional

1http://www.grouplens.org/node/73

4051071

2 20 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

 k

R
ec

al
l a

t
N

 =
 2

0

C−NMF
Pure NMF
EM−NMF
Orth−NMF
SVD
WC−NMF
W−NMF
Hybrid−NMF

(a) top-N, at N = 20

2 20 50 100 150 200
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 k

N
M

A
E

C−NMF
Pure NMF
EM−NMF
Orth−NMF
SVD
WC−NMF
W−NMF
Hybrid−NMF

(b) NMAE versus k

Figure 1. Tests on Data

element-wise comparisons like RMSE and NMAE are made

as well.

Generally, the algorithms without weights perform better

in top-N metric, while those with weights perform better in

RMSE and NMAE.

In top-N when k ≥ 50, our algorithm C-NMF performs

better than all the other methods, including pure SVD, the

best algorithm at k = 50 in Ref. [15]; when k ≥ 20,
our algorithm WC-NMF performs much better than other

weighted algorithms. In NMAE (Fig. 1b) and RMSE, among

the algorithms without weights, when k ≥ 50, C-NMF is the

best, while the performances of the weighted algorithms are

similar.

Ref. [15] claims that some popular items may mislead the

top-N result. In their Movielens data set, about 6% of the

most popular movies containing 33% of the total ratings,

and when these movies are removed, SVD performs the

best when k = 50 and k = 150 respectively. Therefore,

we launch another test where we remove the hottest movies

containing 33% of the total ratings, and used the same

parameters as in the first test. From Fig. 2(a) and 3, we can

see that in top-N, C-NMF still performs better than all the

2 20 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

 k

R
ec

al
l a

t
N

 =
 2

0

C−NMF
Pure NMF
EM−NMF
Orth−NMF
SVD
WC−NMF
W−NMF
Hybrid−NMF

(a) top-N, at N = 20

2 20 50 100 150 200
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 k

N
M

A
E

C−NMF
Pure NMF
EM−NMF
Orth−NMF
SVD
WC−NMF
W−NMF
Hybrid−NMF

220 50 100 150 200
0.155

0.16

0.165

 k

(b) NMAE versus k when Lower Bound is Squeezed

Figure 2. Tests on Data with Most Popular Items Removed

others including SVD when k ≥ 50. Especially compared

to SVD in Fig. 3, it outperforms 3% at k = 50 and 45%

at k = 150 when N = 20. Also in top-N, WC-NMF is the

best within the weighted category.

To fully utilize the advantage of our upper-bound con-

straint, we have also tried to squeeze the lower bound of the

data to be 0. With appropriate parameter setting, it achieves

a similar result.

In summary, if top-N metric is emphasized, C-NMF is

an ideal choice, and if all the three metrics are important,

WC-NMF is good especially when the lower bound of the

data is squeezed.

V. DISCUSSION AND CONCLUSION

In this research, we devise a framework for both Weighted

and Constrained Non-negative Matrix Factorization and

Constrained Non-negative Matrix Factorization. Our contri-

butions are as follows:

We provide a convergence guaranteed multiplicative

method for NMF with general formulation of constraints,

only if the constraint function is linear with respect to

each of the factors. Our approach also allows the freedom

to choose a suitable tightness for each constraint when

4061072

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 N

R
ec

al
l a

t
k

 =
 5

0
C−NMF
Pure NMF
EM−NMF
Orth−NMF
SVD
WC−NMF
W−NMF
Hybrid−NMF

20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

 N

C−NMF
SVD

(a) Recall versus N at k = 50

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 N

R
ec

al
l a

t
k

 =
 1

50

C−NMF
Pure NMF
EM−NMF
Orth−NMF
SVD
WC−NMF
W−NMF
Hybrid−NMF

20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

 N

C−NMF
SVD

(b) Recall versus N at k = 150

Figure 3. Top-N test on Data with Most Popular Items Removed

embedded into the objective function. These two properties

can facilitate the application of NMF method in different

domains.

In addition, we give examples of specialized constraints.

The first constraint is to limit the upper bounds for unknown

entries during the factorization, and the second is to orthog-

onalize the factor matrices. Taking the recommender system

as an example, our algorithm can achieve excellent results in

top-N metric, and can gain small improvements under other

metrics.

In the future, we will focus on using different optimization

methods to achieve a better convergence rate for this kind

of NMF methods.

REFERENCES

[1] D. Lee and H. Seung, “Algorithms for non-negative matrix
factorization,” Advances in neural information processing
systems, vol. 13, 2001.

[2] C. Lin, “Projected gradient methods for nonnegative matrix
factorization,” Neural computation, vol. 19, no. 10, pp. 2756–
2779, 2007.

[3] D. Lee, H. Seung et al., “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp.
788–791, 1999.

[4] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnega-
tive matrix tri-factorizations for clustering,” in Proceedings of
the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, 2006, pp. 126–135.

[5] W. Xu, X. Liu, and Y. Gong, “Document clustering based on
non-negative matrix factorization,” in Proceedings of the 26th
annual international ACM SIGIR conference on Research and
development in informaion retrieval. ACM, 2003, pp. 267–
273.

[6] Y. Mao and L. Saul, “Modeling distances in large-scale
networks by matrix factorization,” in Proceedings of the
4th ACM SIGCOMM conference on Internet Measurement.
ACM, 2004, pp. 278–287.

[7] C. Ding, X. He, and H. Simon, “On the equivalence of
nonnegative matrix factorization and spectral clustering,” in
Proc. SIAM Data Mining Conf, no. 4, 2005, pp. 606–610.

[8] J. Wang, W. Zhong, and J. Zhang, “Nnmf-based factoriza-
tion techniques for high-accuracy privacy protection on non-
negative-valued datasets,” in Data Mining Workshops, 2006.
ICDM Workshops 2006. Sixth IEEE International Conference
on. IEEE, 2006, pp. 513–517.

[9] M. Schmidt, J. Larsen, and F. Hsiao, “Wind noise reduction
using non-negative sparse coding,” in Machine Learning for
Signal Processing, 2007 IEEE Workshop on. IEEE, 2007,
pp. 431–436.

[10] G. Chen, F. Wang, and C. Zhang, “Collaborative filtering
using orthogonal nonnegative matrix tri-factorization,” Infor-
mation Processing & Management, vol. 45, no. 3, pp. 368–
379, 2009.

[11] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from
incomplete ratings using non-negative matrix factorization,”
SIAM, 2006.

[12] H. Liu, Z. Wu, D. Cai, and T. Huang, “Constrained non-
negative matrix factorization for image representation,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, no. 99, pp. 1–1, 2011.

[13] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Matrix
factorization and neighbor based algorithms for the netflix
prize problem,” in Proceedings of the 2008 ACM conference
on Recommender systems. ACM, 2008, pp. 267–274.

[14] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigen-
taste: A constant time collaborative filtering algorithm,” In-
formation Retrieval, vol. 4, no. 2, pp. 133–151, 2001.

[15] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of
recommender algorithms on top-n recommendation tasks,” in
Proceedings of the fourth ACM conference on Recommender
systems. ACM, 2010, pp. 39–46.

[16] W. Zeng, Y. Zhu, L. Lü, and T. Zhou, “Negative ratings play
a positive role in information filtering,” Physica A: Statistical
Mechanics and its Applications, 2011.

4071073

