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ABSTRACT

This paper presents an evolutionary algorithm, which we
call Evolutionary Algorithm with Species-specific Explosion
(EASE), for multimodal optimization. EASE is built on the
Species Conserving Genetic Algorithm (SCGA), and the de-
sign is improved in several ways. In particular, it not only
identifies species seeds, but also exploits the species seeds
to create multiple mutated copies in order to further con-
verge to the respective optimum for each species. Experi-
ments were conducted to compare EASE and SCGA on four
benchmark functions. Cross-comparison with recent rival
techniques on another five benchmark functions was also re-
ported. The results reveal that EASE has a competitive
edge over the other algorithms tested.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization— Unconstrained
optimization; 1.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search— Heuristic methods

General Terms
Algorithms

Keywords

Evolutionary Algorithm, Genetic Algorithm, Multimodal Op-
timization, Function Optimization, Species-specific Explo-
sion, Species Conserving Genetic Algorithm

INTRODUCTION

Given an optimization problem, traditional optimization
algorithms can be applied to obtain the global optimum.
However, in the real world, we are often interested in not
only a single global optimum, but also other possible global
and local optima. Such a requirement imposes a great chal-
lenge for researchers to apply traditional optimization al-
gorithms to solve the problem. Nevertheless, evolutionary
algorithms [6] are particularly effective in solving it [4].
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To trace back the history, the work of Kenneth De Jong [7]
is the first known attempt to solve multimodal optimization
problems using evolutionary algorithms. He introduced the
crowding technique to increase the chance for locating multi-
ple optima. In the crowding technique, an offspring replaces
the parent which is most similar to the offspring itself. Such
a strategy can preserve the diversity and maintain different
types of individuals in a run. Twelve years later, Goldberg
and Richardson [5] proposed a fitness-sharing niching tech-
nique as a diversity preserving strategy to solve multimodal
optimization problems. He proposed to use a shared fitness
function, instead of an absolute fitness function, to evalu-
ate the fitness of an individual in order to favor the growth
of the individuals which are distinct to others. With this
technique, a population can be prevented from the domina-
tion of a particular type of individuals. Since then, many
researchers started to explore different ways to deal with
the problems. These methods include: species conserving
[10], crowding [7, 13], elitism [9], differential evolution [18],
clearing [15], repeated iterations [1] and island model [2].
Though different methods were proposed in the past, they
were all based on the same fundamental idea. It is to strike
an optimal balance between convergence and diversity of
evolutionary algorithm in order to locate all optima (global
and local)

The species conserving technique for multimodal optimiza-
tion was proposed by Li et al. [10]. It was claimed that the
technique was considered as an effective and efficient method
for inducing niching behavior into GAs. However, in our ex-
periments, we find that the performance of the technique
still has space for improvement. It always suffers from ge-
netic drifts though each species is conserved with one in-
dividual. The result of the comparison test conducted by
Singh et al. [16] also reveals that the species conserving
technique performs the worst among the algorithms tested.
As a result, we propose a novel algorithm to remedy the
species conserving technique in this paper.

2. BACKGROUND

2.1 Species Conserving Genetic Algorithm

Species conserving genetic algorithm(SCGA) [10] is a tech-
nique for evolving parallel subpopulations for multimodal
optimization. Before each generation starts to crossover,
the algorithm selects a set of species seeds which can bypass
the subsequent procedures and be saved into the next gener-
ation. The algorithm first divides a population into several
species based on a dissimilarity measure. The fittest indi-



vidual is selected as the species seed for each species. After
the identification of species seeds, the population undergoes
the usual genetic algorithm operations: selection, crossover
and mutation. As the operations may remove the survival
of less fit species, the saved species seeds are copied back
to the population at the end of each generation. The whole
structure of SCGA is shown in Algorithm 1.

To determine the species seeds in a population, the algo-
rithm first sorts the population in a decreasing fitness or-
der. Once sorted, it picks up the fittest individual as the
first species seed and forms a species region around it. The
next fittest individual is tested on whether it is located in
a species region. If not, it is selected as a species seed and
another species region is created around it. Otherwise, it is
not selected. Similar operations are applied on the remain-
ing individuals, which are subsequently checked against all
existing species seeds.

To copy the species seeds back to the population after the
genetic operations have been executed, the algorithms need
to scan all the individuals in the current population and
identify to which species they belong. Once it is identified,
the algorithm replaces the worst individual (lowest fitness)
with the species seed in a species. If no individuals can be
found in a species for replacement, the algorithm replaces
the worst and un-replaced individual in the whole popula-
tion. In short, the main idea is to preserve the population
diversity by preserving the fittest individual for each species.

Algorithm 1 Species Conserving Genetic Algorithm

G(t): Generation at time ¢
Xs: A set storing species seeds

t«— 0;

Initialize G(t);

Evaluate G(t);

while not termination condition do
Identify Species Seeds X;
Select G(t + 1);
Crossover G(t + 1);
Mutate G(t + 1);
Evaluate G(t 4 1);
Conserve species from X, in G(t + 1);
t—t+1;

end while

Identify species seeds X;

Identify global optima;

3. EVOLUTIONARY ALGORITHM WITH
SPECIES-SPECIFIC EXPLOSION

Evolutionary Algorithm with Species-specific Explosion
(EASE) is an evolutionary algorithm which identifies and ex-
ploits species seeds to locate global and local optima. There
are two stages in the algorithm: Exploration Stage and
Species-specific Stage. The exploration stage targets for
roughly locating all global and local optima. It not only un-
dergoes normal genetic operations: selection and crossover,
but also involves the addition of randomly generated in-
dividuals for preserving the diversity. On the other hand,
the species-specific stage targets for gently locating the op-
timum for each species. Species-specific genetic operations
are applied. Only the individuals within the same species

are allowed to perform selection and crossover to each other.
No inter-species selection and crossover are allowed. Such
a strategy is to provide more chances for each species to
converge to its respective optimum, with the trade-off that
diversity is no longer preserved. To have a better global pic-
ture for locating optima, EASE starts with the exploration
stage. It will switch to the species-specific stage only after
the stage switching condition is satisfied. No matter in which
stage, a local operation called Species-specific Explosion
is always executed so as to help species to climb and con-
verge to its corresponding optimum. The whole structure of
EASE is shown in Algorithm 2.

Algorithm 2 Evolutionary Algorithm with Species-specific
Explosion

G(t): Generation at time ¢

Xs: A set storing species seeds

FEs: A set storing species-specific exploded individuals
pop_size: Initial population size

K: A real number over the interval [0, 1]

SS: Species Specific stage switching parameter
EMSS: Expected Mutation Step Size

t <« 0;
SS — false;
EMSS «— mutation probability X mutation step size;
pastIndividuals «— (;
Initialize G(t);
Evaluate G(t);
while not termination condition do
if SS = false then
Select G(t + 1);
Crossover G(t + 1);
else
Species-specific Select G(t + 1);
Species-specific Crossover G(t + 1);
end if
Mutate G(t + 1);
Evaluate G(t + 1)¥;
X, <« IDENTIFYSPECIESSEEDS(G(t + 1));
DELTAEVAL(X, pastIndividuals);
if SS = false then
5SS — ISSPECIESSPECIFIC(X;, EM SS);
end if

E, «— SPECIESSPECIFICEXPLOSION(G (t + 1), X, K, SS)

pastIndividuals «+— Xs U Fg;
G(t+ 1) — Xs UELS;
if SS = false then
Fills G(t+ 1) with randomly generated individuals
to reach pop_size;
end if
t—t+1;
end while
Identify species seeds Xs;
Identify global optima;

3.1 Species Identification

To determine species in a population, we adopt the dissim-
ilarity measurement proposed in Goldberg and Richardson

1t involves Survival Selection if the generation is overlap-
ping.



[5] and Li et al. [10]. The dissimilarity between two individ-
uals are based on their Euclidean distance. The smaller the
distance, the more similar they are:
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where x; and x; are two individuals, which are n-dimensional
vectors [Zio, Ti1, ..., Tin] and [zjo, Tj1, ..., Tjn] Tespectively.

Each species is a subset of population. The fittest indi-
vidual within a species is chosen as the species seed. The
region around a species seed forms its corresponding species
region. All individuals are classified as the same species if
it is within the species distance (rs) from the species seed.
Petrowski [15] and Li et al. [10] proposed an algorithm to
identify species seeds. The algorithm first sorts the popu-
lation in a decreasing fitness order. Then it picks up the
individual with the highest fitness as the first species seed
and forms a species region around it. All individuals within
rs distance from the species seed are classified as the same
species as that of the seed. For the next individual, it is
checked whether it is within rs distance from the species
seed. If not, it is selected as another species seed. Similar
operations are applied on the remaining individuals. Each
individual is tested on whether it lies in others’ species re-
gions. If not, it is selected as a species seed. Otherwise, it
is not selected. The main idea is to pick up the fittest indi-
viduals as the species seed for each species. The algorithm
is shown in Algorithm 3.

Algorithm 3 Identify Species Seeds

procedure IDENTIFYSPECIESSEEDS(G)
Sort G in decreasing fitness values;
X5 — 0
while not reaching the end of G do
Get best un-scanned individual is from G;
found — false;
for Vx € X5 do
if d(z,is) <rs then
found «— true;
break;
end if
end for
if not found then
Xs — XsUig;
end if
end while
return X;;
end procedure

3.2 Species Seed Delta Evaluation

After we have identified all species seeds in the popula-
tion, we perform delta evaluation to record the recent step
changes that can increase fitness for each species seed. For
each species seed, we pick up the fittest individual of the
same species in the previous generation, under the constraint
that its fitness is lower than that of the species seed itself.
By doing so, we can select the individual which is most likely
the ancestor of a species seed in the previous generation. We
call this individual as the Likelihood Ancestor(LA). If we
can pick up the corresponding LA for a species seed, we
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store the value difference between the genome of LA and
the genome of the species seed into the array delta of the
species seed. Thus the array delta of a species seed serves
as a memory recording the last known step sizes, which im-
proved the species seed itself. The algorithm is shown in
Algorithm 4. (All elements of delta are initialized to the
mutation step size at the beginning)

Algorithm 4 Species Seed Delta Evaluation

dim: The maximum dimension
z.walue [i]: The genome value of = at dimension i
LA.walue [i]: The genome value of LA at dimension i

procedure DELTAEVAL(X, pastIndividuals)
for Vz € X do
LA < the individual € pastIndividuals
with the highest fitness in the same species
where its fitness is lower than that of x and z # LA,;
if LA # null then
for i from 1 to dim do
z.delta [i] — z.value[i] — LA.value [i];
end for
end if
end for
end procedure

3.3 Stage Switching Condition

To ensure a proper condition for switching from the explo-
ration stage to the species-specific stage, we propose using
the expected mutation step size (EMSS) as a measure for
controlling the switching:

EMSS = pm X rm

where p., is the mutation probability and r,, is the mutation
step size.

For each species seed, we scan its array delta to check
whether its element exceeds EM SS. If there does not exist
an element which exceeds EMSS, the switching condition
is satisfied. The algorithm will switch to the species-specific
stage. Otherwise, the algorithm will remain in the explo-
ration stage. The rationale behind the checking condition
is that FMSS can give us an expected value for measur-
ing the mutation ability of the algorithm. It can serve as a
measurement to assess the ability of the algorithm to jump
from one region to another region by just using mutation.
Thus if all the elements of the arrays delta of all species
seeds do not exceed the EMSS, it is reasonable to deduce
that the fitness improvement steps for all species in the
subsequent generations are mostly upper-bounded by the
EMSS. All fitness improvement steps can be completed
by merely using mutations, but not inter-species crossovers.
Hence inter-species crossovers are no longer needed. Species-
specific stage should be launched. The algorithm is shown
in Algorithm 5.

3.4 Species-specific Explosion

In SCGA, Li et al. [10] proposed conserving one individ-
ual for each species. However, just one individual for each
species is not enough for the algorithm to well-conserve and
nurture the species. In a run of SCGA, it is often the case
that the algorithm does conserve species with low fitness val-
ues, but they are present in a small proportion. It is because



Algorithm 5 Stage Switching Condition
dim: The maximum dimension

procedure ISSPECIESSPECIFIC(X s, EM SS)
SS «— true;
for Vz € X, do
for 7 from 1 to dim do
if x.deltali] > EMSS then
SS «— false;
end if
end for
end for
return SS;
end procedure

once they form new offspring, their offspring are often re-
moved quickly in subsequent generations due to their low fit-
ness values. Thus most individuals are always of the species
with high fitness values. An example is depicted in Figure 1.
In the example, we can observe that the individuals grad-
ually converge to the three optima fitness-proportionally.
Though different species are preserved with an individual
as the species seed, it cannot converge to the local opti-
mum located at the left-bottom corner due to the relatively
low fitness values there. Merely SCGA itself actually can-
not provide enough indiscriminate condition for species to
evolve and converge to its respective optimum in each run.
Hence we propose a local operation called Species-specific
Explosion to remedy the convergences in this paper.

Species-specific explosion is the local operation in which
we create multiple copies for each species seed and mutate
them. To start this local operation, the algorithm needs to
determine two parameters:

1. How many copies should be created for each species
seed?

2. What is the mutation step size for each species seed?

For the first question, we propose using the ratio of indi-
viduals in the same species to the current population to de-
termine the number of copies to be created. The details
are given in the section 3.5. For the second question, we
propose using the array delta of species seed as the corre-
sponding mutation step size. Recall that the array delta of
species seed saves the step size values which were known to
improve the species seed itself in the previous generation,
it can be used for approximating how far the species seed
should mutate to have a better fitness in the current genera-
tion. Hence we choose to use the array delta as the mutation
step size of the species-specific explosion operation. Once
the two parameters are calculated, the algorithm starts to
check whether the species seed is present in the previous
generation. If it is present, the algorithm will “explode” it,
which means creating multiple copies and mutating them.
Otherwise, no actions will be executed. The rationale be-
hind the checking is to ensure that the species seed to be ex-
ploded is a stable species seed. Hence we require the species
seed at least survive through one generation to be eligible for
the explosion. Alternatively, if the current stage is species-
specific stage, the above checking is overridden. All species
seeds are eligible for the explosions, in order to provide all
species an indiscriminate condition to evolve in this stage.
The algorithm is shown in Algorithm 6.
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Figure 1: A snapshot of SCGA in a run on Problem
Peaksl - generation 1,2,4,10.

926



Algorithm 6 Species Specific Explosion

procedure SPECIESSPECIFICEXPLOSION(G, X, K, SS)
E, — @;
WEIGHTSEVAL(X, G);
for Vz € X, do
if x is present in previous generation
or SS = true then
size «— x.weight X K X pop_size;
E, — E,U EXPLODE(z, size);
end if
end for
return Ey;
end procedure

procedure EXPLODE(z, size)
Ezxplodeds +— 0;
for ¢ from 1 to size do
temp «— Copy of x;
Mutate temp with step size x.delta;
FEaxplodeds «— Ezxplodeds U temp;
end for
return Ezplodeds;
end procedure

3.5 Calculate Explosion Weights

Before an explosion, we need to determine the explosion
weight for each species seed. The explosion weight is defined
over [0,1]. It is a scaling factor to determine the number of
mutated copies that a species seed can create during the
species-specific explosion process. In EASE, the rationale
behind is to encourage a species to create more mutated
copies if the species has less individuals in the current pop-
ulation. Hence the explosion weight of a species seed is de-
rived from the ratio of individuals in the same species to the
current population. The larger the ratio, the smaller is the
explosion weight and vice versa. The algorithm is shown in
Algorithm 7. Each explosion weight is normalized at the end
so that the sum of all the explosion weights is limited to 1,
in order to avoid the total number of the mutated copies of
all species seeds exceeding the predefined value K X pop_size.

Algorithm 7 Calculate the explosion weight for each
species seed

procedure WEIGHTSEVAL(X, G)
total « 0;
for Vz € X, do
zr.weight < population size - number of individuals
in the same species in the current population;
total < total + x.weight;
end for
for Vz € X, do
z.weight «— z.weight /total;
end for
end procedure

4. EXPERIMENT

We implemented EASE using Sun’s Java programming
language. Its development is based on the EC4 framework
provided in Kenneth De Jong’s book [8]. Experiments to
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compare the performance between EASE and SCGA were
conducted on four benchmark functions as shown below:

e F1: Deb’s 1st function [3]

e F2: Himmelblau function [1]

e F3: Six-hump Camel Back function [14]
e F4: Branin function [14]

Furthermore, the results of Fitness Sharing (FS) [5] and
other algorithms as reported in [12, 11]: Roaming Agent-
Based Collaborative Evolutionary Model (RACE) proposed
in [11], Roaming Technique (RO) proposed in [12], Crowding
Differential Evolution (CRDE) proposed in [18] and Adap-
tive Elitist Genetic Algorithm (AEGA) proposed in [9] are
summarized and compared with the performance of EASE
and SCGA. All the five benchmark functions have already
been presented in [12]. Hence we just briefly describe each
of them in this paper.

e Problem Peaksl is defined on [~100,100]*> and has
three peaks of different heights. The maximum height
is 30, whereas the minimum height is 20.

e Problem Peaks?2 is defined on [~100, 100]? and has ten
peaks of different heights. The maximum height is 50,
whereas the minimum height can reach to 10.

e Problem Peaks3 is defined on [—10, 10]? and has fifteen
peaks of the same height. The heights of all peaks are
4.

e Problem Peaks4 is defined on [~10,10]*> and has the
same peak locations as Problem Peaks3, but the heights
are different. The heights of some peaks are changed
to 5, 6 or 7.

e Problem Peaks5 is defined on [—100,100]'° and has
four peaks of the same height. The heights of all peaks
are 100.

4.1 Performance measurement

For multimodal optimization, there are several perfor-
mance metrics proposed previously [17]. The focuses of this
paper are on (1) the ability of the algorithms to locate the
optima and (2) the accuracy of the optima found by the al-
gorithms. Hence we use the peak ratio and the average min-
imum distance to the real optima [12] as the performance
metrics.

e A peak is considered found when there exists an in-
dividual which is within 0.5 Euclidean distance to the
peak in the last population. Thus the peak ratio is
calculated using the following formula:

Number of peaks found

PeakRatio =
caftrato Total number of peaks

e The average minimum distance to the real optima is
calculated using the following formula:
n
min
1 indivEpop

d(peak,indiv)

1=

D=

n

where n is the number of peaks, indiv denotes an in-
dividual and pop denotes a population of individuals.



Table 1: Common parameter setting of EASE and
SCGA for different benchmarks
Benchmark Population Size

Species Distance’

F1 100 0.1
F2 100 3
F3 100 1
F4 100 6
Peaksl 200 50
Peaks2 200 25
Peaks3 200 3
Peaks4 200 3
Peaksbh 50 150

Table 2: Parameter setting of F'S for different bench-
marks

Benchmark Population Size Niche Radius

Scaling Factor

Peaksl1 200 50 0.01
Peaks2 200 25 0.01
Peaks3 200 3 0.05
Peaks4 200 3 0.05
Peaksbh 1000 150 1

In the following sections, all algorithms were run up to max-
imum 50000 fitness function evaluations. The above perfor-
mance metrics are obtained by taking the average and stan-
dard deviation of 30 runs. The above setting is exactly the
same as [12, 11].

4.2 Parameter settings

The parameter setting of EASE for all benchmarks is
shown in Table 4. The common parameter setting of EASE
and SCGA for all benchmarks is shown in Table 5. The
common parameter setting of EASE and SCGA for differ-
ent benchmarks is shown in Table 1. All the common pa-
rameter settings of EASE are exactly the same as SCGA
for fair comparisons. The selection method of the species
distance parameters is based on the suggestions in [10]. The
parameter setting of FS for different benchmarks is shown
in Table 2. For the other algorithms, the details for the
settings can be referred to [12, 11].

4.3 Results

Table 3 shows the experimental results for the compar-
ison of EASE and SCGA. It can be observed that EASE
outperformed SCGA in all the benchmark functions. EASE
did improve SCGA’s performance no matter in the ability
to locate optima or the accuracy of the optima found.

Table 6 shows the experimental results for the comparison
of all algorithms tested. On the whole, EASE also showed
its competitive results with other existing algorithms except
Problem Peaks2. Looking at Problem Peaks2 more deeply
as shown in Figure 2, it is defined on [—100,100]* and has
ten peaks of different heights. The maximum height of peaks
is 50, whereas the minimum height of peaks can even reach
down to 10. Such a large variation in peak height imposes
a great challenge for algorithms to locate all the optima.
Since we employ a fitness proportional method and trunca-
tion selection as parent selection method and survival se-

TUsing the terms in [10], the species distance (rs) = 05 /2
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Table 3: Experimental Results for the comparison
of EASE and SCGA

Benchmark Measurement SCGA EASE
Mean of D 1.32E-03 2.14E-10
StDev of D 9.87E-04 6.71E-11
Min of D 1.20E-04 1.22E-10
F1 Median of D 1.03E-03 2.01E-10
Mean of Peak Ratio 1.000 1.000
StDev of Peak Ratio 0.000 0.000
Mean of D 2.48E-01 1.12E-06
StDev of D 1.27E-01 3.07E-06
Min of D 5.72E-02 5.44E-07
F2 Median of D 2.11E-01 5.44E-07
Mean of Peak Ratio 0.825 1.000
StDev of Peak Ratio 0.187 0.000
Mean of D 1.10E-02 2.11E-06
StDev of D 1.49E-02 9.36E-06
Min of D 1.28E-04 3.91E-07
F3 Median of D 5.65E-03 4.02E-07
Mean of Peak Ratio 1.000 1.000
StDev of Peak Ratio 0.000 0.000
Mean of D 6.85E-01 7.88E-07
StDev of D 5.75E-01 1.07E-08
Min of D 6.99E-02 T7.61E-07
F4 Median of D 5.28E-01 7.89E-07
Mean of Peak Ratio 0.622 1.000
StDev of Peak Ratio 0.243 0.000

lection method respectively in EASE, strong selection pres-
sure has been imposed on the population. The individu-
als approaching the short peaks are often removed easily
in each run. Thus it often cannot locate short peaks such
that its peak ratio is always around 0.6, which is approx-
imately equal to the number of tall peaks divided by the
total number of peaks. Such situation can be corrected by
using other selection methods, but the peak accuracy will
be traded off. Nevertheless, once EASE locates a peak, it
can always converge to the peak more precisely than others.
Thus its measurement D can still be the best among the
algorithms tested.

Interestingly, the experimental results also reveal a criti-
cal observation about EASE. For some benchmarks tested,
it shows a minority of relatively poor results which sub-
sequently deteriorates the mean value of the measurement
D. Such phenomenon can be exemplified by the experiment
conducted on Problem Peaksl, in which the mean value of
D differed from the median value of D by 10° magnitude
order. It is mainly due to the stochastic property of EASE.
Hence further efforts should be spent on stabilizing EASE
for locating optima (global and local).

S. CONCLUSIONS

A new evolutionary algorithm for multimodal optimiza-
tion called Evolutionary Algorithm with Species-specific Ex-
plosion(EASE) is proposed. EASE is an algorithm to rem-
edy SCGA by exploding species seeds for locating optima.

EASE is divided into two stages: Exploration Stage and
Species-specific Stage. EASE starts with the exploration
stage. Once the stage switching condition is satisfied, it will
be changed to species-specific stage. Throughout the two
stages, a local operation: Species-specific Explosion is



applied so as to help each species to converge to its respective
optimum.

The experimental results show that EASE improves SCGA
for locating optima (global and local), in terms of peak ratio
and accuracy. Comparing with the results reported in [12,
11], EASE also did a great job in all the five benchmark
functions.

In the future, we will focus more on experiments with real-
world multimodal optimization problems. High dimensional
problems will also be considered. The concept Species-
specific Explosion will be investigated to improve other
evolutionary algorithms.
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Figure 2: Problem Peaks2
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Table 4: Parameter setting of EASE for all benchmarks

Parameter Setting

Mutation Type Gaussian [8]
Mutation Formula in explosion NewValue = OldValue + 2 x StepSize x U

where U is a normally distributed real value with mean 0.0 and standard deviation 1.0
K 0.4

Table 5: Common parameter setting of EASE, SCGA and FS for all benchmarks

Parameter Setting

Population Initialization Random

Generation Type Overlapping [8]

Parent Selection Fitness Proportional

Survival Selection Truncation [8]

Representation Sun’s Java Double (double-precision 64-bit IEEE 754 floating point)
Mutation Type Gaussian [8]

Mutation Formula NewValue = OldValue + 1.3 x StepSize x U

where U is a normally distributed real value with mean 0.0 and standard deviation 1.0
Mutation Probability 0.2

Mutation Step Size 0.1

Crossover Type Intermediate Recombination [10]
Crossover Formula Offspring = W
Crossover Probability 1

Random Seed 12345

Implementation Sun’s Java programming language

Table 6: Experimental Results for all algorithms tested

Benchmark Measurement FS RACE RO AEGA CRDE SCGA EASE
Mean of D 0.844 7.TTE-07 0.246 0.915 4.68E-05 2.665 3.87E-10
StDev of D 0.475 2.23E-07 0.779 1.272  1.44E-05 1.323 2.06E-09
Min of D 0.257 2.6E-07 3.91E-05 0.0568 2.71E-04 0.716 0
Peaks1 Median of D 0.718 7.87TE-07 6.81E-05 0.266 4.47E-04 2.667  4.44E-15
Mean of Peak Ratio 0.500 1 0.966 0.8 1 0.400 1.000
StDev of Peak Ratio  0.259 0 0.105 0.23 - 0.136 0.000
Mean of D 69.166 6.89 8.414 13.77 13.23 6.111 4.393
StDev of D 13.087 4.62 4.000 6.419 0.019 1.307 3.212
Min of D 48.112 3.94E-06 0.752 5.304 13.19 4.066 0.055
Peaks2 Median of D 77.043 6.69 8.53 12.36 13.24 6.182 3.839
Mean of Peak Ratio 0.103 0.87 0.75 0.46 0.7 0.117 0.603
StDev of Peak Ratio 0.061 0.07 0.108 0.09 - 0.038 0.096
Mean of D 1.766 8.47E-06 3.52E-04 10.74 7.86E-03 0.392 9.34E-07
StDev of D 0.353 1.01E-06 5.22E-05 1.391 9.92E-04 0.080 5.11E-06
Min of D 1.236 TE-06 2.60E-04 8.459 5.85E-03 0.252 3.7T7E-15
Peaks3 Median of D 1.698 8.51E-06 3.51E-04 10.88 8.07E-03 0.381 3.95E-13
Mean of Peak Ratio 0.573 1 1 0.066 1 0.704 1.000
StDev of Peak Ratio 0.069 0 - - - 0.092 0.000
Mean of D 2.108 0.02 1.92E-03 10.76  6.47E-03 0.525 4.83E-06
StDev of D 0.172 0.07 3.20E-03 2.599 1.13E-03 0.121 1.48E-05
Min of D 1.853 6.64E-06 3.11E-04 7.642 4.41E-03 0.347 1.47E-14
Peaks4 Median of D 2.105 8.52E-06 4.41E-04 10.30 6.35E-03 0.504 6.62E-13
Mean of Peak Ratio 0.409 0.99 1 0.066 1 0.602 1.000
StDev of Peak Ratio 0.045 0.02 - - - 0.092 0.000
Mean of D 158.926 8.5E-04 8.565 18.32 59.21 136.969 5.35E-04
StDev of D 26.889 6.9E-05 7.323 8.294 0.130 17.500 4.45E-04
Min of D 102.276 6E-04 0.044 7.907 58.85 101.481 3.19E-05
Peaksb Median of D 157.070 8.5E-04 11.00 15.07 59.26 134.261 3.99E-04
Mean of Peak Ratio 0.000 1 0.775 0.05 0.25 0.000 1.000
StDev of Peak Ratio  0.000 0 0.184 0.105 - 0.000 0.000
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