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Imaging and 3D reconstruction are reciprocal procedures. The former employs imaging

systems to measure scene properties, where it encodes various 3D-related properties (includ-

ing geometry, material, and light) into specific measurements. Conversely, the latter aims to

solve the inverse problem, i.e., recovering 3D-related properties back from captured data. As

the reciprocal step, imaging process provides important cues to 3D reconstruction. Exploring

ways to utilize imaging priors is critical to improve the performance of 3D reconstruction.

Recent advances of deep learning (DL) have reshaped 3D reconstruction algorithms.

Inspired by it, this dissertation provides a new framework to boost 3D reconstruction with

imaging priors. The core idea is to differentiate imaging systems and embed them into

reconstruction algorithms, in particular DL-based approaches. Consequently, the proposed

framework allows information to be freely propagated between imaging and 3D reconstruc-

tion. It supports reconstruction algorithms to utilize inherent geometric and physical rules

inside imaging systems for better recovery of 3D properties. Additionally, it enables tuning

imaging systems to explore the best settings they should adopt under reconstruction tasks.

We validate the superiority of our framework on two imaging systems: rendering

pipelines and structured light systems. First, we present novel differentiable reformulations

of rendering pipelines and apply them in unsupervised, single-view 3D object reconstruc-

tion. Compared to previous methods, our novel designs demonstrate more accurate shape

and texture recovery, as well as enable new capabilities to achieve faithful material and

lighting disentanglement. Next, we discover optimal illumination patterns in structured light

triangulation. Unlike existing approaches that use predetermined patterns, for the first time,

differentiable structured light systems allow us to optimize patterns for the chosen imaging

conditions and exhibit substantial improvements in 3D triangulation accuracy.
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depth map of the object shown on left. Both are optimized for a one-pixel
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q. The gray column and row are associated with the same projector pixel p. 106

xx



6.4 Geometric Constraints. (a) Top view of the epipolar plane. (b) T is
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Chapter 1

Introduction

3D reconstruction aims at inferring 3D-related properties of a scene, such as geometry,

texture, material, and light. As a long-standing goal in computer vision and computer

graphics, it serves as key in a variety of important applications like virtual reality (VR),

augmented reality (AR), robotics, autonomous driving, etc. For example, in AR games,

acquiring 3D properties of a scene is the prerequisite for user interaction. Moreover, in

more rigorous cases, 3D reconstruction also plays an essential role, e.g., to make robots

or autonomous driving cars safely ride on the road, it is necessary to accurately model the

surrounding environment.

The input data of 3D reconstruction are often 2D measurements (e.g., images) captured by

imaging systems, in a process called imaging. In the past centuries, people have developed

various imaging systems to facilitate 3D reconstruction. Created in the 1840s [4], cameras

are the most popular choice. Later, structured light (SL) [61] and time of flight (ToF) [56]

setups emerged to infer scene geometry by incorporating active light sources in image

capture. Today, there are continuous efforts to explore new imaging systems like transient

imaging or lensless imaging systems [25, 107], which further push the boundaries of 3D

reconstruction, allowing occluded object reconstruction or direct 3D imaging [14, 254].

Conceptually, imaging and 3D reconstruction are inverse procedures. The former chooses a

specific imaging system to measure scene properties, where it encode various 3D-related

properties into measurements. For example, images can be formulated as 2D projections

of 3D geometry and material interacting with light. On the contrary, the latter applies 3D

reconstruction algorithms to the captured data in order to recover all kinds of 3D properties

back from the measurements.

Being the reciprocal step, imaging process contains an abundance of valuable information
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2 CHAPTER 1. INTRODUCTION

that could significantly benefit 3D reconstruction. Such information is commonly referred

as imaging priors. For instance, image formation models explain how imaging devices

record 3D properties of a scene. Imaging settings, like exposure, gain, or tone mapping,

influence the quality of captured data [117]. System illuminations, which are the light

sources in the active imaging systems, affect the performance of structured light or time of

flight systems [61, 56]. Therefore, exploring better ways to utilize imaging priors is critical

to improve performance of 3D reconstruction.

A large body of work has been done to address problems of 3D reconstruction, ranging

from classical geometrical or optical methods [83, 61, 56] to recent deep learning based

approaches [131, 65]. Particularly, the advances of deep learning [127, 111, 228, 48] have

ushered in many breakthroughs in 3D reconstruction. For example, detailed 3D shapes,

high-fidelity texture maps, accurate lighting and material parameters are all inferable from

2D images via neural networks models [53, 70, 260, 267, 230, 264, 288, 171, 147]. With

the help of massive training data, deep learning based methods significantly outperform the

classical works [159, 19, 46, 212].

While great progress has been made, imaging priors are still under-explored in 3D recon-

struction, in particular deep learning based approaches. As a physical process or a simplified

physical simulation [5], imaging process is generally not differentiable. However, the non-

differentiable property makes it difficult to be involved in deep learning frameworks. As a

consequence, imaging and reconstruction are treated as discrete procedures, which impedes

imaging priors propagating from the former to the latter, leading suboptimal designs in both

stages. Existing methods either utilize imaging in data preparation [235] or adopt imaging

constraints as regularization terms [261, 264]. Still, a large portion of imaging priors are

ignored and not fully utilized in deep learning.

The focus of this thesis is on exploring a new way to exploit information of imaging

process in deep learning based reconstruction algorithms. To this end, we introduce dif-

ferentiable imaging systems. Specifically, an imaging system is defined as differentiable,

if its imaging process is differentiable, i.e., we are able to compute the gradients of the

imaging measurements with regard to the scene properties or the imaging parameters. While

conventional imaging systems are not designed to be differentiable, it is challenging to

acquire the analytical gradients. Instead, we construct an differentiable imaging system by

either approximating its traditional non-differentiable imaging process with a differentiable

surrogate [38, 39, 172], or estimating the gradients with numerical methods [40].

The main advantage of differentiable imaging systems is that they can be embedded into

3D reconstruction algorithms, in particular deep learning based reconstruction approaches.
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Figure 1.1: Overview. This thesis proposes a new reconstruction framework which reformulates the conventional, non-differentiable

imaging systems in a differentiable way and embeds them into 3D reconstruction algorithms. As a consequence, it bridges imaging

systems and reconstruction algorithms together, which enables information (e.g., gradients) to be propagated bidirectionally and brings

mutual enhancement. The proposed framework allows reconstruction algorithms to utilize inherent geometric or physical rules inside

imaging systems for better recovery of 3D properties. Additionally, it enables tuning imaging systems to explore the best settings they

should adopt under specific reconstruction tasks.

As shown in Fig. 1.1, our method bridges imaging systems and reconstruction algorithms

together, which enables information (e.g., gradients) to be propagated bidirectionally and

brings mutual enhancement to each other.

On one hand, information from imaging systems is passed to reconstruction algorithms,

which helps design algorithms to match the given imaging systems perfectly [249, 278, 230,

58, 280, 38, 39, 171, 155]. The optimized reconstruction approaches, built on top of imaging

systems, could utilize the inherent geometric or physical rules inside the imaging systems,

resulting in much better performance than the traditional methods which are generally blind

to the imaging systems.

On the other hand, information is also propagated from reconstruction algorithms to imaging

systems, helping explore the best settings they should adopt under specific reconstruction

tasks, e.g., discovering the most appropriate hardware parameters like camera settings [177,

248] or system illuminations [172, 40]. It enables automatically tuning imaging systems to

be tailored for corresponding downstream tasks, which generally requires expert knowledge

in previous works.

We validate the superiority of our method on two imaging systems: rendering pipelines and

structured light systems. Specifically, in the first part of the thesis, we focus on applying

differentiable rendering techniques in unsupervised, single-view 3D object reconstruction.

We propose two efficient and photorealistic differentiable rendering frameworks [38, 39] and
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incorporate them in neural networks to predict 3D properties from a single image. Compared

to previous methods, our novel designs not only predict accurate shape and realistic texture,

but also enable new capabilities to achieve faithful material and lighting disentanglement

under challenging imaging conditions, as well as generalize to real imagery, predicting

reliable 3D properties for real photographs [291].

Next, we discover optimal illumination patterns in structured light triangulation. By differen-

tiating structured light systems and embedding them in reconstruction algorithms [172, 40],

we are able to optimize patterns for chosen systems and desired imaging conditions. Unlike

existing approaches that use predetermined patterns, which have no optimal guarantees and

are blind to structured light system properties, the optimized patterns demonstrate precise

match to the system properties and achieve substantial improvements in 3D triangulation

accuracy.

Principally, the main advantage of differentiable imaging systems is that it allows infor-

mation to be propagated bidirectionally. Namely, imaging priors can be utilized to boost

reconstruction algorithms while learning constraints can also be applied to enhance imaging

procedures. The two differentiable imaging systems discussed in this dissertation, i.e., the

differentiable rendering pipelines and the differentiable structured light systems, demonstrate

advantages in two complementary directions.

The differentiable rendering part focuses on boosting 3D reconstruction algorithms with

imaging priors. Following the principle of “analysis-by-synthesis”, the imaging priors guide

the neural networks to predict faithful geometry, texture, material and light from a single

image without any 3D supervision [38, 39, 291]. One the other side, the differentiable

structured light part explores how to tune optimal imaging settings from learning constraints.

Differentiable structured light systems allows themselves to be embedded in learning frame-

works, where the gradients of the illumination patterns are adopted to optimize patterns

to maximize the 3D reconstruction accuracy [172, 40]. Notably, imaging systems and

reconstruction algorithms can be optimized jointly. For example, in [40] we jointly explore

the best imaging parameters, as well as train a neural network that perfectly matches the

given imaging system. In all cases, we show differentiable imaging systems bring significant

performance improvement over prior arts.

In conclusion, this thesis makes the following contributions:

• In Chapter 3, we propose DIB-R [38], an interpolation-based differentiable rendering

pipeline that allows gradients computation from 2D images to most 3D attributes,

including vertex positions, vertex colors, multiple lighting directions and texture

mapping through a variety of lighting models. We also apply DIB-R in single-view
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3D object reconstruction tasks, which can be trained exclusively using 2D supervision.

Compared to prior works, DIB-R demonstrates more faithful shape and realistic texture

recovery, achieving new state-of-the-art results.

• In Chapter 4, we extend DIB-R to DIB-R++ [39], a hybrid differentiable renderer

which combines rasterization and ray-tracing to take the advantage of their respective

strengths—speed and realism. Being efficient and photorealistic, it enables new

capabilities for geometry, reflectance and lighting prediction from a single image

without requiring any ground-truth. DIB-R++ achieves superior material and lighting

disentanglement compared to existing rasterization-based approaches, especially under

challenging imaging conditions.

• In Chapter 5, we investigate how to apply differentiable rendering techniques to predict

3D properties for real imagery [291]. Differentiable rendering based inverse graphics

models rely on multi-view imagery, which are not readily available in existing real

datasets. Training with synthetic renderings often leads to a gap in performance when

tested on real photographs. We propose to exploit StyleGAN [119] as a multi-view

data generator, synthesizing infinite multi-view photorealistic images to train inverse

graphics networks. Our approach achieves exquisite 3D reconstruction effects for real

images and significantly outperforms models trained on existing datasets.

• In Chapter 6, we discover optimal illumination patterns in structured light triangula-

tion [172]. Unlike existing approaches that use predetermined patterns, we propose à

la carte, a new paradigm to optimize patterns for user-defined imaging conditions. By

defining a simplified linear imaging formation model and embedding it into learning

frameworks, à la carte derives objective functions to evaluate performance of the

patterns and optimize them by minimizing the reconstruction error. We show the

optimized patterns outperform state-of-the-art triangulation techniques.

• Lastly, in Chapter 7, we propose OpticalSGD [40], a computational imaging technique

that optimizes the performance of an active imaging system by automatically discover-

ing the illuminations it should use, and the way to decode them. OpticalSGD supports

“tuning” the illuminations and decoding algorithm precisely to the system properties,

and doing so without any requirement of system. The key idea of OpticalSGD is to

formulate a stochastic gradient descent (SGD) optimization procedure that puts the

actual system in the loop: adopting real devices to illuminate a scene and capture

images, and computing the gradient of the reconstruction error and update the system

parameters. We verify OpticalSGD in structured light triangulation and show the tuned

system substantially boosts 3D reconstruction accuracy over state-of-the-art methods.
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1.1 Organization

The chapters in this thesis are organized as follows. In Chapter 2, we provide background

knowledge of the discussed imaging systems. In Chapter 3, Chapter 4, and Chapter 5, we

investigate how to apply differentiable rendering techniques in unsupervised, single-view

3D object reconstruction. We first present an interpolation-based differentiable renderer,

then extend it to a one-bounce ray-tracing based differentiable renderer, and finally talk

about how to predict 3D properties from real imagery, respectively.

In Chapter 6 and Chapter 7, we discover optimal illumination patterns in structured light

triangulation with differentiable structured lighting systems. Chapter 6 introduces a simpli-

fied differentiable structured light image formation model in simulation. Chapter 7 explores

pattern optimization with hardware-in-the-loop. Finally, in Chapter 8, we discuss promising

future directions and conclude the thesis.

1.2 Included Publication

The thesis mainly contains 5 earlier published papers, with proper re-organization, more

technical details and results. The papers and author contributions are listed as follows. *

denotes equal contribution:

Wenzheng Chen, Jun Gao*, Huan Ling*, Edward J. Smith*, Jaakko Lehtinen, Alec Jacobson,

Sanja Fidler: Learning to Predict 3D Objects with an Interpolation-based Differentiable

Renderer, NeurIPS 2019 is reproduced and adapted in Chapter 3. Author contributions: the

author conceived the idea and implemented the prototype. The author, Jun Gao, Huan Ling,

and Edward J. Smith did the learning experiments. Prof. Lehtinen, Prof. Jacobson, and Prof.

Fidler helped complete the idea. All the authors contributed to the manuscript writing and

Prof. Fidler supervised the project.

Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clement Fuji Tsang, Sameh Khamis, Or

Litany, Sanja Fidler: DIB-R++: Learning to Predict Lighting and Material with a Hybrid

Differentiable Renderer, NeurIPS 2021 is reproduced and adapted in Chapter 4. Author

contributions: the author and Prof. Fidler conceived the idea. The author and Joey Litalien

implemented the prototype. Clement Fuji Tsang did acceleration. Jun Gao, Zian Wang, Dr.

Khamis, Dr. Litany, and Prof. Fidler helped complete the idea. All the authors contributed

to the manuscript writing and Prof. Fidler supervised the project.

Yuxuan Zhang*, Wenzheng Chen*, Huan Ling, Jun Gao, Yinan Zhang, Antonio Torralba,

Sanja Fidler: Image GANs meet Differentiable Rendering for Inverse Graphics and Inter-
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pretable 3D Neural Rendering, ICLR 2021 is reproduced and adapted in Chapter 5. Author

contributions: the author and Prof. Fidler conceived the idea. Yinan Zhang implemented

the GAN dataset generation part. Yuxuan Zhang, the author, and Jun Gao implemented the

3D inference part. Yuxuan Zhang and Huan Ling implemented the GAN fine-tuning part.

Prof. Torralba and Prof. Fidler helped complete the idea. All the authors contributed to the

manuscript writing and Prof. Fidler supervised the project.

Parsa Mirdehghan, Wenzheng Chen, Kyros Kutulakos: Optimal Structured Light a la Carte,

CVPR 2018 is reproduced and adapted in Chapter 6. Author contributions: Parsa Mirdehgha

and Prof. Kutulakos conceived the idea. Parsa Mirdehghan and the author implemented the

prototype. The author did all the captures. All the authors contributed to the manuscript

writing and Prof. Kutulakos supervised the project.

Wenzheng Chen*, Parsa Mirdehghan*, Sanja Fidler, Kyros Kutulakos: Auto-Tuning Struc-

tured Light by Optical Stochastic Gradient Descent, CVPR 2020 is reproduced and adapted

in Chapter 7. Author contributions: Prof. Kutulakos conceived the idea. The author imple-

mented the prototype and did all the captures. Parsa Mirdehghan and Prof. Fidler helped

complete the idea. All the authors contributed to the manuscript writing and Prof. Kutulakos

supervised the project.



Chapter 2

Background

In this section, we provide research background for the thesis. We first have a brief

overview of imaging systems and 3D reconstruction algorithms in Sec. 2.1 and Sec. 2.2.

Next, we introduce differentiable imaging systems (Sec. 2.3), including their advantages,

differentiation and optimization designs. We focus on two specific imaging systems, where

we talk about rendering pipelines in Sec. 2.4 and structured light systems in Sec. 2.5.

2.1 Imaging Systems

Optical imaging systems are developed to measure the properties of a scene, including its

appearance, geometry, light, material, etc. In the past two centuries, various imaging systems

have been created. As the most popular choice, digital cameras, such as those integrated on

smartphone devices, are used by billions of people to take photos every day [6]. Besides

that, numerous imaging systems are created, such as Structured Light (SL) [61], Time of

Flight (ToF) [56], LiDAR (Light Detection and Ranging), Single-photon Avalanche Diode

(SPAD) [107], so on and so forth.

The concept of imaging systems could be very broad. In addition to actual hardware devices,

there are also imaging systems in simulation. For example, in computer graphics we have

the rendering pipelines [5, 2] to “take photos” of 3D models, which simulate cameras in

the virtual world. Recently, people further extend simulation to other imaging systems like

SL [238] or ToF [106]. Imaging is also not limited to visible light spectrum but can be

applied to infrared or ultraviolet cases, which is generally used in medical or astronomy

imaging like the computed tomography (CT) or radio telescope. In this thesis, we mainly

explore two imaging systems: the rendering pipelines and the structured light systems.

Although the measurements of imaging systems describe the scene proprieties, typically

8
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they are measured after transformation, projection, lossy compression, etc. Consequently,

the measured data typically records entangled 3D properties of the scene, rather than

capturing each property independently. For example, the scene appearance recorded by

images is actually decided by the scene geometry projection, lighting condition and surface

material [241]. It might even be compressed with information loss when saving in JPEG

format [258]. Therefore, recovering and disentangling each 3D property from the entangled

measurements would be a challenging task. To achieve this goal, people designed various

3D reconstruction methods. They either follow optical or geometric rules, or adopt learning

priors, which we discuss later.

2.2 3D Reconstruction Algorithms

Traditional 3D Reconstruction Methods 3D reconstruction is one of the most fundamental

problems in computer vision and computer graphics. As mentioned earlier, the goal of 3D

reconstruction is to recover 3D-related properties of a scene from measurements of various

imaging systems. In most cases, the measurements refer to images.

Before the era of deep learning, 3D reconstruction is typically solved with optical or

geometric prior knowledge. For example, optical methods adopt expensive temporal sensors

to measure the time of photon travels (ToF, LiDAR) [56]. Since the light speed is a constant,

we can therefore recover the geometry of the scene. On the other hand, geometric methods

utilize multi-view stereo matching algorithms (structure from motion, structured light) [83,

241, 61]. If two pixels in two images are the projection of the same 3D point (which is called

correspondence), we can compute its 3D location based on stereo geometric constraints.

However, the performance of stereo matching is heavily influenced by correspondence

matching accuracy [159, 46, 212].

Previous methods also explore single-view 3D reconstruction, which recover the scene

geometry from a single-view image. As an ill-posed problem, it is addressed with both

geometric constraints and learning priors like vanishing points, T-junction occlusion cues [90,

91, 109, 283]. Moreover, capturing light and material is a more challenging problem, which

requires specially-designed, expensive equipment like lighting stage [134, 135, 24].

Deep Learning based 3D Reconstruction Methods Since 2012 [127], 3D reconstruction has

been largely boosted by deep learning. It is demonstrated that, with the help of massive

training data, neural networks can learn to predict from 2D images accurate 3D properties,

including shape, texture, light and material [53, 70, 260, 267, 147, 149].

While great progress has been made, deep learning methods are dominated by supervised
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methods which require images together with the corresponding ground truth 3D properties.

For example, to recover 3D shapes from images with deep learning approaches, people have

to prepare annotated 3D ground truth (GT) shapes for the input images. However, annotating

3D shapes for real images is an extremely challenging task [224]. The largest dataset till

now is PASCAL3D [272], which contains only a few thousands of (real image, 3D shape)

pairs and is not enough to train a high-performant, generalizable neural network. Moreover,

the light and material dataset [165] contains even fewer examples, which makes the lighting

and material estimation tasks more challenging for deep learning approaches.

Due to the data limitation, people always train 3D prediction models on synthetic datasets,

in particular the ShapeNet dataset [33]. ShapeNet contains 51,300 unique 3D models. By

applying computer graphics rendering pipelines, people can render 3D models into infinite

images with the corresponding 3D property labels. Next, deep learning models can be

trained on the rendered images to predict corresponding 3D properties. However, the models

trained on synthetic data have a performance gap when applied to real images [70, 260, 267],

due to the distribution deviation between real and synthetic images.

2.3 Differentiable Imaging Systems

As mentioned earlier, 3D reconstruction and imaging are reciprocal procedures. As the

reciprocal step, imaging process describes how a imaging system records the 3D properties

of a scene and produces specific measurements. It contains rich optical and geometric

information that can be further utilized to promote the performance of 3D reconstruction.

A branch of works explore how to introduce imaging prior knowledge into deep learning.

Some of them focus on applying optical and geometric prior knowledge as regularization

terms and object functions [237, 161, 261], which has shown to help regularize the network

and achieves strong performance boost. On the other side, instead of applying imaging priors

as losses or regularization terms, recent works move one step further by re-formalizing the

image formation models or the imaging systems in a differentiable manner and embedding

them in learning frameworks [38, 39, 278, 249, 280, 155, 110, 171, 122, 155, 128, 172,

40, 248, 177, 210, 247, 36, 274, 191, 239, 169], which have demonstrated tremendous

advantages.

Self-supervised Training with Differentiable Image Formation Models First and foremost, differ-

entiable imaging systems solve the severe data problem in 3D reconstruction tasks. Take the

image based 3D reconstruction task as the example. Supervised methods rely on images with

3D ground truth which is expensive to acquire [70, 260, 267]. In contrast, by incorporating
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differentiable image formation models into deep learning pipeline, the networks can be

trained in a self-supervised manner without any 3D supervision.

For example, given an input image, we could employ a neural network to predict its 3D

properties. Next, we adopt the differentiable image formation model to convert the 3D

properties back to an image and supervise the network via the loss between the rendered

image and the input image. The inherent optical and geometric constraints inside the image

formation models will help regularize and refine the network to predict 3D properties to be

consistent with the input image. Therefore, the network can be trained totally on 2D images

but predict reasonable 3D properties without any 3D supervision.

Recent works have demonstrated this benefit on a variety of 3D reconstruction tasks, in-

cluding 3D object reconstruction [249, 122, 38, 278, 280, 155, 110], scene reconstruc-

tion [171, 242], material and light estimation [288, 39, 255], or even protein recovery [294].

It largely relieves the data-hungry problem in deep learning and can be further applied not

only in synthetic domain but also to real data, make it possible to recover 3D properties

from real images [291, 150].

Along this direction, we focus on differentiating the rendering pipeline and embedding it

into deep learning to predict 3D properties from 2D images. We show detailed shapes,

exquisite texture maps, accurate lighting and material parameters are all inferable from 2D

photographs without any 3D supervision [38, 39, 291]. We talk about this part in Sec. 3,

Sec. 4 and Sec. 5.

Tuning Imaging Parameters for Downstream Tasks Moreover, differentiable imaging systems

also support to propagate information (e.g., gradients) to imaging parameters, which allows

to explore the best settings they should adopt under specific downstream tasks. It enables

automatically tuning the imaging systems, discovering the most appropriate imaging param-

eters such as camera settings [177, 248] or system illuminations [172, 40], which generally

requires expert knowledge in previous works.

As a frontier research topic, recently many works have appeared along this direction [172,

40, 248, 177, 210, 247, 36, 274, 191, 239, 169]. Existing works have spread to varying

modalities, including the structured light system [172, 40], camera image signal processor

(ISP) [36, 274, 191, 248, 177, 210], diffractive optical element (DOE) [239, 169, 247], or

holography [32, 194]. Besides tuning the parameters of 3D imaging systems to boost 3D

reconstruction tasks [172, 40], differentiable imaging systems are also adopted in a variety

of downstream tasks like dark imaging [36], high dynamic range (HDR) imaging [191, 210,

239], holography display [32, 194], or even high level vision tasks like object detection and
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segmentation [177], and have demonstrated significant performance boost.

Along this direction, we explore the optimal system illuminations in the structured light 3D

imaging systems [172, 40]. In contrast to previous approaches which use manually designed

illuminations, differentiable imaging systems allow us to tune system illuminations under

user-specific imaging conditions. We show the optimized illuminations achieve substantial

improvements in 3D triangulation accuracy. We discuss this part in Sec. 6 and Sec. 7.

Differentiation and Optimization Design Lastly, we briefly talk about the differentiation and

optimization design for imaging systems. Since different imaging systems have distinct

imaging formation models, there is no general way to differentiate all of them. Different

imaging systems require specific differentiable designs. Roughly speaking, existing works

can be categorized into two classes: differentiable approximation and hardware-in-the-loop.

The former focuses on how to approximate the imaging process in a differentiable way. For

example, designing the differentiable image formation models [171], approximating the

gradients [157, 122, 154, 38, 128], or even using a neural network to simulate the imaging

process [248, 36, 274, 191]. On the other side, people also propose to directly put the actual

imaging systems in the optimization, which is called hardware-in-the-loop [194, 40, 177].

It is worth mentioning that, the goal of hardware-in-the-loop is to explore the best imaging

settings under specific downstream tasks, which can also be formalized as an optimal

parameters searching problem, i.e., searching optimal parameters to minimize an objective

function. Under such a scenario, it is not necessarily to have a differentiable system to

apply gradient-based optimization methods. Instead, the imaging systems can be treated

as a black box function and a variety of gradient-free optimization [130] can be adopted,

such as Bayes optimization [223], or evolutionary algorithms [81]. For example, Mosleh et

al. [177] optimize camera ISP parameters with Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) algorithm and demonstrate the searched imaging parameters improves

the downstream tasks.

However, differentiable imaging systems are more preferable, as the gradient-free opti-

mization methods are hard to scale to high dimensionality, e.g., larger than 1,000 dimen-

sions [204]. As a result, they can hardly be applied to imaging systems with thousands of

parameters. In contrast, differentiable imaging systems allow us to conduct optimization

with large-scale parameter. For example, in [172, 40] we differentiate structured light

systems to optimize the optimal system illuminations, which are composed of more than

10,000 parameters 1. More importantly, differentiable imaging systems is compatible with

the deep learning pipeline and can therefore be embedded into neural networks to do joint

1We optimize system illuminations at the scale of 4096 pixels * 5 patterns
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optimization. The gradients can not only explore the best imaging parameters but also refine

the network weights to better match the chosen hardware systems. Compared to gradient-

free optimization methods which only tune the imaging systems themselves, we show joint

optimization of both imaging systems and neural networks brings further performance

improvement [40].

Till now we have covered a wide range of imaging systems. However, in this thesis we

focus on the two of them: rendering pipelines and structured light systems. In the following

sections we briefly introduce the background knowledge of the two systems and talk about

the detailed differentiable reformulation in later chapters.

2.4 Differentiable Rendering

Developed in computer graphics, the rendering pipeline can be treated as a virtual camera

to “take photos” of 3D models in the virtual world. The format of 3D models is typically

triangle meshes, but it could also be in other types like voxel [278], point cloud [280],

and signed distance function (SDF) [155]. In this thesis, we focus on triangle mesh based

rendering and its differentiable reformulation [157, 122, 38, 154, 128].

The rendering pipeline is not designed to be differentiable in its original form. The technique

of differentiable rendering aims to re-formulate it to become a differentiable process. Once

done, it allows gradient computation from 2D images to various 3D model attributes,

including the 3D geometry, texture, light and material. The gradients are very helpful and

can be further utilized in a lot of applications like 3D optimization [152, 153], single view

3D reconstruction [122, 154, 38, 39], and intrinsic decomposition [160].

In the below sections, we first describe the general rendering equation (RE) [199], including

its formula and explanation of each term. We also provide an overview of bidirectional

reflectance distribution function (BRDF) [72]. We then talk about two rendering pipelines:

Monte Carlo ray-tracing and rasterization, which are two different implementations of RE.

We briefly introduce Monte Carlo ray-tracing based rendering pipeline and talk about the

difficulties in differentiating through Monte Carlo ray-tracing. Next we describe rasterization

based rendering pipeline and its differentiable design. We focus on rasterization since it is

fast, computationally efficient and can be integrated within deep learning algorithms. Lastly,

we talk about important applications and limitations in differentiable rendering.
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2.4.1 Rendering Equation

Non-emissive Rendering Equation Let’s start from a non-emissive rendering equation (RE)

[115]. Assume M is a 3D object in a virtual scene, the outgoing radiance Lo at any surface

point x ∈ M in the camera direction ωo is given by

Lo(x,ωo) =

∫

H2

fr(x,ωi,ωo)Li(x,ωi)|n · ωi| dωi , (2.1)

where Li is the incident radiance, fr is the (spatially-varying) bidirectional reflectance

distribution function (SV-BRDF), n is the surface normal at x. The domain of integration

is the unit hemisphere H2 of incoming light directions ωi. The BRDF characterizes the

surface’s response to illumination from different directions and is modulated by the cosine

foreshortening term |n · ω|. Intuitively, Eq. (2.1) captures an energy balance and computes

how much light is received and scattered at a shading point in a particular direction.

BRDF Overview While other terms are relatively straightforward to understand, we provide

a brief explanation of bidirectional reflectance distribution functions (BRDFs). More details

can be founded in [72]. Intuitively, BRDF evaluates the reflectance property of object surface,

i.e., given a light source, how much light is reflected at a specific direction. Following the

similar notations in [72], BRDF is defined by the ratio from the outgoing radiance to the

incoming irradiance:

fr(ωi,ωo) =
dLo(ωo)

dE(ωi)

=
dLo(ωo)

Li(ωi)|n · ωi|dωi

, (2.2)

Here, ωi,ωo are the incoming and outgoing directions 2. Lo is the surface leaving radiance

(the reflected flux per unit area per unit solid angle, with the unit as W
m2·sr

). E is the irradiance

(e.g., the incident flux per unit area of the surface, with the unit as W
m2 ). dE(ωi) denotes

the small piece of E along ωi while dLo(ωo) denotes the small piece of Lo(ωo) that comes

from dE(ωi). Therefore, the unit of BRDF is 1
sr

. The irradiance dE(ωi) from direction ωi

is equal to the incoming radiance Li(ωi) times the cosine term |n · ωi| and the solid angle

dωi, where: dE = Li(ωi)|n · ωi|dωi. We illustrate the BRDF in Fig. 2.1.

The BRDF describes the reflectance characteristics of the surface material. In the simplified

case, it is assumed that all the surface points share the same BRDF property (homogeneous

BRDF, fr(ωi,ωo)). However, in real world surface material is much more complicated and

2More precisely, they are solid angle in BRDF formulas
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Figure 2.1: BRDF Illustration. The BRDF fr(ωi,ωo) from incoming direction ωi to the outgoing direction ωo is defined as

fr(ωi,ωo) =
dLo(ωo)

Li(ωi)|n·ωi|dωi
.

might have spatial-varying properties, e.g., the car body is metallic while the tires are diffuse.

Therefore, to represent non-homogeneous surface material, we extend homogeneous BRDF

by spatially-varying BRDF(SVBRDF fr(x,ωi,ωo)). As shown in Eq. (2.1), we introduce

an extra parameter x to take account the different BRDF properties in different locations of

the surface. While BRDF only explains the surface material properties, it has limitations to

model special materials like transparent objects, scattering media, and non-surface geometry

like hair or fur. People also proposed advanced models to represent these special materials,

which is beyond the scope of this thesis [108, 114, 196].

The BRDF should satisfy some physical rules. In summary, it should be non-negative,

reciprocity and energy conservation.

1. Non-negative: BRDF is a non-negative function. For any incoming irradiance direction

and outgoing radiance direction, fr(ωi,ωo) ≥ 0.

2. Reciprocity: Based on Helmholtz reciprocity principle, the light path is reversible.

That’s to say, fr(ωi,ωo) = fr(ωo,ωi). However, in some special cases, e.g., non-

corresponding states of polarisation for incident and emerging fluxes, this rule might

not hold [43].

3. Energy conservation: Overall, the reflected energy cannot exceed the incident energy.

Namely, Lo ≤ E. We can also re-write it in the form of the integral:
∫

H2 fr(ωi,ωo)|n ·
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ωi| dωi ≤ 1.

However, in practice, BRDFs might violate the 3 rules, due to simplicity or computation

efficiency [57, 200]. For example, in Unreal Engine 4 [57], the split-sum BRDF model

violates the energy conservation rule and the total energy might be larger than 1.

There are many BRDF models [118, 200, 29, 57, 44] to represent different surface material

properties. One of the most simplest BRDF model is Lambertian model, which is used

to represent the purely diffuse surface. Here, the BRDF is modelled as a constant value:

fr(ωi,ωo) =
a
π

, where a is the surface albedo. It is largely used in many graphics applica-

tions due to its simplicity and high efficiency. However, as a constant, it cannot represent

view-dependent effects. Later, Phong model [200] is proposed to represent non-Lambertian

surface, where the BRDF is modeled as fr(ωi,ωo) = ks(ωR · ωo)
α. where, ks and α are:

specular reflection and shininess constants. ωR are the direction of ωi after being perfectly

reflected. In Chapter 3 our rasterization based differentiable rendering discussed these two

shading models.

Lambertian and Phong models, while computationally fast and widely used in graphics

applications, can only represent diffuse and simple specular rendering effects. Also, they

cannot model the realistic view-dependent surface reflectance effects, e.g., the car body might

reflect the surrounding environment. Therefore, more physically based BRDF models have

been proposed to address the realistic reflectance effects. The Cook-Torrance model [44] is

popular in computer graphics, as it distinguishes between metals and dielectrics and provides

reasonable results and direction dependencies. The model is defined as fr(ωi,ωo) =
a
π
+ D(ωh)F (ωo,ωh)G(ωi,ωo)

4|n·ωi||n·ωo|
, where the first part is Lambertian diffuse reflection while the

second term is specular reflection. As for the specular component, it adopts microfacet

surface model and uses the normal distribution function D(ωh) and half vector ωh to

represent the surface property. F is the Fresnel term G is the shadowing term which states

how many facets are occluded from different view angles. In Chapter 4 our one-bounce ray

tracing based differentiable renderer utilizes this model.

2.4.2 Monte Carlo Ray-tracing based Rendering Pipeline

Monte Carlo Ray-tracing Estimating the RE typically requires Monte Carlo (MC) integration

[199], which involves tracing rays from the camera into the scene. It also recursively

considers rays bounced from one 3D point to another 3D point, until they arrive at light

sources or reach the max recursion limit. The rendering process is also called physically

based rendering (PBR) when incorporating with physical based BRDFs [118, 29, 57, 44]. In

such a case, it satisfies physical rules and could represent realistic, global illuminations and



2.4. DIFFERENTIABLE RENDERING 17

complex materials such as reflection, shadow, transparency, etc. While physically correct,

this process is computationally expensive and does not generally yield a closed-form solution.

MC estimators can exhibit high variance and may produce noisy pixel gradients at low

sample counts, which may significantly impact performance and convergence. To keep the

problem tractable, people make several simplifications Eq. (2.1) and develop rasterization

to accelerate rendering process. In below sections, we briefly introduce how to differentiate

the general rendering equation (Eq. (2.1)) through Monte Carlo ray-tracing based rendering

pipeline. We discuss rasterization based rendering pipeline in Sec. 2.4.3.

Differentiable Rendering Equation To differentiate the rendering equation (Eq. (2.1)), let’s

start from the basic Leibniz integral rule [1]:

d

dπ

∫ b(π)

a(π)

f(x, π)dx =

∫ b(π)

a(π)

d

dπ
f(x, π)dx

+ f(b(π), π)
db(π)

dπ
− f(a(π), π)

da(π)

dπ

+
∑

i

(f(c−i (π)π)− f(c+i (π), π))
dci(π)

dπ
,

(2.3)

where given an integral
∫ b(π)

a(π)
f(x, π)dx, we want to compute its gradients d

dπ

∫ b(π)

a(π)
f(x, π)dx

with regard to some parameters π. Leibniz integral rule tells us that in order to compute

the derivatives of an integral, we need to consider three parts. The first term is to move the

derivatives inside the integral, which is straightforward. However, in addition to that, the

second term accounts for the changes in the integral limits while the last term considers all

the discontinuities of integrand depend on π. Basically, the second and third terms explain

the boundaries and discontinuities cases.

We can apply Leibniz’s rule to RE with some generalization (Reynolds Transport Theo-

rem) [284, 285]. To compute the derivatives of the image with regard to the 3D attributes π,

we have:

dLo(x,ωo)

dπ
=

∫

H2

d

dπ
{fr(x,ωi,ωo)Li(x,ωi)|n · ωi|} dωi

+

∫

∂H2

g dl .

(2.4)

Here, the first term is described as interior integral while the second term is called boundary

integral. The interior integral accounts for the local parameters like BRDF parameters in

each local point, while the boundary integral represents all the boundaries and discontinuities
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in ray tracing. These cases generally happen in the edges of geometry or lighting. For

example, considering two neighbour rays, one hits the foreground while the other hits

background. The interior part can be addressed via auto-differentiation [104]. However, the

boundary part requires special consideration.

Monte Carlo Ray-tracing based Differentiable Rendering Methods A branch of methods [144,

285, 284, 158, 16] have been proposed to address the boundary integral. Li et al. [144]

propose the first Monte Carlo ray-tracing based differentiable rendering method. To address

the discontinuous parts, it employs a novel edge sampling method to capture the changes

at boundaries. Instead of silhouette sampling, Loubet et al. [158] propose to reparametrize

the integrals to remove the discontinuities. Typically, the boundary integrals happen at the

points that depend on the scene parameters. As such, the reparametrization helps remove

the dependency and therefore cancels the boundary terms, though at the cost of introducing

biased gradients. Bangaru et al. [16] propose to fast approximate the boundary terms by

sampling the continuous area instead of the silhouette. While above methods address bound-

ary terms in the rendering equation, Zhang et al. [285, 284] propose methods to estimate the

derivatives in the path integral formulation, which is unbiased and computationally efficient

as it does not need to find object silhouette edges explicitly.

On the other side, ray tracing typically involves millions of light path computation and

several works [186, 185, 256, 105] focus on address the integral integrals efficiently. Nimier-

David et al. [186] propose Mitsuba2, a famous graphics rendering library which adopts

auto-differentiation design [104] and supports to compute derivatives during rendering

process. On top of that, Nimier-David et al. [185] and Vicini et al. [256] employ adjoint

method to reduce the heavy computation memory cost in auto-differentiation. Jakob et

al. [105] propose a new compiler to further speed up the rendering and its derivative

computation process.

Challenges in Differentiating through Monte Carlo Ray-tracing While great progress has been

made, currently it is still hard to apply Monte Carlo ray-tracing based differentiable ren-

dering methods in learning pipelines, especially for deep learning tasks. The challenges

mainly happen in three aspects: computational efficiency, implementation difficulty, and

optimization complexity.

1. Computational Efficiency: Although the above approaches can handle complex light

transport effects, the Monte Carlo ray-tracing methods rely on heavy ray samples.

As a result, ray tracing based differentiable rendering methods are computationally

expensive. For example, rendering one image could take a few seconds to tens of



2.4. DIFFERENTIABLE RENDERING 19

seconds. Moreover, the memory cost is also huge in ray tracing, which may takes

a few GB GPU memory. The slow rendering speed and heavy memory cost restrict

the ray-tracing based differentiable rendering methods to be mainly adopted in 3D

optimization tasks [184], which require only hundreds of iterations. However, they are

still not suitable to be applied in general learning tasks that might take several hundred

thousand iterations.

2. Implementation Difficulty: Monte Carlo ray-tracing based differentiable rendering

pipelines are very difficult to implement. The implementation typically involves com-

plex mathematical and coding efforts, e.g., writing various CPP and CUDA programs.

Although open-source libraries exist [186, 284], they are very heavy and have a specific

data format. Currently, these libraries ares till hard to be incorporated within popular

deep learning pipelines like PyTorch or TensorFlow.

3. Optimization Complexity: Lastly, due to the complex light transport and the high

variance in Monte Carlo sampling, ray-tracing based differentiable rendering tasks have

fragile gradients which make the optimization process very difficult to convergence. In

the typically optimization tasks, e.g., optimizing 3D parameters such that the rendered

images looks similar to the GT images, a good initialization is needed [184]. Recently

Vicini et al. [257] explore combining ray-tracing based differentiable rendering with

implicit representations to optimize from scratch, but optimizing with explicit meshes

from scratch is still challenging.

2.4.3 Rasterization-based Rendering Pipeline

Ray tracing considers lighting propagation with multiple bounces, resulting in global

illumination effects such as reflection, refraction, shadow, etc. However, it generally requires

more memory usage and has a much slower rendering speed. In contrast, rasterization-based

rendering pipeline simplifies RE to achieve real-time rendering speed. It only considers rays

from the camera origin to the object surface without extra bounces, i.e., the primary rays.

Moreover, it mainly adopts simplified, local shading models, such as Lambertion, Spherical

Harmonic, or Phong models [200, 68]. Instead of sampling rays to compute the integral,

these local shading models approximate shading effects with some analytical illumination

functions. As a result, it is much faster and suitable for simplified lighting and material

conditions, but fails to represent advanced global illumination effects.

Rasterization-based rendering pipeline has been developed for more than 30 years and has

already been implemented as standard libraries [5, 2]. The modern pipeline is composed of

a series of functional steps called shaders. The 3 most important shaders are vertex shader,
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rasterization, and fragment shader. In vertex shader, a 3D object is projected on the 2D

image plane. Then, rasterization decides which pixel is covered by which triangle face

(only considering rays from camera origin to object surface without extra bounces). Finally,

fragment shader decides how to draw the colours for each pixel, based on selected local

shading models. For more details, please refer to [11].

Rasterization-based Differentiable Rendering Similarly, the rasterization-based rendering pipeline

is also not differentiable. Among the 3 shaders, vertex shader consists of matrix multipli-

cation and fragment shader is composed of some arithmetic operations. Therefore, these

two shaders are differentiable. The non-differentiability happens in rasterization, where the

rendered edges of 3D models are not continuous. For example, let’s consider a foreground

pixel nearby edges. Since it is covered by a face, it should have gradients. Nevertheless, if

we move outside a little to a background pixel which is not covered by any face, it won’t be

influenced by any face and thus should not have any gradients. Due to discrete pixels, we

have discontinuity in the edges, which makes the rasterization non-differentiable. Therefore,

the whole rendering pipeline is not differentiable, either.

As such, differentiable rendering works generally re-formulate the rasterization to make it

differentiable in the edges. Back to 2014, Loper and Black [157] propose the first general

differentiable rendering framework called OpenDR. The idea is very intuitive: the gradients

from 2D images to 3D properties could be computed in a numerical way. For example, we

will get a shifted image if the 3D models move towards x or y directions. Thus, the gradients

to 3D vertex position can be computed by the image gradients (differences between the

shifted image and the original image) dividing the shifting distance. OpenDR simply uses

Sobel operator to compute image gradients and restricts the moving distance as 0.5 or 1

pixel. Later, Kato et al. [122] extend the movement to arbitrary distance in the image. They

propose neural 3D mesh renderer (N3MR), which first combines the differentiable rendering

with neural networks to predict 3D meshes from 2D images without 3D supervision.

The gradients in OpenDR and NMR are all computed numerically with limited precision.

Next, Liu et al. [154] propose to turn the rasterization step from hard selection to soft

merging. In the original form of rasterization, each pixel is only covered by one face

while in their method, each pixel is influenced by all the faces with the weighted average.

This method is called soft rasterizer (Softras). By this way, gradients are not restricted

in the foreground pixels but happen to all the pixels in the image. The gradients can also

be computed analytically since Liu et al. [154] choose the soft merging functions to be

continuous.

All the previous works focus more on back propagating gradients to 3D vertex position,
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Figure 2.2: Single-view 3D Object Reconstruction. Given an input image, we could employ a neural network to predict geometry, light,

and texture. During training we render the prediction back to a new image. We then compute the 2D image loss between input image and

rendered prediction to train the network. Therefore, no 3D supervision is needed.

with limited support on other 3D properties like texture or lighting. In this thesis, we

propose DIB-R [38], which is an interpolation-based differentiable renderer that supports

back propagating gradients to all the common properties, including vertex position, vertex

color, texture, texture coordinate, lighting, material, etc. The following-up works of DIB-

R [291] extend to real imagery shows more vivid 3D reconstruction results, especially in

texture prediction. Laine et al. [128] propose NVdiffrast, aiming for high performance and

supporting more properties in the rendering pipeline, e.g. mipmap or depth peeling. Built

on top of OpenGL, NVdiffrast achieves much faster rendering speed and supports high

resolution meshes with millions of faces.

2.4.4 Applications & Limitations

Image based 3D Optimization Differentiable rendering computes gradients from 2D images to

3D attributes, which allows it to be embedded in the optimization tasks to refine 3D properties

with 2D images. For example, given the initial geometry and a GT image, we could render

the geometry to an image and evaluate the difference between the rendered image and the

GT image. Next, we compute the gradients with regard to the geometry, optimizing the

vertex position such that the rendered image is close to the GT. The optimization does not

need any 3D supervision, which relieves the data requirement since 3D data is generally

expensive to acquire. It can be used in many applications, including 3D design, games, and

test-time optimization [160, 184].

Single-view 3D Object Reconstruction Differentiable rendering can further be embedded

within deep learning to learn to infer 3D properties without any 3D training data. As

shown in Fig. 2.2, given an image, we could employ a neural network to predict its 3D

properties, e.g. geometry, light and texture. Next, we adopt differentiable rendering to render

the properties back to an image and supervise via the loss between the rendered image and
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input image. Similarly, the network can be trained totally on 2D images without any 3D

supervision. Many differentiable rendering works have demonstrated this application, such

as [122, 38, 154].

Limitations Rasterization-based differentiable rendering methods have been demonstrated

in single-image 3D reconstruction tasks to recover reasonable shape and texture. However,

one limitation is that they can not handle global illuminations. Global illuminations generally

come from multiple bounces light propagation and produce advanced lighting effects such as

reflection, refraction and transparency. Currently, all rasterization-based rendering methods

adopt local shading and do not support secondary lighting effects. Consequently, when the

input image has reflection, the recovered texture is always not clean and entangled with

lighting effects.

On the other hand, while ray tracing based differentiable rendering methods supports

global illumination, they are generally time-consuming and memory inefficient. Current

pipelines [144, 186] are very heavy and can hardly be embedded in deep learning. That’s to

say, we cannot simply solve this problem by replacing rasterization to ray tracing in neural

networks.

Since both rasterization and ray-tracing methods have pros and cons, in this thesis we further

propose to develop a new hybrid differentiable rendering pipeline that takes advantage of

both sides [39]. It is lightweight to be incorporated in networks, as well as supports higher

order lighting effects to handle non-Lambertian surface in the images. We will discuss it in

Sec. 4

2.5 Structured Light Systems

Structured light triangulation is a widely used 3D scanning technique. Typically, a structured

light system is composed of a projector and a camera. As an active imaging system, the

projector will send light signals to the environment while the camera will capture images

with the active light signals. Such light signals encode spatial information. After capture,

we decode the depth of the scene by matching the images and the projected light signals.

2.5.1 Structured Light Triangulation

Fig. 2.3 illustrates how structured light triangulation works. To acquire the depth of the

object (e.g., the bunny), we first put it in front of the projector and camera. Next, we prepare

multiple images for the projector to project. The projected images are the illuminations of

the system, which are called patterns or codes. Specifically, assume we have K patterns to
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Figure 2.3: Structured Light System Overview.

project (Fig. 2.3 left). We will project each pattern sequentially and capture the correspond-

ing images. K patterns generate K captured images (Fig. 2.3, right). Thus, for the pixel q in

the camera, it has K captured intensities and forms a K dimensions feature, which we call

observation vector pq.

Our goal is to find the correspondence of pq in the projector pixels, namely, which pixel of

the projector directly illuminates q. In Fig. 2.3 it is pixel p in the projector that illuminates

pixel q in the camera. If the correspondence is known, we can then infer the depth of q

based on triangulation math. For example, we can shoot two rays from the projector and

the camera origins. The two rays will intersect in the 3D space, which is a 3D surface

point of the object. The depth can be further computed based on the intrinsic and extrinsic

parameters of the projector and the camera [83].

Here, we restrict the path to be direct path. It means the 3D surface point will be directly

illuminated by the projector pixel p and it also directly hits the camera pixel q. Only under

direct path can we apply the triangulation model. Such a light path is called direct light.

Sometimes, the pixel q might be illuminated by multiple pixels in the projector, due to

several reasons like camera or projector defocus, inter-reflection geometry, or subsurface

scattering. It then becomes a harder problem since we need to distinguish the direct path

from other indirect paths [74, 182].

It is also worth mentioning that both the projector and the camera will project and capture

2D images. Nevertheless, it doesn’t mean we have to match camera pixel q in the whole

projector image. The epipolar geometry [83] constrains the possible searching space of q to

be just one line of the projector image. For example, in Fig. 2.3, the projector origin, the
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camera origin, and the pixel q define a plane which intersects with the projector plane and

forms an epipolar line. If we only consider direct light, the possible correspondence pixels

of q must lie in that epipolar line [83]. As a result, it reduces the search space from 2D to

1D.

Moreover, it means that instead of projecting 2D patterns, we can simply project 1D patterns

since if we know the column correspondence, we can then infer the row correspondence

based on the epipolar line. In this thesis we mainly focus on designing 1D patterns, which

are the column patterns as they have different values for different columns but the same

value for the same column. Designing 2D patterns would be a promising future work.

2.5.2 Structured Light Patterns

Structured light can be treated as a variant of stereo matching. In stereo matching, two

or more cameras are adopted to capture images and we do matching between the images.

Alternatively, in structured light triangulation, we have a projector and a camera to project

patterns and capture images. Thus, we do matching between the patterns and images.

Compared to captured images, patterns are totally controllable light sources. That’s to say,

we can project patterns with distinguishable structures to help matching algorithms.

Moreover, images captured in stereo matching are generally 1-channel gray or 3-channel

RGB images, where each pixel contains at most 1-dimension or 3-dimension features. As

a result, each pixel contains too little information to find the correspondence. To improve

accuracy, people gather neighboring pixels together, conducting stereo matching between

patches [17]. In contrast, the number of the projected patterns is not limited. We can project

K patterns (for instance, K > 3) to collect more information for each pixel, which allows

us to achieve dense pixel-size matching.

Clearly, patterns play a vital role in structured light triangulation. The projected patterns

should contain rich structure information to maximize the correspondence matching accuracy.

Furthermore, we want to project as few patterns as possible to reduce the capture time. Such

two goals have derived a series of patterns designed in different ways, ranging from binary,

discrete [77, 3] to continuous patterns [293, 74, 175].

Discrete patterns [77, 3] fill each pixel with binary values, but require more patterns to

find the correspondence as each pixel contains only 1-bit information. Continuous patterns

assign each pixel with continuous values. For example, Phase Shifting (PS) patterns and

their variants [293, 74, 175] generally apply sinusoidal curves. We show two examples of

continuous patterns in Fig. 2.4. However, previous works generally design patterns based

on heuristic rules, which have limited or even no optimal guarantees. In this thesis we
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Micro Phase Shifting Patterns [74] Hamiltonian Patterns [78]

Figure 2.4: Structured Light Pattern Examples. We show two sets of manually designed structured light patterns (K = 4). Left is

Micro Phase Shifting (MPS) Patterns [74], where the frequency ω = 16. Right is Hamiltonian [78] designed by maximizing Hamiltonian

path.

show patterns can be automatically optimized instead of manually designed. Moreover,

such optimized patterns achieve much better correspondence accuracy than the hand-crafted

methods under various scenes and devices

2.5.3 Structured Light Decoding Algorithms

Since the patterns encode spatial information, the correspondence matching can be treated

as a decoding process, where we decode the correspondence for each pixel in the camera,

figuring out which projector column it comes from. In previous works, people have designed

a variety of patterns, and each has an accompanying decoding algorithm that fits the

properties of the patterns. Different patterns result in distinct decoding algorithms. Below

we introduce a very common phase shifting decoding algorithm for sinusoidal patterns [293].

Sinusoidal patterns are widely used in structured light triangulation. The patterns are

composed of sinusoidal curves with frequency ω. Assume we project cosine curves: y =

cos(2πωx). Here, each projector column has a specific phase. We compute the phase of

projector column p by:

φ(p) = 2πω
p

N
(2.5)

Next, we uniformly shift the patterns K times. As a result, the value of kth pattern in column

p is defined by:

ckp = cos(φ(p) + 2π
k

K
) (2.6)

Assume a pixel q in the camera is corresponded with projector column p, we describe the
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imaging formation model of pixel q as:

pk
q = aqc

k
p + bq

= aqcos(φ(p) +
2πk

K
) + bq

(2.7)

Here, a and b denote the albedo and the ambient light at pixel q. Eq. (2.7) says that if a

camera pixel q is corresponded to the projector column p and we project K phase shifted

patterns with frequency ω, the image intensity pk
q captured for the kth pattern would be the

albedo aq times the projector column intensity ckp plus the ambient light bq.

The unknown variables in this equation are the albedo aq, ambient light bq, and the phase

φ(p). To recover them, we can solve a linear system when K > 3:

pq = Mu (2.8)

In the linear system, pq are the observed values while vector u = [bq, aqcos(φ(p)), aqsin(φ(p))]
T

is rearranged unknown variables. M is a K × 3 coefficients matrix and the kth row of M

is
[
1, cos(2π k

K
),−sin(2π k

K
)
]
. If u is known, we can further compute aq, bq, and φ(p),

respectively.

Note that when ω > 1, we cannot recover unique column from phase since more than one

column will have the same phase (Recall that φ(p) = 2πω p
N

). To resolve this ambiguity, we

project patterns with multiple frequencies to decide column position.

Phase shifting has good performance in the idealized condition, e.g. projector and camera

are in focus and there is no indirect light. However, when the camera pixel receives light

from multiple projector columns due to defocus or global illuminations, the recovered phase

will be different from the actual one. Besides phase shifting patterns, people also develop

different decoding algorithms for different patterns. In this thesis, we provide a general,

near-optimal decoding algorithm that can be applied for all the patterns, which we detail in

Chapter 6.



Chapter 3

An Interpolation-based Differentiable

Renderer

Many machine learning models operate on images, but ignore the fact that images are

2D projections formed by 3D geometry interacting with light, in a process called render-

ing. Enabling ML models to understand image formation might be key for generalization.

However, due to an essential rasterization step involving discrete assignment operations,

rendering pipelines are non-differentiable and thus largely inaccessible to gradient-based

ML techniques. In this chapter, we present DIB-R, a differentiable rendering framework

which allows gradients to be analytically computed for all pixels in an image. Key to our

approach is to view foreground rasterization as a weighted interpolation of local properties

and background rasterization as a distance-based aggregation of global geometry. Our

approach allows for accurate optimization over vertex positions, colors, normals, light

directions and texture coordinates through a variety of lighting models. We also apply

DIB-R in single-view 3D object reconstruction tasks, which can be trained exclusively using

2D supervision. Compared to prior works, DIB-R demonstrates more faithful shape and

realistic texture recovery, achieving new state-of-the-art results.

3.1 Introduction

3D visual perception contributes invaluable information when understanding and interacting

with the real world. However, the raw sensory input to both human and machine visual

processing streams are 2D projections (images), formed by the complex interactions of 3D

geometry with light. Enabling machine learning models to understand the image formation

process could facilitate disentanglement of geometry from the lighting effects, which is key

27
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in achieving invariance and robustness.

The process of generating 2D images from 3D models is called rendering. Rendering is

a well understood process in graphics with different algorithms developed over the years.

These fall into different categories based on how the light transport is being modelled.

Rasterization-based techniques are the fastest as they only geometrically project 3D objects

onto the image plane but do not model more advanced lighting effects such as shadows and

indirect light. Ray tracing algorithms are able to handle these effects via more complex

optical simulation but require high computation and memory cost.

Making rendering process amenable to deep learning requires us to differentiate rendering

pipelines. While ray tracing is too slow, most of learning based differentiable render-

ing works focus on rasterization-based renderers. Existing approaches typically compute

approximate gradients [157, 122] which impacts performance. Furthermore, current differ-

entiable rasterization methods fail to support differentiation with respect to many informative

scene properties, such as textures and lighting, leading to low fidelity rendering, and less

informative learning signals [122, 154] .

In this chapter, we present DIB-R, an approach to differentiable rendering, which, by

viewing rasterization as a combination of local interpolation and global aggregation, allows

for the gradients of this process to be computed analytically over the entire image. When

performing rasterization of a foreground pixel, similar to [62], we define its value as

a weighted interpolation of the relevant vertex attributes of the foreground face which

encloses it. To better capture shape and occlusion information in learning settings we

define the rasterization of background pixels through a distance-based aggregation of global

face information. With this definition the gradients of produced images can be passed

back through a variety of vertex shaders, and computed with respect to all influencing

vertex attributes such as positions, colors, texture, light; as well as camera positions. Our

differentiable rasterization’s design further permits the inclusion of several well known

lighting models.

More importantly, DIB-R can be embedded in neural networks to predict 3D object properties

from a single view 2D image. Traditional supervised methods always require preparing 3D

ground truth to supervise the training, which is hard to acquire. Following the “analysis

by synthesis” principle, DIB-R is able to render 3D properties back into images and train

the networks via minimizing the loss between the rendered image and the input image.

Therefore, it supports 3D prediction without any 3D supervision, reducing the expensive

data demand. We showcase DIB-R in challenging machine learning applications focusing

on 3D shape and texture recovery, where we achieve both numerical and visual state-of-the
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art results.

3.2 Related Work

OpenDR [157], the first in the series of differentiable rasterization-based renderers, ap-

proximates gradients with respect to pixel positions using first-order Taylor approximation,

and uses automatic differentiation to back-propagate through the user-specified forward

rendering program. In this approach, gradients are non-zero only in a small band around

the edges of the mesh faces, which is bound to affect performance. [122] hand-designs an

approximate gradient definition for the movement of faces across image pixels. The use of

approximated gradients, and lack of full color information results in noisy 3D predictions,

without concave surface features. To analytically compute gradients, Paparazzi [152] and its

following-up [153], propose to back-propagate the image gradients to the face normals, and

then pass them to vertex positions via chain rule. However, their gradient computation is

limited to a particular lighting model (Spherical Harmonics), and the use of face normals

further prevents their approach to be applied to smooth shading. [198] designs a C∞ smooth

differetiable renderer for estimating 3D geometry, while neglecting lighting and texture.

[240] supports per-vertex color and approximates the gradient near boundary with blurring,

which produces wired effects and can not cover the full image. [98] focus on rendering

of point cloud and adopts a differentiable reprojection loss to constrain the distribution of

predited point clouds, which loses point connectivity and cannot handle texture and lighting.

Concurrent to our work, SoftRas [154] first introduces a probabilistic formulation of ras-

terization, where each pixel is softly assigned to all faces of the mesh. While inducing a

higher computational cost, this clever trick allows gradients to be computed analytically. Its

shading model incorporates vertex colors and supports texture and lighting theoretically.

However, in [154] each pixel would be influenced by all the faces and thus might result into

more blurry predictions. The key difference between [154] and ours is that, similarly to

[62], we specify each foreground pixel to the most front face and compute analytic gradients

of foreground pixels by viewing rasterization as interpolation of local mesh properties. This

allows our rendering effect the same as OpenGL pipeline and naturally supports optimization

with respect to all vertex attributes, and additionally enables the extension of our pipeline to

a variety of different lighting models. We demonstrate our design achieves better shape and

texture prediction. In contrast to [62], which also uses an interpolation-based approach, but

providing no learning signals to the background pixels, our rasterization module allows for

soft assignment of background pixels through an aggregation of global features, enabling

better supervision signals in shape deformation, especially for the occluded geometry.
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3.3 Differentiable Interpolation-based Renderer

In this section, we introduce our DIB-R. Treating foreground rasterization as an interpolation

of vertex attributes allows realistic images to be produced, whose gradients can be fully back-

propagated through all predicted vertex attributes, while defining background rasterization

as an aggregation of global information during learning allows for better understanding of

shape and occlusion.

3.3.1 Rendering Pipeline

Many popular rendering APIs, such as OpenGL [5] and DirectX3D [2], decompose the

process of rendering 3D scenes into a set of sequential user-defined programs, referred to

as shaders. While there exist many different shader types, the vertex, rasterization, and

fragment shaders the three most important steps for establishing a complete rendering

pipeline. When rendering an image from a 3D polygon mesh, first, the vertex shader projects

each 3D vertex in the scene onto the defined 2D image plane. Rasterization is then used to

determine which pixels are covered and in what manner, by the primitives these vertices

define. Finally, the fragment shader computes how each pixel is colored by the primitives

which cover it.

The vertex and fragment shaders can easily be defined such that they are entirely dif-

ferentiable. By projecting 3D points onto the 2D image plane by multiplying with the

corresponding 3D model, view and projection matrices, the vertex shader operation is

directly differentiable. In the fragment shader, pixel colors are decided by a combination of

local properties including assigned vertex colors, textures, material properties, and lighting.

While the processes through which this information are combined can vary with respect

to the chosen rendering model, in most cases this can be accomplished through the ap-

plication of fully differentiable arithmetic operations. All that remains for our rendering

pipeline is the rasterization shader, which presents the main challenge, due to the inherently

non-differentiable operations which it requires. In the following section we describe our

method for rasterizing scenes such that the derivatives of this operation can be analytically

determined.

3.3.2 Differentiable Rasterization

Consider first only the foreground pixels that are covered by one or more faces. Here,

in contrast to standard rendering, where a pixel’s value is assigned from the closest face

that covers it, we treat foreground rasterization as an interpolation of vertex attributes[62].

For every foreground pixel we perform a z-buffering test [69], and assign it to the closest
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Figure 3.1: Illustration of Our Differentiable Rasterization.

covering face. Each pixel is influenced exclusively by this face. Shown in Fig. 3.1, a pixel

at position ~pi is covered by face fj with three vertices ~v0, ~v1, ~v2, and each vertex has its

own attributes: u0, u1, u2, respectively. ~pi and ~v0, ~v1, ~v2 are 2D coordinates on the image

plane while u0, u1, u2 are per-vertex features. We compute the value of this pixel, Ii, using

barycentric interpolation of the face’s vertex attributes:

Ii = ω0u0 + ω1u1 + ω2u2 , (3.1)

where the barycentric weights ω0, ω1 and ω2 are calculated over the vertex and pixel positions

using a differentiable functions Ω (provided in Appendix A.1):

ωk = Ωk(~v0, ~v1, ~v2, ~pi) ,

k = 0, 1, 2 .
(3.2)

While barycentric interpolation has been widely used in OpenGL pipeline, we derive its

differentiable reformulation. With this approach, it is easy to back-propagate gradients from

a loss function L, defined on the output image, through pixel value Ii to vertex attributes uk

and vertex positions ~vk via chain rule:

∂Ii
∂uk

= ωk ,

∂L

∂uk

=
N∑

i=1

∂L

∂Ii

∂Ii
∂uk

,

(3.3)

∂Ii
∂~vk

=
2∑

m=0

∂Ii
∂ωm

∂Ωm

∂~vk
,

∂L

∂~vk
=

N∑

i=1

∂L

∂Ii

∂Ii
∂~vk

,

(3.4)
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where N is the number of pixels covered by the face.

Now consider pixels which no faces cover, which we refer to as background pixels. Notice

that in the formulation above, the gradients from background pixels cannot back-propagate

to any mesh attributes. However, the background pixels provide a strong constraint on the

3D shape, and thus the gradient from them provide a useful signal when learning geometry.

Take, for example, pixel ~pi′ which lies outside of face fj , in Fig 3.1. We want this pixel

to still provide a useful learning signal. In addition, information from occluded faces are

entirely ignored despite their potential future influence.

Inspired by the silhouette rasterizetion of [154], we define a distance-related probability Aj
i′ ,

that softly assigns face fj to pixel ~pi′ as:

Aj
i′ = exp(−

d(~pi′ , fj)

δ
) , (3.5)

where d(~pi′ , fj) = minv∈fj ||~pi′ − v||22 is the distance function from pixel ~pi′ to face fj in the

projected 2D space. Similarly, our distance function also adopts square distance from the

pixel ~pi′ to the closest point in the face fj . The image coordinate of ~pi′ would be normalized

into [-1, 1] to avoid bias from different image resolutions. δ is a hyper-parameter that

controls the smoothness of the probability. We then combine the probabilistic influence of

all faces on a particular pixel in the following way:

Ai′ = 1−
n∏

j=1

(1− Aj
i′) , (3.6)

where n is the number of all the faces. The combination of all Ai′ into their respective pixel

positions makes up our alpha channel prediction. With definition, any background pixel can

pass its gradients back to positions of all the faces (including those ignored in the foreground

pixels due to occlusion) with influence proportional to the distance between them in alpha

channel. As all foreground pixels have a minimum distance to some face of 0, they must

receive an alpha value of 1, and so gradients will only be passed back through the colour

channels as defined above.

We show an rendering example in Fig. 3.2. Given a 3D mesh (Fig. 3.2, a), we render it

into an RGBA image, where the RGB image is shown in Fig 3.2, b and the silhouette(alpha

channel) is shown in Fig. 3.2, c.

The silhouette is derived from our probabilistic distance function (Eq. (3.5) & Eq. (3.6)). The

hyper-parameter δ in Eq. (3.5) is used to control the smoothness of the distance probability,

where higher δ (Fig. 3.2, d) makes the silhouette blurry and lower δ (Fig. 3.2, e) will make
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Illustration of Our Rendering Pipeline. (a) 3D mesh. (b) Rendered RGB image. (c) Rendered silhouette image with δ as

1.5e-4. (d) Rendered silhouette with δ as 1.5e-3. (e) Rendered silhouette with δ as 1.5e-5. (f) Rendered silhouette from SoftRas[154]

the silhouette sharp. With this term we balance the information back propagated to the faces,

and the sharpness of the predicted silhouette. In all of our experiments we set δ to 1.5e-4

(Fig. 3.2, c), as a middle ground between the two.

We also compare our silhouette with SoftRas[154] (Fig. 3.2, f), where a sigmoid function is

used to define their probabilistic distance function. However, the sigmoid function outputs

0.5 if a pixel lies on the edge of a face, leading many dim lines near face edges, which

provides a poorer learning signal when comparing to ground truth silhouettes. Instead, our

solution generates much smooth silhouettes, resulting in better shape prediction.

In summary, foreground pixels, which are covered by a specific face, back-propagate

gradients though interpolation while background pixels, which are not covered by any face,

softly back propagate gradients to all the faces based on distance. In this way, we can

analytically determine the gradients for all aspects of our rasterization process and have

achieved a fully differentiable rendering pipeline.

3.3.3 Rendering Models

In Equation (3.1), we define pixel values Ii by the interpolation of abstract vertex attributes

u0, u1 and u2. As our renderer expects a mesh input, vertex position is naturally one such

attribute, but we also simultaneously support a large array of other vertex attributes. In the

following section we outline the vertex attributes the rasterization can interpolate over and

then back-propagate through, and the rendering models which the support of these attributes

allows.
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Basic Models Our DIB-R supports basic rendering models where we draw the image directly

with either vertex colors or texture. To define the basic colours of the mesh we support

vertex attributes as either vertex colour or uv coordinates over a learned or predefined texture

map. Pixel values are determined through bi-linear interpolation of the vertex colours, or

projected texture coordinates, respectively.

Lighting Models We also support 3 different local illumination models: Phong [200], Lam-

bertian [129] and Spherical Harmonics [206], where the lighting effect is related to normal,

light and eye directions.

To unify all the different lighting models, we decompose image color, I , into a combination

of mesh color Ic and lighting factors Id and Is:

I = IdIc + Is . (3.7)

Ic denotes the interpolated vertex colour or texture map values extracted directly from the

vertex attributes without any lighting effect, Id and Is donate the lighting factors decided

by specific lighting model chosen, where Id will be merged with mesh colour and Is is

additional lighting effect that does not rely on Ic. We first interpolate light-related attributes

such as normals, light or eye directions in rasterization, then apply different lighting models

in our fragment shader.

Phong and Lambertian Models: In the Phong Model, image colour I is decided by vertex

normals, light directions, eye directions and material properties through the following

equations:

Id = kd(ωL · n)

Is = ks(ωR · ωV )
α ,

(3.8)

where, kd, ks and α are: diffuse reflection, specular reflection, and shininess constants. ωL,

n, ωV and ωR are directions of light, normal, eye and reflectance, respectively, which are

all interpolated vertex attributes. This results in the following definition for image colour

under the Phong model:

IPhong = Ickd(ωL · n) + ks(ωR · ωV )
α . (3.9)

As a slight simplification of full Phong shading we do not adopt ambient light and set

light colour at a constant value of 1. The Lambertian model can be viewed as a further

simplification of the Phong Model, where we only consider diffuse reflection, and set Is as

zero:

ILambertian = Ickd(ωL · n) . (3.10)
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Figure 3.3: DIB-R Sanity Check. We perform a sanity check for DIB-R by running optimization over several mesh attributes. We

optimize w.r.t. different attributes in different rendering models: (a,b) vertex position and color in the vertex color rendering model, (c,d)

texture and texture coordinates in the texture rendering model, (e,f) vertex and camera position in Lambertian model, (g) lighting in the

Spherical Harmonic model, (h) material in the Phong model.

Vextex attribute Vextex Shader Rasterization Fragment attribute Fragment Shader

Vertices

Vertex Colors Camera Pixel Colors Color Model

Tex Coords Model Matrix Differentiable- Pixel Tex Coords Texture Model

Vertex Normals View Matrix Rasterizer Pixel Normals Lambertian Model

Light Directions Projection Matrix Pixel Light Directions Spherical harmonic Model

Eye Directions Pixel Eye Directions Phong Model

Table 3.1: Differentiable vertex attributes and rendering models supported by DIB-R. With our method, we can differentiate most common

attributes (Column 1 & 4, Vertex attributes and Fragment attributes) and apply it into multiple rendering models (Column 5, Rendering

Models).

Spherical Harmonic Model: Here, Id is determined by normals while Is is set to 0:

ISH = Ic

n−1∑

l=0

l∑

m=−l

wm
l Y

m
l ( ~N) , (3.11)

where Y l
m is an orthonormal basis for spherical functions analogous to a Fourier series where

l is the frequency and wm
l is the corresponding coefficient for the specific basis. To be

specific, we set l as 3 and thus predict 9 coefficients in total. By adjusting different wm
l ,

different lighting effects are simulated. For more details please refer to [206], Section 2.

Supported Mesh Attributes Our method simultaneously support a large array of vertex at-

tributes. In Table 3.1 we highlight the various rendering settings and scene attributes which

our rendering pipeline supports.

3.3.4 Optimization

The design of our differentiable renderer allows for optimization over all defined vertex

attributes and a variety of rendering models, which we perform a sanity check for in Fig. 3.3.
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Figure 3.4: Full Architecture of Our Approach. Given an input image, we predict geometry, light, and texture. During training we

render the prediction with a known camera. We use 2D image loss between input image and rendered prediction to to train our prediction

networks. Note that the prediction can vary in different rendering models, e.g. texture can be vertex color or a texture map while the

lighting can be Lambertian, Phong or Spherical Harmonics.

Here, we optimize the L1 loss between the target images (second row) and predicted rendered

images. Among rasterization-based renderers we are the first to support optimization of all

vertex attributes.

3.4 Single-view 3D Object Reconstruction

We demonstrate the effectiveness of our framework through challenging ML applications:

3D shape and texture recovery from a single view 2D image. We validate on different

rendering settings, which we detail below.

3.4.1 Basic Model: Predicting Geometry and Color

We first apply our approach to the task of predicting a colored 3D mesh from a single image

using only 2D supervision. Taking as input a single RGBA image, with RGB values I and

alpha values M (also called silhouette or visibility map), a Convolutional Neural Network

F , parameterized by learnable weights ϑ, predicts per-vertex position in a mesh S with a

specified topology (sphere in our case), together with per vertex color value C:

{S,C} = F (I,M ;ϑ) (3.12)

Network Structure Specifically, We adopt the encoder-decoder framework as in [122, 154].

The encoder contains 3 convolutional layers and 3 linear layers, each convolutional layer

has 64/128/256 channels with kernel size 5 and stride length of 2. The output feature map

of the convolutional layers is flatten to 16384-d vector and fed to the first linear layer. Each

linear layer has 1024 neurons. We add BatchNorm [99] to all the convolutional layers and
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the first and second linear layers. ReLU [127] activation function is used after each layer.

We have two decoders, one for vertex position, the other for vertex color. Each decoder

has three fully-connected layers, each layer has 1024/2048/1926 neurons, respectively. We

directly predict position and color for each vertex. The template sphere has 632 vertices and

1280 faces. We train every model until converge for around 2 days in V100 GPU.

Loss Function We then use a renderer R (specified by shader functions, in the basic model

we adopt vertex color shader.) to render the mesh (S,C) predicted by F (I,M ;ϑ) to a 2D

silhouette M̃ and the colored image Ĩ:

{M̃, Ĩ} = R(S,C) . (3.13)

When training this system we separate our losses with respect to the silhouette prediction,

M̃ , and the color prediction, Ĩ . We use an Intersection-Over-Union (IOU) loss for the

silhouette prediction [122]:

LIOU(ϑ) = 1−
||M ⊙ M̃ ||1

||M + M̃ −M ⊙ M̃ ||1
, (3.14)

where ⊙ denotes element-wise product. Note that {S,C} = F (I;ϑ), {Ĩ , M̃} = R(v, S, C)

depend on the network’s parameters ϑ and render on camera pose v via our DIB-R. We

further use an L1 loss for the colored image:

Lcol(ϑ) = ||I − Ĩ||1 . (3.15)

We also regularize the mesh prediction with a smoothness loss [122, 154], Lsm, and a Lapla-

cian loss [154, 232, 260], Llap, which penalize the difference in normals for neighboring

faces and the change in relative positions of neighboring vertices, respectively. Let E be the

set of all edges, and θi be the angle between two neighbour faces, which share the edge ei;

the smoothness loss is then:

Lsm =
∑

ei∈E

(cos(θi) + 1)2, (3.16)

which regularizes neighboring faces to have the similar normal directions, encouraging a

smoother predicted mesh. Our Laplacian loss design follows [260]. For each vertex v, let
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N (v) be the neighbour vertices of v, then the Laplacian loss is defined as:

Llap = (δv −
1

||N (v)||

∑

ṽ∈N (v)

δṽ)
2, (3.17)

where δv is the predicted movement of vertex v. The Laplacian loss forces neighborhoods to

move consistently [260]. The final loss function is then a weighted sum of these four losses:

L1 = LIOU + λcolLcol + λsmLsm + λlapLlap . (3.18)

Multi-view Consistency When rendering our predicted mesh, we not only use the ground

truth camera positions and compare against the original image, but also render from a random

second view and compare against the ground truth renderings from this new view [122, 154].

This multi-view loss ensures that the network does not only concentrate on the mesh

properties in the known perspective.

Mathematically, let us assume we have two images I1 and I2 from two different poses

(cameras noted as v1 and v2) of the same car. We can then predict shape and vertex color for

each image, noted as S1, C1 and S2, C2. The multiview consistency image loss is given by:

LMV
col =‖I1 −R(v1, S1, C1)‖1+

‖I2 −R(v2, S1, C1)‖1+

‖I1 −R(v1, S2, C2)‖1+

‖I2 −R(v2, S2, C2)‖1 .

(3.19)

We predict shape and vertex color in canonical views. The silhouette loss is applied in the

same way. Besides the loss in image space, there are no more consistency regulations, i.e.,

we did not add any loss term to force S1, S2 or C1,C2 to be the same. Moreover, while more

views would provide more constraints, we find that two views are enough. We thus use two

views in all our experiments.

3.4.2 Lighting Models: Predicting Geometry, Texture, and Light

We next apply our method to an extension of the previous task, where a texture map T is

predicted instead of vertex colors, and lighting information L is regressed to produce more

realistic predictions. Our neural network F is modified to predict vertex positions S, a

texture map T , and various lighting information L, depending on the lighting model used.

Our full learning pipeline is shown in Fig. 3.4. Note that, our loss is mainly defined in the

image space. Therefore, we are able to predict any 3D properties in an unsupervised way, as
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long as it is supported by DIB-R. We apply the same losses as in the previous section.

Network Structure We adopt a UNet [211] model for texture prediction, the network archi-

tecture is similar to [116], except we add Batch Normalization to every convolutional layer

and we use skip connections. We also replace all ReLu layers in UNet [211] to be Leaky

Relu [275]. We exploit a shallow fully connected encoder for lighting parameters prediction.

The encoder contains 1 linear input layer and 2 1D-residual linear layers [85] and 1 linear

output layer. Output image feature for first three linear layers contains 1024/1024/1024

channels. For Phong model, the final linear layer outputs 4 lighting parameters where we

try to learn the light direction together with the material shininess constant. For Spherical

Harmonic model, the final linear layer outputs 9 coefficients of Spherical Harmonic basis.

Photo-realism Enhancement To increase the photo-realism of our predictions, we also lever-

age an adversarial framework [66, 173]. This is accomplished by training a discriminator

network, D(;φ), to differentiate between real images, I , and rendered mesh predictions, Ĩ ,

while our prediction network, F , simultaneously learns to make these predictions. We adopt

the W-GAN [15, 73] loss formulation1:

Ladv(ϑ,φ) = EI

[

D(I;φ)−D(Ĩ;φ)
]

Lgp(φ) = E
Ĩ

[

(||∇ĨD(Ĩ;φ)||2 − 1)2
]

.
(3.20)

Similar to [101, 262, 279], we additionally use a perceptual loss and discriminator feature

matching loss to make training more stable:

Lper(ϑ,φ) = EI

[
MV∑

i=1

1

NV
i

||V i(I)− V i(Ĩ)||1 +
MD∑

i=1

1

ND
i

||Di(I;φ)−Di(Ĩ;φ)||1

]

,

(3.21)

where V i denotes the i-th layer of a pre-trained VGG network with NV
i elements, Di

denotes the i-th layer in the discriminator D with ND
i elements. The numbers of layers

in network V and D are MV and MD, respectively. As for the network structure of the

discriminator, we inherit basic discriminator architecture from DC-GAN [205]. We use

Instance normalization [250], and Leaky-ReLU [163]. Our full objective function for this

task is then:

ϑ∗,φ∗ = argmin
ϑ

(

argmax
φ

(λadvLadv − λgpLgp) + λperLper + L1

)

. (3.22)

1We denote EI , EI∼P(I)
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3.5 Experiments

Dataset As in [122, 154, 260], our dataset comprises 13 object categories from the ShapeNet

dataset [33]. We use the same split of objects into our training and test set as [260]. We

render each model from 24 different views to create our dataset of RGBA images used for

2D supervision. To demonstrate the multiple rendering models which DIB-R supports, we

render each image with 4 different rendering models: 1) basic model without lighting effects,

2) with Lambertian reflectance, 3) with Phong shading, and 4) with Spherical Harmonics.

We provide details are in each sections below.

3.5.1 Basic Model: Predicting Geometry and Color

Experimental Settings In our experiments, we set λcol = 1, λsm = 0.001, and λlap = 0.01.

We train one network on all 13 categories. The network is optimized using the Adam

optimizer [124], with α = 0.0001, β1 = 0.9, and β2 = 0.999. The batch size is 64, and

the dimension of input image is 64 × 64. We compare our method with the two most

related differentiable renderers, N3MR [122] and SoftRas [154], using the same network

configurations, training data split and hyperparameters. For quantitative comparison, we first

voxelize the predicted mesh into 323 volume using a standard voxelization tool binvox2

provided by ShapeNet [33] and then evaluate using 3D IOU, a standard metric in 3D

reconstruction.

We additionally measure the F-score following [243] between the predicted mesh and

ground truth mesh. Specifically, for F-score, we first uniformly sample 2500 points from the

predicted mesh and ground truth mesh. For every predicted point, if the minimum distance

from it to any ground truth point is less than a threshold, we treat it as a true positive,

otherwise, it is false positive. This allows us to compute a precision score, p. For every

ground truth point, if the minimum distance from it to every predicted point is less then a

threshold, we treat this as a true positive, otherwise, it is a false negative, and so we can

compute a recall score r. The F-score is then computed via: 2 ∗ (p ∗ r)/(p+ r). We set the

threshold to 0.02 and normalize the shape to be in [−0.45, 0.45] in our experiments. The

tolerance for F-score is set to 0.02, where the 3D model is normalized with radius 0.45.

Dataset Details As mentioned before, we use 13 object categories from the ShapeNet

dataset3 [33], version 1. The training set contains 35007 objects, and test set contains 8752

different objects. For each object, we first normalize the object such that the center of

the object is in the origin and all the vertexes lie in range [−0.45, 0.45], we then render

2http://www.patrickmin.com/binvox/
3www.shapenet.org
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Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

N3MR [122] 58.5/80.6 45.7/55.3 74.1/46.3 71.3/53.3 41.4/39.1 55.5/43.8 36.7/46.4 67.4/35.0 55.7/83.6 60.2/39.2 39.1/46.9 76.2/74.2 59.4/66.9 57.0/54.7

SoftR. [154] 58.4/71.9 44.9/49.9 73.6/41.5 77.1/51.1 49.7/40.8 54.7/41.7 39.1/39.1 68.4/29.8 62.0/82.8 63.6/39.3 45.3/37.1 75.5/68.6 58.9/55.4 59.3/49.9

Ours 57.0/75.7 49.8/55.6 76.3/52.2 78.8/53.6 52.7/44.7 58.8/46.4 40.3/45.9 72.6/38.8 56.1/82.0 67.7/43.1 50.8/51.5 74.3/73.3 60.9/63.2 61.2/55.8

Table 3.2: Results on single image 3D object prediction reported with 3D IOU (%) / F-score (%).

Figure 3.5: Qualitative Results on Single-view 3D Object Reconstruction. First and fifth columns are the ground-truth image, the

second and sixth columns are the prediction from our model, the third and seventh columns are results from SoftRas [154], the rest two

columns are results from N3MR [122].

each object using Blender4 with 24 different camera views. The camera views are equally

distributed in a 360 degree ring around each object. The lighting direction in this dataset is

set to uniform light. This results in 840k images for training and 210k images for testing.

Results Table 3.2 provides an evaluation. Our DIB-R significantly outperforms other

methods, in almost all categories on both metrics. We surpass SoftRas/N3MR with 1.92/4.23

points and 5.98/1.23 points in terms of 3D IOU and F-score, respectively. As the only

difference in this experiment is the renderer, the quantitative results demonstrate the superior

performance of our method. Qualitative examples are shown in Fig 3.5. Our DIB-R faithfully

reconstructs both the fine-detailed color and the geometry of the 3D shape, compared to

SoftRas and N3MR. We provide more results in Fig. 3.6. We further provide more results

from different view angles on Figure 3.7, demonstrating the high fidelity our model achieves.

3.5.2 Lighting Models: Predicting Geometry, Texture and Light

Our model supports various lighting models, ranging from Lambertian to Phong and Spheri-

cal Harmonic (SH). We first validate the Lambertian model and qualitatively compare with

N3MR [122] by measuring the reconstruction error on rendered images under identical

settings.

Experimental settings As mentioned before, we adopt a UNet [211] architecture to predict

texture maps. Since we deform a mesh from a sphere template, similar to [116], we use

2D spherical coordinates as the UV coordinates. The dimension of the input image and

predicted texture is 256×256. We use a 6-layer ResNet [85] architecture to regress the XYZ

directions of light at each vertex from the features at the bottleneck layer of UNet network.

4https://www.blender.org/
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Figure 3.6: Qualitative Comparisons on Single-view 3D Object Reconstruction. First column is the ground-truth image, the second

and third columns are the prediction from our model, the forth and fifth columns are results from SoftRas [154], the last two columns are

results from N3MR [122].
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Figure 3.7: Qualitative Results on Single-view 3D Object Reconstruction from Different Views. The first column is the ground truth,

the rest columns are reconstructed object rendered in different views.
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Models Texture Lighting Text. + Light

N3MR [122] 0.03640 23.5585 0.02208

Ours 0.02179 9.7096 0.01362

Table 3.3: Results for texture and light prediction. Tex-

ture/Texture+Light shows L1 loss on the rendered image for tex-

ture/texture+lighting. Lighting shows the angle between predicted

lighting and GT lighting. Lower is better.

Figure 3.8: Qualitative Examples for 3D Shape, Texture, and Light Prediction. Col. 1-3: 1) GT rendered image with texture+light,

2) texture only rendered image, 3) light map. Col 4-6: our predictions. Col: 7-9: N3MR [122]

We use the same learning rate and loss rate as basic model. In the following sections, we

only perform experiments on the car class, which has more diverse texture.

Dataset Details To learn diverse texture maps, we select to learn with the car category due to

its large diversity of texture. In the experiments where we compare with N3MR, we choose

Lambertian reflectance model as our rendering model since N3MR only supports such one

lighting model. Instead of Blender, We choose to use OpenGL5 to render data since we

could easily turn on or turn off light effect in OpenGL shaders to separate the texture and

light. We render car models into images both with and without light effect in Lambertian

model and randomly sample the lighting direction over a quarter sphere where we constrain

the light illuminates the upper part of the objects.

Results We provide results in Table 3.3 and Fig 3.8. As ShapeNet does not provide

ground-truth UV texture, we compute the L1 difference on the rendered image using the

predicted texture/texture+lighting and the GT image. Compared to N3MR [122], we achieve

significantly better results both quantitatively and qualitatively. We obtain about 40% lower

L1 difference on texture and 60% smaller angle difference on lighting direction than N3MR.

We also obtain significantly better visual results, in terms of the shape, texture and lighting.

We provide more results in Fig. 3.9.

3.5.3 Texture and Lighting Results with Adversarial Loss

We now evaluate the effect of adding the adverserial loss to the previous experiment. We

demonstrate DIB-R with Phong and Spherical Harmonic lighting models. For Phong model

we keep diffuse and specular reflectance constant as 1 and 0.4 respectively and predict

lighting direction together with shininess constant α while for Spherical Harmonic model

we predict 9 coefficients.

5https://www.opengl.org/
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Figure 3.9: Qualitative Comparison of Texture and Light with N3MR [122]. We show 9 examples. In each example, Purple

rectangle: Input image. First Row: Ground Truth. Second Row: Prediction with DIB-Render. Third Row: Prediction of N3MR. First

column: Texture and Light. Second column: Texture. Third column: Light. We demonstrate significantly better shape, texture and

lighting predictions.

Experimental settings We first train the model without adversarial loss for 50000 iterations

then fine-tune it with adversarial loss for extra 15000 steps. We set λadv = 0.5, λgp = 0.5,

and λper = 1. We fix the learning rate for the discriminator to 1e−5 and optimize using

Adam [124], with α = 0.0001, β1 = 0.5, and β2 = 0.999.

Dataset Details Similarly, for the experiment with adversarial Loss, since we adopting Phong

and Spherical Harmonic lighting models in our learning framework, we use OpenGL render

to render images with Phong and Spherical Harmonic lighting models respectively and train

the neural network with the corresponding dataset.
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Figure 3.10: Qualitative Comparison of Texture and Light for the Model Trained w. and w.o. Adversarial Loss. We show two

examples. In each example, Purple rectangle: Input image. First Row: Ground Truth. Second Row: Prediction with adversarial loss.

Third Row: Prediction without adversarial loss. First column: Texture and Light. Second column: Texture. Third column: Light.

Forth to Ninth column: Renderings from different views.

Figure 3.11: Qualitative Examples for 3D Shape, Texture and Light Prediction for Spherical Harmonic Model. We show three

examples. In each example, Purple rectangle: Input image. First Row: Ground Truth. Second Row: Our Predictions. First column:

Texture and Light. Second column: Texture. Third column: Light. Forth to Ninth column: Texture from different views.
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Figure 3.12: Qualitative Examples for 3D Shape, Texture and Light Prediction for Phong Model. We show four examples. In each

example, Purple rectangle: Input image. First Row: Ground Truth. Second Row: Our Predictions. First column: Texture and Light.

Second column: Texture. Third column: Light. Forth to Ninth column: Texture from different views.

Adversarial Loss Effect We first show qualitative comparison for model trained with and

without adversarial loss in Fig.3.10. We adopt SH lighting models and find the conclusion

aslo applies to Phong model. Clearly, adversarial loss makes the prediction more faithful by

introducing more high frequency texture details.

Qualitative Results for SH Lighting Model We show more qualitative results of Spherical

Harmonic lighting model in Fig. 3.11. Notice that the network disentangles texture and light

quite well, and produces accurate 3D shape.

Qualitative Results for Phong Lighting Model Lastly, we show in qualitative results of Phong

lighting model Fig. 3.12. Our predictions recover the correct shape, realistic texture map

and reasonable lighting directions.
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Figure 3.13: Light & Texture Separation Study for Varying Views. We show three sets of cars. In each set, we show predictions

from different views. Purple rectangle: Input image. First Row: Ground Truth. Second Row: Our Predictions. First column: Texture

and Light. Second column: Light. We show our model have consistent predictions when the input images are with same light and texture

but varying views.

3.5.4 Disentanglement Study

Varying views and Lighting Directions To further study texture and light disentanglement, we

choose Phong lighting model and render test input images with the same car model but vary

the views (Fig. 3.13) or lighting direction (Fig. 3.14).

Fig. 3.13 fixes the lighting and texture but render the car in different camera views, to

illustrate consistency of prediction across viewpoints. Our model predicts consistent results

under different views. Fig. 3.14 renders images with different lighting directions. Similarly,

our model predicts faithful shapes and textures with correct lighting directions.

Shininess Prediction We find our model predict constant shininess α, which didn’t reflect the

value in GT images. As shown in Fig. 3.12, Fig. 3.13, and Fig. 3.14, almost all the predicted

specular lobes have similar shapes(which indicate constant α) and are not similar to the lobe

in GT.

Further examples are provided in Fig. 3.15 to evaluate effects of specular. We render images

with different shininess constants, but fixed lighting direction, texture and camera view.

Here, we find that our model is not able to accurately predict the shininess constant. In

this case, the texture map erroneously compensates for the shininess effect. This might be
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Figure 3.14: Light & Texture Separation Study for Varying Lighting Directions. We show three sets of cars. In each set, we show

predictions from different lighting directions. Purple rectangle: Input image. First Row: Ground Truth. Second Row: Our Predictions.

First column: Texture and Light. Second column: Light. Third column: Texture. We show our model have consistent predictions when

the input images have varying lighting directions.

because the shininess effect is not significant enough to be learned by a neural network

though 2D supervision. This is one limitation in DIB-R which we address in next chapter.

O
urs

G
T

Figure 3.15: Shininess Separation Study. We render the same car with two shininess values, as shown in left 3 columns and right 3

columns. Purple rect: Input image. First Row: Ground Truth. Second Row: Our Predictions. First column: Texture and Light. Second

column: Texture. Third column: Light. The network predicts incorrect shininess constants and compensates the shininess effects in

texture maps, especially in the second example.

3.6 Summary

In this chapter, we proposed a complete rasterization-based differentiable renderer for which

gradients can be computed analytically. Our framework, when wrapped around a neural

network, learns to predict shape, texture, and light from single images.

As a rasterization-based renderer, DIB-R also has limitations. The most challenge is that it
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cannot model advanced lighting effects like specular or surface reflectance. As a result, the

secondary lighting effects are entangled in the texture prediction, as shown in Fig. 3.15. We

address this issue in next chapter.



Chapter 4

A One-bounce Ray-tracing based

Renderer

We consider the challenging problem of predicting intrinsic object properties from a single

image by exploiting differentiable renderers. Many previous learning-based approaches

for inverse graphics adopt rasterization-based renderers and assume naive lighting and

material models, which often fail to account for non-Lambertian, specular reflections

commonly observed in the wild. In this work, we propose DIB-R++, a hybrid differentiable

renderer which supports these photorealistic effects by combining rasterization and ray-

tracing, taking the advantage of their respective strengths—speed and realism. Our renderer

incorporates environmental lighting and spatially-varying material models to efficiently

approximate light transport, either through direct estimation or via spherical basis functions.

Compared to more advanced physics-based differentiable renderers leveraging path tracing,

DIB-R++ is highly performant due to its compact and expressive shading model, which

enables easy integration with learning frameworks for geometry, reflectance and lighting

prediction from a single image without requiring any ground-truth. We experimentally

demonstrate that our approach achieves superior material and lighting disentanglement

compared to existing rasterization-based approaches.

4.1 Introduction

Inferring intrinsic 3D properties from 2D images is a long-standing goal of computer

vision [18]. In recent years, differentiable rendering has shown great promise in estimating

shape, reflectance and illumination from 2D images. Differentiable renderers have become

natural candidates for learning-based inverse rendering applications, where image synthesis

51
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algorithms and neural networks can be jointly optimized to model physical aspects of

objects from posed images, either by leveraging strong data priors or by directly modeling

the interactions between light and surfaces.

Not all differentiable renderers are made equal. On the one hand, recent physics-based

differentiable rendering techniques [144, 186, 16, 234, 284] try to model the full light

transport with proper visibility gradients, but they tend to require careful initialization of

scene parameters and typically exhibit high computational cost which limits their usage in

larger end-to-end learning pipelines. On the other hand, performance-oriented differentiable

renderers [38, 128, 154, 122] trade physical accuracy for scalability and speed by approx-

imating scene elements through neural representations or by employing simpler shading

models. While the latter line of work has proven to be successful in 3D scene reconstruction,

the frequent assumptions of Lambertian-only surfaces and low-frequency lighting prevent

these works from modeling more complex specular transport commonly observed in the

real world.

In this work, we consider the problem of single-view 3D object reconstruction without any

3D supervision. To this end, we propose DIB-R++, a hybrid differentiable renderer that

combines rasterization and ray-tracing through an efficient deferred rendering framework.

Our framework builds on top of DIB-R [38] and integrates physics-based lighting and

material models to capture challenging non-Lambertian reflectance under unknown poses

and illumination. Our method is versatile and supports both single-bounce ray-tracing and

a spherical Gaussian representation for a compact approximation of direct illumination,

allowing us to adapt and tune the shading model based on the radiometric complexity of the

scene. We validate our technique and demonstrate superior performance on reconstructing

realistic materials BRDFs and lighting configurations over prior rasterization-based methods.

4.2 Related Work

Differentiable Rendering Research on differentiable rendering can be divided into two cate-

gories: physics-based methods focusing on photorealistic image quality, and approximation

methods aiming at higher performance. The former differentiates the forward light transport

simulation [144, 186, 16, 234, 284] with careful handling of geometric discontinuities.

While capable of supporting global illumination, these techniques tend to be relatively

slow to optimize or require a detailed initial description of the input in terms of geometry,

materials, lighting and camera, which prevents their deployment in the wild. The latter line

of works leverages simpler local shading models. Along this axis, rasterization-based differ-

entiable renderers [38, 128, 154, 122, 58] approximate gradients by generating derivatives
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from projected pixels to 3D parameters. These methods are restricted to primary visibility

and ignore indirect lighting effects by construction, but their simplicity and efficiency offer

an attractive trade-off for 3D reconstruction. We follow this line of work and build atop

DIB-R [38, 102] by augmenting its shading models with physics-based ones.

Learning-based Inverse Graphics Recent research on inverse graphics targets the ill-posed

problem of jointly estimating geometry, reflectance and illumination from image observa-

tions using neural networks. For single image inverse rendering, one dominant approach

is to employ 2D CNNs to learn data-driven features and use synthetic data as supervision

[180, 226, 149, 147, 264], but these methods do not always generalize to complex real-

world images [21]. To overcome the data issue, a recent body of work investigates the use

of self-supervised learning to recover scene intrinsics [12], including domain adaptation

from synthetic reflectance dataset [156], object symmetry [269, 268], or multi-illumination

images depicting the same scene [137, 146, 162, 282]. However, these methods either rely

on specific priors or require data sources tedious to capture in practice. Some works tackle

the subtask of lighting estimation only [60, 59, 92], but still need to carefully utilize training

data that are hard to capture. Most similar to us, DIB-R [38] tackles unsupervised inverse

rendering in the context of differentiable rendering. Zhang et al. [291] further combines

DIB-R with StyleGAN [119] generated images to extract and disentangle 3D knowledge.

These works perform inverse rendering from real image collections without supervision,

but may fail to capture complex material and lighting effects—in contrast, our method

models these directly. Several techniques also try to handle more photorealistic effects but

typically require complex capturing settings, such as controllable lighting [134, 135], a

co-located camera-flashlight setup [179, 50, 148, 22, 23, 27, 216, 160], and densely captured

multi-view images [51, 271, 26, 288] with additional known lighting [63] or hand-crafted

inductive labels [184]. In our work, we propose a hybrid differentiable renderer and learn

to disentangle complex specular effects given a single image. Similar to the recent NeRD

[26] and PhySG [288] which recover non-Lambertian reflectance and illumination with

a spherical Gaussian (SG) basis [259], we also employ SGs to model the SV-BRDF and

incident lighting, but apply this representation to mesh-based differentiable rendering with

direct access to the surface.

4.3 Differentiable Deferred Rendering

In this section, we introduce DIB-R++, our differentiable rendering framework based

on deferred shading [49]. DIB-R++ is a hybrid differentiable renderer that can efficiently

approximate direct illumination and synthesize high-quality images. Concretely, our renderer
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Normal

Mask

MC

SG

Albedo

(a) (b) (c) (d)

Figure 4.1: Overview. Given a 3D object M, we employ (a) a rasterization-based renderer to obtain diffuse albedo, surface normals and

mask maps. In the shading pass (b), we then use these buffers to compute the incident radiance by sampling or by representing lighting

and the specular BRDF using a spherical Gaussian basis. Depending on the representation used in (c), we can recover a wide gamut of

specular/glossy appearances (d).

leverages the differentiable rasterization framework of DIB-R [38] to recover shape attributes

and further employs physics-based material and lighting models to estimate appearance.

4.3.1 Overview

We provide an overview of our technique in Fig. 4.1. We first rasterize a 3D mesh to obtain

diffuse albedo and material maps, surface normals, and a silhouette mask. This information

is deferred to the shading pass, where outgoing radiance is either estimated stochastically or

approximated using a spherical Gaussian basis. The rasterizer and shader are differentiable

by design, allowing gradients to be propagated to lighting, material and shape parameters

for downstream learning tasks.

4.3.2 Background

Our goal is to provide a differentiable formulation of the rendering process to enable fast

inverse rendering from 2D images. Let M be a 3D object in a virtual scene.we start from

the (non-emissive) rendering equation (RE) [115], which states that the outgoing radiance

Lo at any 3D surface point x ∈ M in the camera direction ωo is given by

Lo(x,ωo) =

∫

H2

fr(x,ωi,ωo)Li(x,ωi)|n · ωi| dωi , (4.1)

where Li is the incident radiance, fr is the (spatially-varying) bidirectional reflectance

distribution function (SV-BRDF) and n is the surface normal at x. The domain of integration

is the unit hemisphere H2 of incoming light directions ωi. The BRDF characterizes the

surface’s response to illumination from different directions and is modulated by the cosine

foreshortening term |n · ω|. Intuitively, Eq. (4.1) captures an energy balance and computes

how much light is received and scattered at a shading point in a particular direction.

Estimating the RE typically requires Monte Carlo (MC) integration [199], which involves

tracing rays from the camera into the scene. Albeit physically correct, this process is
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computationally expensive and does not generally admit a closed-form solution. MC

estimators can exhibit high variance and may produce noisy pixel gradients at low sample

count, which may significantly impact performance and convergence. To keep the problem

tractable, we thus make several approximations of Eq. (4.1), which we detail in the next

section.

4.3.3 Two-stage Deferred Rendering

We now describe our rendering framework (Fig. 4.1). We start by defining three families of

parameters, where π ∈ R
dπ encodes the shape attributes (e.g., vertex positions), θ ∈ R

dθ

describes the material properties, and γ ∈ R
dγ captures the illumination in the scene 1. In

what follows, we shall only consider a single pixel, indexed by p, within an RGB image

I ∈ R
3×h×w
+ for notational simplicity.

Stage 1: Rasterization Pass. We first employ a differentiable rasterizer R [38] to generate

primary rays ωo ∈ S2 from a camera viewpoint v and render our scene M into geometry

buffers (commonly called G-buffers) containing the surface intersection point xp ∈ R
3, the

surface normal np ∈ S2, and the spatially-varying material parameters θp (e.g., diffuse

albedo). This rendering pass also returns a visibility mask vp ∈ {0, 1} indicating whether

pixel p is occupied by the rendered object, separating the foreground object If from its

background environment Ib so that I = If + Ib. We have:

R(p,ωo;v,π,θ) = (xp,np,θp, vp) . (4.2)

Stage 2: Shading Pass. Given surface properties and outgoing direction ωo, we then approxi-

mate the outgoing radiance Lo(xp,ωo) through several key assumptions. First, we restrict

ourselves to direct illumination only (i.e. single-bounce scattering) and assume that the

incoming radiance is given by a distant environment map Li : S
2 → R

3
+. Therefore, we do

not model self-occlusion and Li(xp,ωi) ≡ Li(ωi;γ). Such simplification largely reduces

computation and memory costs and is trivially differentiable. Second, we assume that the

material parameters θ can model both diffuse and specular view-dependent effects. At a

high level, we define our shading model S so that:

S(xp,np,ωo,θp;γ) ≈ Lo(xp,ωo). (4.3)

1In Chapter 3, we denote M as M = (S, T ), where S is shape, T is texture map. Here we slightly abuse notation M such

that M = (π,θ), where θ represents SVBRDF for explicit, which contains both surface diffuse albedo map(texture) and reflectance

parameters.
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Importantly, a differentiable parameterization of S enables the computation of pixel gradients

with respect to all scene parameters Θ = (π,θ,γ) by differentiating Ip(Θ) = (S ◦

R)(p,ωo;v,π,θ,γ). Given a scalar objective function defined on the rendered output I ,

∂I/∂π is computed using DIB-R [38]. In what follows, we thus mainly focus on formulating

∂I/∂{θ,γ} so that all gradients can be computed using the chain rule, allowing for joint

optimization of geometry, material and lighting parameters. We assume henceforth a fixed

pixel p for conciseness, and remove the subscript.

4.3.4 Shading Models

Since our primary goal is to capture a wide range of appearances, we provide two simple

techniques to approximate Eq. (4.1): Monte Carlo (MC) and spherical Gaussians (SG). The

former targets more mirror-like objects and can better approximate higher frequencies in

the integrand, but is more expensive to compute. The latter is more robust to roughness

variations but is limited by the number of basis elements. To model reflectance, we choose to

use a simplified version of the isotropic Disney BRDF [29, 57] based on the Cook–Torrance

model [44], which includes diffuse albedo a ∈ [0, 1]3, specular albedo s ∈ [0, 1], surface

roughness β ∈ [0, 1] and metalness m ∈ [0, 1]. Metalness allows us to model both metals

and plastics in a unified framework. We let the diffuse albedo vary spatially (a = a(x)) and

globally define all other attributes to restrict the number of learnable parameters.

Monte Carlo Shading Given a 3D surface point x ∈ M to shade, we importance sample

the BRDF to obtain N light directions ωk
i and compute the BRDF value. We represent the

incident lighting L
(MC)
i as a high-dynamic range image γ ∈ R

3×hl×wl
+ using an equirectan-

gular projection, which can be queried for any direction via interpolation between nearby

pixels. The final pixel color is then computed as the average over all samples, divided by the

probability of sampling ωk
i :

S(MC)(x,n,ωo;θ,γ) =
1

N

N∑

k=1

fr(x,ω
k
i ,ωo;θ)L

(MC)
i (ωk

i ;γ) |n · ωk
i |

p(ωk
i )

. (4.4)

Note that this shading function is differentiable. Namely, for each sampled ray, we can

compute the gradients from the pixel color S(MC) to the rendering parameters π,θ,γ. The

full gradients can be computed by averaging all the sampled rays. When the surface is

near-specular (e.g., a mirror), one can efficiently estimate the RE as reflected rays are

concentrated in bundles (e.g., to satisfy the law of reflection). However, this estimator

can suffer from high variance for rougher surfaces; a higher number of samples may be

necessary to produce usable gradients. While this can be partially improved with multiple

importance sampling [253], emitter sampling would add a significant overhead due to the
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Figure 4.2: Sample Count vs. Roughness in Monte Carlo Shading. High roughness surfaces require more samples to render into

noise-free images.
environment map being updated at every optimization step. This motivates the use of a more

compact representation.

Spherical Gaussian Shading To further accelerate rendering while preserving expressivity in

our shading model, we use a spherical Gaussian (SG) [259] representation. Projecting both

the cosine-weighted BRDF and incident radiance into an SG basis allows for fast, analytic

integration within our differentiable shader, at the cost of some high frequency features in

the integrand. Concretely, an SG kernel has the form G(ω; ξ, λ,µ) = µ eλ(ξ·ω−1), where

ω ∈ S2 is the input spherical direction to evaluate, ξ ∈ S2 is the axis, λ ∈ R+ is the

sharpness, and µ ∈ R
3
+ is the amplitude of the lobe. We represent our environment map

using a mixture of K lighting SGs Gl, so that:

L
(SG)
i (ωi;γ) ≈

K∑

k=1

Gk
l

(
ωi; ξ

k
l , λ

k
l ,µ

k
l

)
, (4.5)

where γ := {ξkl , λ
k
l ,µ

k
l }k. For the BRDF, we follow Wang et al. [259] and fit a single,

monochromatic SG to the specular lobe so that f
(SG)
r is a sum of diffuse and specular lobes.

The full derivation can be found in Appendix B.1. Finally, we approximate the cosine

foreshortening term using a single SG |n · ωi| ≈ Gc(ωi;n, 2.133, 1.17) [166]. Regrouping

all terms, the final pixel color can be computed as:

S(SG)(x,n,ωo;θ,γ) =

∫

S2

f (SG)
r (x,ωk

i ,ωo;θ)L
(SG)
i (ωi;γ)Gc(ωi) dωi , (4.6)

which has an analytic form that can be automatically differentiated inside our renderer. All

parameters of the SGs, as well as the BRDF parameters, are learnable.

4.3.5 DIB-R++ Rendering Effects

In this section, we analyze the rendering effects under different hyperparameters, including

sampling count for MC shading and number of SG light components in SG shading. We
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Figure 4.3: Number of SG Light Component. More components (larger K) result in better environment map approximation.
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Figure 4.4: Visual Comparisons Between MC and SG Shading. On the left, we show an environment map and its SG-representation

(K = 128). While losing sharp details, SGs only needs 1% parameters compared to the dense pixel HDR map. On the right, we increase

roughness left-to-right, revealing that our spherical basis can correctly approximate direct illumination at moderate-to-high roughness.

also compare the rendering effect of MC shading and SG shading and evaluate the rendering

speed of the two methods.

Sampling Count As shown in Fig. 4.2, we render a unit sphere with different roughness and

sample count. When β is close to 0, a small sample count (e.g. N = 4 samples) can render

realistic images. However, as β increases, more samples are needed to reduce noise. When

β is 0.2, we need N = 256 samples. When β is 0.4, even N = 1024 samples may still

generate noisy results.

Number of SG Light Component As shown in Fig. 4.3, we approximate the same environment

map with different numbers of SG components in the mixture. Clearly, the more components

we use, the more details we can represent. When we use 128 SGs (128×7 = 896 parameters),

we can approximate most details of the environment map with only 1% parameters of the

whole image (256× 128× 3 = 98 304 parameters).

Rendering Effects Comparison To visually compare our two shading techniques and un-

derstand their limitations, we render a unit sphere under the same lighting (represented

differently) in Fig. 4.4. To do so, we first fit a HDR environment map with K = 128 SGs
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using an equirectangular projection. As shown on the left, SGs smooth out high frequency

details and sharp corners but require much fewer parameters to reconstruct incident lighting

(896 vs. 98 304). On the right, we visualize the effect of increasing the surface roughness β

under the corresponding light representation.

Intuitively, this point of diminishing return indicates that MC is only so useful when the

surface reflects most of the incoming light (e.g., a mirror). Indeed, when β is small enough

(β → 0) and we deal with a highly non-Lambertian surface, a small number of MC samples

are enough to estimate direct illumination, which in turn implies faster render speed and low

memory cost. On the other end of the spectrum (β → 1), significantly more samples (e.g.,

N > 1000) are needed to accurately integrate incident light, resulting in longer inference

times. In such a case, SGs should be favored since they offer a significant improvement. In

the absence of any prior knowledge on the material type, SG shading is preferred. This is

reflected in our experiments in Sec. 4.5.

Shading Sample Count (N )

MC 1 4 16 64 256 1024

Time (ms) 4.0 3.7 5.0 9.1 28.3 292.5

Shading Number of SG Component (K)

SG 1 2 4 8 16 32 64 128

Time (ms) 2.6 2.8 2.6 2.6 2.9 2.9 2.5 2.7

Table 4.1: Rendering time comparison. We render a sphere into

256× 256 images and compare the rendering time under different

settings. In MC shading, more sample count costs higher rendering

time, while in SG shading, a different numbers of SG component

barely impacts timings.

Rendering Speed We further evaluate the

rendering performance of different shading

methods. The results are shown in Tab. 4.1.

We implement both two shading methods in

PyTorch [193]. Here, we only consider the

time cost for shading, without counting the

cost of rasterization. For MC shading, time

increases as sample count increases. For ex-

ample, when the sample count changes from

256 to 1024, the rendering time becomes al-

most 10× slower. Conversely, SG shading cost is nearly constant. One possible explanation

for this is that the number of parameters of SG light is small (no more than 1000 parameters

even for 128 SGs), and thus leads to almost constant time cost when computed in parallel

with PyTorch. However, as more SGs can significantly impact memory cost, we choose

K = 32 in the learning tasks.

DIB-R++ Mitsuba 2

Memory (MB) 1475 3287

Time (s) 5.4 9.8

Table 4.2: Comparison with Mitsuba2. We evaluate the

running time and memory within ray tracing optimiza-

tion task. Our method performs faster and requires less

memory compared to Mitusba2.

Comparison with Mitsuba 2 We further compare the

rendering performance with Mitsuba2 [186] in

Tbl. 4.2. Since both our method and Mitusba 2 sup-

port ray tracing, we evaluate the running times and

memory for the same ray tracing optimization task.

We restrict the ray samples to be the same (4 sam-

ples) and run 300 iterations to optimize an environment map while fixing everything else.

Our method performs faster (5.4sec v.s. 9.8sec) and requires less memory(1475MB v.s.
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Figure 4.5: Independent Optimization. We optimize complex lighting and material for both MC shading (left) and SG shading (right).

In each case, we first optimize lighting and show the light and rendered image in the first block. Next we optimize the surface material

and show the surface material value and rendered image in the second block.

3287MB), which demonstrates DIB-R++ is highly performant. In contrast, Mitusba 2 is a

more powerful and general differentiable rendering library. However, it is also very heavy,

therefore the speed and memory cost is limited.

4.3.6 Optimization of Lighting and Material

The design of our differentiable renderer allows for optimization over geometry, lighting

and material parameters. In this section we focus on lighting and material optimization and

disentanglement. To validate our technique, we render a unit sphere into 24 views, fixing

the shape and optimizing light and surface material from 24 multi-view 2D images. We first

showcase independent optimization, where we optimize only one variable and keep the rest

the same as GT. We further study joint optimization with more than one variables, which is

a more challenging ill-posed problem.

Separate Optimization We perform a sanity check on our renderer in Fig. 4.5 by optimizing

for lighting and reflectance properties from a multi-view image L1-loss with fixed geometry.

We show the ground-truth (GT) parameters and rendered images in the first row, along with

initial parameters (Init.) in the second row. Here, we optimize parameters separately using

gradient-descent while the others are kept fixed to validate each component of our shading

model. DIB-R++ can successfully estimate material and lighting parameters, including the

environmental lighting, surface roughness and specular albedo of the object. We find that

the converged material parameters closely match GT, while the optimized environment map

loses some details due to gradients coming entirely from surface reflections (foreground

supervision only). In particular, surface highlights are well captured by our technique.

Disentanglement Analysis Light and material are entangled during the complex image forma-

tion process. Thus, jointly recover all of them is ill-posed as there might be several solutions

for the same input image. As shown in Fig. 4.6, we can get the same rendering with sharp
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Figure 4.6: Disentanglement Analysis. We render a sphere with 1) large roughness and sharp light (top row) and 2) small roughness and

smooth light (bottom row), but their renderings are almost the same. It shows the ambiguity between light and surface material.

lighting and large roughness, or smooth lighting and small roughness. Such ambiguities

occur regardless of MC and SG shading.

Joint Optimization We explore the extent to which our DIB-R++ can separate lighting and

material (including diffuse albedo and surface material such as roughness and specular

albedo) from only the rendered images. We jointly optimize light and surface material from

24 multi-view 2D images. We show Monte Carlo-based shading optimization in Fig. 4.7

and Spherical Gaussian-based shading optimization in Fig. 4.8.

MC Shading Several interesting properties can be found in Fig. 4.7. First, DIB-R++ suc-

cessfully optimizes the light and surface material such that the rendered images (Col. 4 & 7)

are close to the GT images (Col. 1) after convergence. Moreover, the converged parameters

are also reasonable, e.g. the optimized light recovers most high frequency details, especially

in small roughness cases. Second, the converged parameters are not exactly the same as GT

settings. For instance, compared to GT, the environment map is always brighter while the

diffuse albedo is always darker. As shown in Fig. 4.6, the joint inverse problem is ill-posed

so there exists no unique solutions. Third, when the surface is primarily Lambertian, the

rendered images can lose high frequency information. As a result, the recovered light map

is also blurry. The converged roughness tends to be smaller than GT to compensate for this

bluriness.

SG Shading On the other hand, Spherical Gaussian shading has similar properties. We show

optimization results in Fig. 4.8 and all the observations in MC shading can be applied to

SG shading. More precisely, the optimized light always looks blurry while the optimized

surface roughness is smaller compared to GT. This is also reflected in the learning task,

which we detail in Sec. 4.6.
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Figure 4.7: Monte Carlo Shading Optimization Results. We fix the shape and optimize the environment map, diffuse albedo and

surface roughness jointly from a foreground image loss only. To validate the convergence of different surface materials, we use the

same environment map and albedo initialization but employ different roughness initialization and optimize for different GT roughness

settings. Top: In the first two rows, we show the GT and initialized environment map, texture and rendering in 6 views. Bottom: In each

row we optimize for one specific roughness, and in each column block we start with different roughness initialization. Comments: We

successfully optimize all the parameters such that the rendered images (Col. 4 & 7) are very close to the GT rendering (Col. 1). However,

due to the ill-posedness of the problem, the converged environment map, diffuse albedo roughness are not exactly the same as GT.
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Figure 4.8: Spherical Gaussian Shading Optimization Results. We fix the shape and optimize the environment map and surface

material properties (roughness and specular albedo) jointly from a foreground image loss only. To validate the convergence of different

surface material, we use the same environment map and texture initialization but different material initialization and optimize for different

GT material settings. Top: In the first two rows we show GT and initialized environment map, diffuse albedo and rendering in 6 views.

Bottom: In each row, we optimize for a specific GT material setting while in each column block we start from different surface material

initialization. Comments: We successfully optimize all the parameters such that the rendered images (Col. 4 & 7) are very close to the

GT rendering (Col. 1). However, due to the problem is ill-posed. the converged environment map, diffuse albedo and roughness are not

exactly the same as GT.
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Figure 4.9: Training Pipeline. Given an image, we employ a neural network to predict all 3D attributes. We then adopt DIB-R++ to

render them back to the images and supervise via the loss between the rendered image and input image. This model can be trained without

any 3D supervision.

4.4 Single-view 3D Object Reconstruction

We demonstrate the effectiveness of our hybrid framework through the learning-based

problem of single image 3D reconstruction without supervision. We show a pipeline figure

in Fig. 4.9, where we embed DIB-R++ into a learning framework and adopt neural networks

to predict 3D properties without 3D training data.

Specifically, given an image, we first employ a neural network to predict all 3D attributes,

including the geometry (sphere deformation, parameterized by π), light (environment map,

parameterized by γ), and BRDF (a spatial varying diffuse albedo map and a global surface

reflectance material, parameterized by θ). We can then adopt DIB-R++ to render them

back to images and supervise via a loss between the rendered image and input image. This

model can be trained without any 3D supervision, assuming good priors on geometry, light

and materials. While previous works [38, 291] generally focus on diffuse illumination

only, DIB-R++ further generalizes to images containing strong specular lighting effects,

disentangling lighting from material and resulting in much cleaner texture and accurate

lighting prediction.

We adopt the U-Net [211] architecture of the original DIB-R [38] and modify its output to

also predict the appropriate BRDF attributes θ and light parameters γ (pixel colors or SG

coefficients) so that F (I;ϑ) = (π,θ,γ). We then render these parameters back to an image

Ĩ using our differentiable renderer and apply a loss L on the RGB output to compare the

input image I and the rendered image Ĩ , where:

L(ϑ) = λcolLcol(Ĩ , I) + λIOULIOU(M̃,M) + λlapLlap(π) + λperLper(Ĩ , I) . (4.7)

Similar to DIB-R [38], we combine multiple consistency losses with regularization terms:

Lcol is an image loss computing the L1 distance between the rendered image and the input im-
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age(Eq. (3.15)), LIOU is an Intersection-over-Union (IoU) loss of the rendered silhouette M̃

and the input mask M of the object(Eq. (3.14)), Lper is a perceptual loss [101, 290] comput-

ing the L1 distance between the pre-trained AlexNet [127] feature maps of rendered image

and input image, and Llap is a Laplacian loss [154, 122] to penalize the change in relative

positions of neighboring vertices. Compared the the loss equations(Eq. (3.18),Eq. (3.22)) in

DIB-R, we find adversarial loss and smooth loss is not necessary and remove them. We set

λcol = 20, λIOU = 5, λper = 0.5, λlap = 5, which we empirically found worked best.

Multi-view Consistency Since we have multi-view images for the same car, similar to [291,

38], we apply a multi-view consistency loss during training, which is the key to force the

lighting to be separated from the texture. Specifically, we predict geometry/light/material

in one view and supervise it in another view. When the input image has strong directional

lighting effects, the optimization understands it should come from lighting instead of the

texture, otherwise it would be wrong in the second view.

Mathematically, let us assume we have two images I1 and I2 from two different poses

(cameras noted as v1 and v2) of the same car. We can then predict shape, surface material

and lighting for each image, noted as π1, θ1, γ1 and π2, θ2, γ2. The multiview consistency

loss is given by:

LMV
col =‖I1 − S ◦R(v1,π1,θ1,γ1)‖1+

‖I2 − S ◦R(v2,π1,θ1,γ2)‖1+

‖I1 − S ◦R(v1,π2,θ2,γ1)‖1+

‖I2 − S ◦R(v2,π2,θ2,γ2)‖1 .

(4.8)

We predict shape and material in canonical views while predicting light in image space.

Besides the image loss, there are no more consistency regulations, i.e., we did not add any

loss term to force π1, π2 or θ1, θ2 to be the same. Moreover, while more views would

provide more constraints, we find that two views are enough. We thus use two views in all

our experiments.

Training Time DIB-R++ contains a second shading stage. As a result, it is slower than [38]

and [291] which only adopt rasterization. We find all the methods converge in 200 000

iterations, where [38, 291] cost 57 hours while DIB-R++ cost 77 hours. While longer, it is

still affordable.
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Figure 4.10: Metallic Surface Dataset Overview. We render various cars under both indoor and outdoor environment maps. We set the

m as 1 and β as 0 and the rendered images are highly reflective. The reflected environment maps can be observed in the car body, which

provide strong signals in lighting estimation.
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Figure 4.11: Glossy Surface Dataset Overview. We render various cars under both indoor and outdoor environment maps. We set the

m = 0 and vary β ∈ [0, 0.5] so that the rendered images contain view-dependent highlights.
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4.5 Experiments

We conduct extensive experiments to evaluate the performance of DIB-R++. We quantita-

tively evaluate on synthetic data where we have access to ground-truth geometry, material

and lighting. Since MC ad SG shading have individual pros and cons, we validate them

under different settings. In particular, we generate separate datasets with two different

surface materials: purely metallic surfaces with no roughness, and glossy surfaces with

random positive roughness. We compare the performance of both shading models against

the baseline method, which is DIB-R [38].

4.5.1 Synthetic Datasets

We chose 485 different car models from TurboSquid2 to prepare data for metallic and glossy

surfaces. We also collected 438 freely available high-dynamic range (HDR) environment

maps from HDRI Haven3 to use as reference lighting, which contain a wide variety of

illumination configurations for both indoor and outdoor scenes. For both two datasets we

split the training set and testing set to around 4:1(400 cars for training, 85 cars for testing

and 358 envmaps for training, 80 envmaps for testing).

To render all 3D models, we use Blender’s Cycles4 path tracer with the Principled BRDF

model [29]. We created two datasets on car models: Metallic-Surfaces and Glossy-Surfaces,

as shown in Fig. 4.10 and Fig. 4.11, respectively. For metallic surfaces, we set β = 0 and

m = 1. Conversely, we set m = 0, s = 1 and randomly pick β ∈ [0, 0.4] to generate

images for glossy surfaces. For each dataset, the car is rendered in 24 fixed views, where we

uniformly rotate the camera around. All the 3D models are normalized to be [−18, 18] with

camera distance and elevation to be 60 and 27◦. We randomly combine 3D models and light

and render each car with 3 different environment maps.

4.5.2 Evaluation Metrics

Since GT lighting γ is represented by an environment map while the predicted lighting

may be in the form of spherical harmonics [38], spherical Gaussians or HDR texture

envmaps with varying resolutions, we cannot directly compute L1 or L2 losses. Therefore,

we evaluate them with normalized cross correlation (NCC). In particular, we convert the

predicted lighting profile to an RGB image γ̃ using an equirectangular projection and

2https://turbosquid.com. We obtain consent via agreement with TurboSquid, following their license at

https://blog.turbosquid.com/turbosquid-3d-model-license.
3https://hdrihaven.com. We follow the CCO license at https://hdrihaven.com/p/license.php.
4https://blender.org
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Shading Metallic surfaces (↓) Glossy surfaces (↓)

Image 2D IoU Light Tex. Image 2D IoU Light Tex.

MC 0.019 0.062 0.074 0.152 0.024 0.061 0.106 0.142

SG 0.019 0.069 0.095 0.218 0.024 0.057 0.091 0.140

SH [38] 0.019 0.056 0.220 0.206 0.024 0.062 0.131 0.152

Table 4.3: Quantitative results of single image 3D Reconstruction on synthetic data. While all the methods achieve comparable

performance on re-rendered images and 2D IoUs, both MC and SG achieve better results on lighting and texture. MC is particularly better

for metallic surfaces, and SG works best for glossy surfaces.

calculate the loss as:

NCC(γ, γ̃) =

∑
γ ⊙ γ̃

‖γ‖2 ‖γ̃‖2

LNCC = 1− NCC(γ, γ̃) ,

(4.9)

Similarly, for material predictions, different uv-parameterizations between GT and our

predictions prevents direct comparison. Moreover, the predicted texture might be of different

intensity scales compared to the GT. Thus, we first render the GT 3D models and predicted

3D models into images without lighting, and then apply NCC loss to the rendered albedo

images as well.

In summary, the image loss is computed via the L11 loss between the GT images and

predicted images. 2D IoU loss is computed via the GT mask and predicted silhouettes [122].

We apply LNCC to the GT lighting and predicted lighting as the light loss and apply LNCC

to the GT albedo and predicted albedo as the texture loss.

Baseline We compare our method with the rasterization-based baseline DIB-R [38], which

supports spherical harmonics (SH) lighting. While the original lighting implementation in

DIB-R is monochromatic, we extend it to RGB for a fairer comparison. For quantitative

evaluation, we report the common L1 pixel loss between the re-rendered image using our

predictions and ground-truth (GT) image(Lcol = ‖Ĩ − I‖1), and 2D IoU loss between

rendered silhouettes and ground-truth masks(LIOU = 1 − M̃⊙M
M̃+M−M̃⊙M

). Moreover, we

further evaluate the quality of diffuse albedo and lighting predictions using normalized cross

correlation (NCC).

4.5.3 Metallic Surfaces

Experimental Settings We first apply all methods to the metallic car dataset. Since this

surface property is known a priori, we relax the task for MC shading by setting β = 0 and

only predict geometry, diffuse albedo and lighting from the input image. This allows us to

render MC at a low sample count (N = 4), achieving higher rendering speed and a lower

memory cost. In particular, we predict the relative offset for all |M| = 642 vertices in a

mesh and a 256× 256 texture map, following the choices in DIB-R [38]. We also predict a

256× 256 RGB environment map. For SG shading, we predict all parameters. While shape
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Figure 4.12: Prediction on the Metallic Car Dataset (β = 0). While the re-rendered images look similar, the underlying components

(material and lighting) are different. A SH basis (DIB-R [38]) cannot recover the high frequency details of the sky light maps. In this case,

MC performs best due to low variance in the estimator for mirror-like BRDFs. SGs can recover the overall form and contrast of the light

map, but tend to predict incorrect texture maps incorporating the ground dominant color (e.g., brown). Note that GT texture maps are not

available as they cannot be compared due to different uv-parameterizations / texture atlases.

and texture are the same as MC shading, we adopt K = 32 for SG and predict two global

parameters β and s for the specular BRDF. This keeps the number of parameters relatively

low while providing enough flexibility to capture different radiometric configurations.

Experimental Results Quantitative and qualitative results are shown in Fig. 4.12 and Table 4.3

(Left), respectively. Since the main loss function comes from the difference between GT and

re-rendered images, we find the re-rendered images (with light) from the predictions are all

close to the GT image for different methods, and quantitatively, the image loss and 2D IoU

loss are also similar across different models. However, we observe significant differences

on the predicted albedo and lighting. Specifically, in Fig. 4.12, MC shading successfully

predicts cleaner diffuse albedo maps and more accurate lighting, while DIB-R [38] “bakes

in” high specular effects into the texture. Quantitatively, DIB-R++ outperform DIB-R with

a 3× improvement in terms of NCC loss for lighting, demonstrating the effectiveness of

our DIB-R++. We further compare MC shading with SG shading. While SG shading

achieves reasonable lighting predictions, it fails to reconstruct the high frequency details

in the lighting and has circular spot effects caused by the isotropic SGs. Finally, we note

that due to the ambiguity of the learning task, the overall intensities of all predicted texture

maps can largely vary. Still, we observe that MC can better recover fine details, such as the

wheels’ rims. More results and are shown in Fig. 4.13.
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Figure 4.13: Prediction on the Metallic Car Dataset (β = 0). Top and Middle: We show more comparison results for 3 different

shading methods. While all re-rendered images look almost identical, the underlying radiometric components (material and lighting)

are different. A SH basis(DIB-R [38]) cannot recover the high frequency details of the sky light maps. In this case, MC performs best

due to low variance in the estimator for mirror-like BRDFs. SGs can recover the overall form and contrast of the light map, but tend to

predict incorrect texture maps incorporating the ground dominant color. Bottom: We show a failure case in the bottom row. MC shading

fails when the environment map contains a lot of high frequency details. It reconstructs low frequency content but also merges the high

frequency leaves into the texture.
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Figure 4.14: Prediction on the Glossy Car Dataset (β > 0). When the objects are glossy but not perfectly specular, SGs can correctly

disentangle reflectance from lighting, as evidenced by the absence of white highlights in the predict albedos. DIB-R [38] cannot capture

these bright regions due to a diffuse-only shading model, while MC oversmooths the predictions due to noisier pixel gradients. While all

methods cannot completely reconstruct the environment map, our method can predict the correct dominant light location and sky color.

4.5.4 Glossy Surfaces

Experimental Settings We further apply our model to synthetic images rendered with positive

roughness (glossy). To apply MC shading in such a case, we assume no prior knowledge for

material and use a high sample count (N = 1024) to account for possibly low roughness

images in the dataset. Due to high rendering time and memory cost, we subsample 4% of the

pixels and apply Lim to those pixels only in each training iteration. As such, we do not use

the perceptual loss Lper as it relies on the whole image. We predict a 32× 16 environment

map for lighting and predict global β and m for the specular BRDF. For SG shading, we use

the same settings as for the metallic surfaces.

Experimental Results We apply both MC and SG shading and compare with DIB-R. Results

are shown in Fig. 4.14 and Table 4.3 (Right). Qualitatively, SG shading has better lighting

predictions with correct high-luminance regions. The specular highlights in the images

successfully guide SG shading, while the bright reflection on the car window and front cover

are fused with texture map in [38]. MC also has reasonable lighting predictions, but the

predicted light map lacks structure due to weak surface reflections. Without a perceptual

loss term, the predicted textures also tend to be blurrier.

Quantitatively, SG shading significantly outperforms DIB-R [38] on lighting prediction

in terms of NCC (0.078 vs. 0.127) and improves on texture prediction in terms of
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Figure 4.15: Prediction on the Glossy Car Dataset (β > 0). Top and Middle: We show more comparisons for three different shading

methods. When the objects are glossy but not perfectly specular, SGs can correctly disentangle reflectance from lighting, as evidenced by

the absence of white highlights in the predict albedos. DIB-R [38] cannot capture these bright regions due to a diffuse-only shading model,

while MC oversmooths the predictions due to noisier pixel gradients. While all methods cannot completely reconstruct the environment

map, our method can predict the correct dominant light location and sky color. Bottom Row: We show a failure case in the bottom row.

All the methods fail when the texture contains a lot of high frequency details. We show SG only reconstructs low frequency content.
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Input GT albedo Pred. albedo GT lighting (envmap) Pred. light (SG) Pred. material GT specular Pred. specular
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Figure 4.16: Specular effect of SG Shading. We decompose the prediction into diffuse albedo, light and material parameters, then

visualize the specular contribution in other views and compare with GT (last 4 columns). Although the predicted material parameters do

not match GT, interestingly, the specular renderings align well with each other.

BRDF/lighting disentanglement. We also compare with MC shading, where MC achieves

slightly worse results on lighting predictions compared to SG, but is still much better than

DIB-R. More results are shown in Fig. 4.15.

Failure Cases We also provide failure cases in the last row of Fig. 4.13 and Fig. 4.15. We

find that when the GT environment map or the base texture map contains high frequency

patterns, the problem becomes harder and our neural networks can only reconstruct low

frequency content. This problem might be addressed with recent advances of position

encoding and we leave it for future work.

4.5.5 Shape & Material Evaluation

Shape Evaluation 2D IoU loss measures the projection of the predicted shapes. As shown in

Tbl. 4.3, the scores of all the methods are pretty close, which indicates DIB-R and DIB-R++

have similar performance for the geometry. We also evaluate the Chamfer distance between

the predictions and GT meshes (normalized as one) in our glossy dataset predictions, where

DIB-R++ is 0.036 while DIB-R is 0.037. It further demonstrates the both methods can

recover good geometry.

Material Evaluation We also check the predicted surface reflectance materials and GT and

found little correlation. We then decompose the prediction into the albedo map, lighting and

material parameters, and display the specular effect in other views in Fig. 4.16. Compared to

GT, we find the specular effects align very well with each other, even though the predicted



4.5. EXPERIMENTS 75

Input GT albedo GT lighting (envmap) SG + DIB-R++ SG + [38] SH + [38]

Texture map Pred. albedo Re-rendered (with light) Texture map Pred. albedo Re-rendered (with light)

G
T

S
G

+
D

IB
-R

+
+

S
G

+
[3

8
]

S
H

+
[3

8
]

Figure 4.17: Ablation Study of Shading Methods. Even though we apply the same lighting representation to DIB-R [38], due to the

lack of specular transport suport, [38] cannot perfectly disentangle the specular light from diffuse labedo. Its window and front cover still

“bake in” white specular light. Moreover, the lighting is also blurry, as opposed to DIB-R++. This demonstrates the necessity of explicitly

modelling advanced lighting effect in the renderer.

material parameters has little correlation with GT. It might indicates the material and light

disentanglement may have more than one solution, as also evidenced in Fig. 4.8.

4.5.6 Ablation Study

In this section, we provide ablation study to evaluate the performance of our DIB-R++. We

first analyze the choice of rasterization renderer, then compare SH [38] and SG shading,

then explore the effects of numbers of SG components. We also ablate the influence of all

the loss terms. Finally, we run our model three times and report the training variance sto

show that our method is insensitive to random seed.

Choice of Differentiable Rasterizer Our DIB-R++ rendering framework is quite flexible. In the

first stage, it supports an arbitrary differentiabler rasterization method, e.g. NVDiffRast [128]

or DIB-R [38]. Compared to DIB-R, NVDiffRast is more efficient. However, the way

NVDiffRast handles occlusion relies on anti-aliasing, while DIB-R uses soft rasterization.

Theoretically, anti-aliasing only influences edge pixels while soft rasterization computes
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the soft probability of all pixels, providing more gradient signals in shape deformation. We

experimentally found that the predicted shape from DIB-R is better than NVDiffRast so we

chose DIB-R.

Comparison of SH and SG Shading DIB-R++ achieves much better disentanglement for re-

flective surfaces compared to DIB-R [38], since it can account for surface reflections while

[38] only supports naive diffuse surfaces low-frequency lighting. We have shown quanti-

tatively and qualitatively comparisons with [38] in Sec. 4.5.3 and Sec. 4.5.4, where [38]

uses Spherical Harmonic (SH) lighting while we use Spherical Gaussian lighting. However,

among these results, we use the default lighting for [38], which uses a 2-order SH basis

and contains 27 parameters (9× 3 = 27, 9 for 2nd SH and 3 for RGB). On the other hand,

DIB-R++ applies SG shading and 32 components SG light, which is composed of 224

parameters (32×7 = 224). As such, DIB-R++ differs from [38] in two key aspects: shading

method and light representations. Thus, we further apply the same SG lighting to [38] and

compare with DIB-R++ again, where the only difference is the shading method to perform a

more fair comparison.

Shading Glossy surfaces (↓)

Image 2D IoU Light Tex.

DIB-R++ w/ SG 0.024 0.057 0.091 0.140

[38] w/ SG 0.023 0.063 0.098 0.147

[38] w/ SH 0.024 0.062 0.131 0.152

Table 4.4: Comparison of shading methods.

We show the comparison results in Fig. 4.17 and

Tbl. 4.4. After applying SG lighting to [38], it is still

incapable of disentangling strong lighting from the

base texture. As a result, the car’s window and front

cover still “bake in” white specular light. Moreover,

the lighting prediction of [38] is blurrier. Quantita-

tively, the lighting loss of [38] with SG is better than that of [38] with SH, probably due

to more parameters (224 vs. 27). However, it is still worse than DIB-R++ with SG. This

demonstrates the necessity of explicitly modeling advanced lighting effects in the renderer.

Shading Glossy surfaces (↓)

K SGs Image 2D IoU Light Tex.

4 0.025 0.067 0.118 0.147

8 0.025 0.063 0.093 0.145

16 0.024 0.063 0.092 0.143

32 0.024 0.057 0.091 0.140

Table 4.5: Ablation study of number of SG components.

Number of SG Components We study the influence of

the number of SG components K and show results

in Fig. 4.18 and Tbl. 4.5. When SG components

are less than 4, the representation ability is limited.

Consequently, the predicted lighting only has one

mode. It is also reflected in Tbl. 4.5: less components

generally result in higher lighting prediction error.

On the other side, when the SG components are larger than 16, the performance becomes

similar (Tbl. 4.5, 16 vs. 32). However, more SG components have higher representation

ability and predicted visually better results, as shown in Fig. 4.18. Thus, we generally
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Figure 4.18: Ablation Study of Number of SG Components. As the number of SG components increase, the predicted lighting is more

and more similar to the GT lighting and the color of predicted texture becomes more and more visually uniform, which indicates better

disentanglement.
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Figure 4.19: Ablation Study of Loss Terms. Similar to [291], we also find Llap regularizes the geometry to be smooth while Lper

helps create high-frequency, detailed textures.

choose K = 32 in the experiments to make full use of a 16GB memory GPU.

Ablation Study of Loss Terms We also ablate the loss terms in our method in Fig. 4.19 and

get similar observations as in [291]. Specifically, we find Llap regularizes the geometry to

be smooth while Lper helps in creating high-frequency, detailed textures.

Shading Glossy surfaces (↓)

Image 2D IoU Light Tex.

DIB-R++ w. SG round 1 0.024 0.057 0.091 0.140

DIB-R++ w. SG round 2 0.025 0.061 0.092 0.143

DIB-R++ w. SG round 3 0.025 0.062 0.091 0.143

Mean 0.025 0.060 0.091 0.142

Variance 0.000 0.002 0.000 0.001

Table 4.6: Training variance.

Training Variance Lastly, we train our model three

times on glossy surfaces and report the performance

in Tbl. 4.6. Our model converges well, and random

seeds had little effect on performance. The models

have very similar predicted results and close scores.
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The variance is small, which demonstrates the robustness of our model.

4.6 Summary

As shown in our previous two experiments, Monte Carlo shading works best under a metallic

assumption (β = 0), in which case the rendered images can have rich details at low sample

count (N ≤ 4). However, when the surface is more Lambertian (i.e., when β is becoming

larger), we have to compensate with a larger N to produce noise-free renderings, which

impacts learning both time- and memory-wise. As a consequence, we recommend applying

MC shading to metallic surfaces only, and default to SGs otherwise.

Our spherical Gaussian shading pipeline provides an analytic formulation for estimating the

rendering equation, which avoids the need of tracing ray samples, largely accelerating the

rendering process. While SGs can be blurry on metallic surfaces, in most case (e.g., when

β ≥ 0.2) it can model similar rendering effects at a fraction of the cost, achieving better

results than MC shading and [38].

After inspecting the predicted surface material properties (β, s, m) and diffuse albedo with

the ground-truth parameters in Blender, we find the materials contain little correlation and

the intensities of diffuse albedo might change. As for SG, we are using only 32 basis

elements to simulate a complex, high definition environment map (2K). Since SGs can only

represent a finite amount of details, we find the predicted global β tends to be too small.

One hypothesis for this is that the optimizer artificially prefers more reflections (and thus

lower roughness) to be able to estimate at least some portions of the environment map. On

the other hand, in MC, due to the absence of a perceptual loss, the predicted texture is too

blurry and cannot represent GT to a high detail. We find that the predicted β and m do

not have strong correlation with the GT material. Lastly, we note that the predicted texture

map has to change its overall intensity to accommodate for other parameters to ensure the

re-rendered images are correct, which leads to some differences with GT. More analysis can

be found in Sec. 4.3.6 and Sec. 4.5.5.

In summary, when we have no prior knowledge about the material, our re-rendered images

can be very close to the input images but the predicted material parameters are not always

aligned with the GT materials. We believe this problem can be relieved by incorporating

additional local constraints, e.g., part-based material priors, or by leveraging anisotropic SGs

[276]. For instance, a car body is metallic while its wheels are typically diffuse; predicting

different parameters for each region has the potential of improving disentanglement and

interpretability. We leave this as future work.



Chapter 5

Singe-view Real Imagery 3D Object

Reconstruction

Differentiable rendering has paved the way to training neural networks to perform “inverse

graphics” tasks such as single-view 3D object reconstruction. To train high performant

models, most of the current approaches rely on multi-view imagery, which are not readily

available in existing real datasets. Applying renderings of synthetic CAD models often leads

to a gap in performance when tested on real photographs. In this chapter, we aim to extract

3D knowledge from real imagery by utilizing differentiable renderers. We observe that recent

Generative Adversarial Networks (GANs) not only synthesize photorealistic images, but

also acquire 3D knowledge implicitly during training: object viewpoints can be adjusted by

simply manipulating the latent codes. Therefore, we propose to exploit GANs as a multi-

view data generator, synthesizing infinite multi-view photorealistic images to train inverse

graphics networks using off-the-shelf differentiable renderers. We show that our approach

achieves exquisite 3D reconstruction effects for real images. It significantly outperforms

state-of-the-art inverse graphics networks trained on existing datasets, both quantitatively

and via user studies. By incorporating more expressive rendering equations, it further

acquires faithful material and lighting disentanglement, enabling artistic applications

including material editing and relighting.

5.1 Introduction

The ability to infer 3D properties such as geometry, texture, material, and light from pho-

tographs is key in many domains such as AR/VR, robotics, architecture, and computer vision.

Interest in this problem has been explosive, particularly in the past few years, as evidenced by

79
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a large body of published works and several released 3D libraries (TensorflowGraphics [251],

Kaolin [102], PyTorch3D [208]).

The process of going from images to 3D is often called “inverse graphics”, since the problem

is inverse to the process of rendering in graphics in which a 3D scene is projected onto

an image by taking into account the geometry and material properties of objects, and

light sources present in the scene. Supervised works [260, 168, 70, 263, 42] require 3D

labels during training, which are very expensive to acquire. Recent works have explored an

alternative way to train inverse graphics networks that sidesteps the need for 3D ground-truth

during training. The main idea is to make graphics renderers differentiable which allows

one to infer 3D properties directly from images using gradient based optimization, [122,

154, 152, 38]. These methods employ a neural network to predict geometry, material, and

light from images, by minimizing the difference between the input image with the image

rendered from these properties.

While impressive results have been obtained in [154, 231, 153, 89, 38, 39, 116], most of

these works still require some form of implicit 3D supervision such as multi-view images of

the same object with known cameras. Thus, most results have been reported on the synthetic

ShapeNet dataset [33], or the Pascal3D dataset [272] annotated with keypoints from which

cameras can be accurately computed using structure-from-motion techniques. However,

neither of them are perfect. The former brings a domain gap whereas the latter contains too

few single-view images to train generalizable, high performant models. As a result, they

still struggle with real photographs.

In this chapter, we aim to extract 3D knowledge from real imagery by utilizing differentiable

graphics renderers. We observe that Generative Adversarial Networks (GANs) have shown

the ability of generating images of high photorealism. Recent work [119] further demon-

strates it is able to learn 3D information implicitly, e.g., by manipulating the latent code,

it can produce images of the same scene from a different viewpoint. As such, we propose

to exploit a GAN, specifically StyleGAN [119], as a generator to synthesize multi-view

photorealistic images, building a dataset containing infinite amount of data which is suitable

for inverse graphics tasks.

We create a large scale dataset, containing more than 10 times more images compared to

the existing Pascal3D dataset. We then employ it to train inverse graphics neural networks

using differentiable renderers [38, 39]. Our approach presents exquisite 3D reconstruction

from real imagery, significantly outperforming inverse graphics networks trained on existing

datasets. By incorporating more expressive rendering equations [39], we also demonstrate

faithful material and lighting disentanglement and showcase several artistic applications
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including material editing and relighting.

5.2 Related Work

3D from 2D Reconstructing 3D objects from 2D images is one of the mainstream problems

in 3D computer vision. We here focus our review to single-image 3D reconstruction which

is the domain of our work. Most of the existing approaches train neural networks to predict

3D shapes from images by utilizing 3D labels during training, [260, 168, 42, 192]. However,

the need for 3D training data limits these methods to the use of synthetic datasets. When

tested on real imagery there is a noticeable performance gap.

Newer works propose to differentiate through the traditional rendering process in the training

loop of neural networks, [157, 122, 154, 38, 39]. Differentiable renderers allow one to infer

3D from 2D images without requiring 3D ground-truth. However, in order to make these

methods work in practice, several additional losses are utilized in learning, such as the multi-

view consistency loss whereby the cameras are assumed known. Impressive reconstruction

results have been obtained on the synthetic ShapeNet dataset. While CMR by [116] and

DIB-R by [38] show real-image 3D reconstructions on CUB [266] and Pascal3D [272]

datasets, they rely on manually annotated keypoints, while still failing to produce accurate

results.

A few recent works, [269, 145, 64, 121], explore 3D reconstruction from 2D images in a

completely unsupervised fashion. They recover both 3D shapes and camera viewpoints from

2D images by minimizing the difference between original and re-projected images with

additional unsupervised constraints, e.g., semantic information ([145]), symmetry ([269]),

GAN loss ([121]) or viewpoint distribution ([64]). Their reconstruction is typically limited

to 2.5D ([269]), and produces lower quality results than when additional supervision is used

([64, 145, 121]). In contrast, we utilize GANs to generate multi-view realistic datasets that

can be annotated extremely efficiently, which leads to more accurate 3D results.

GAN Manipulation GANs [66, 119] take a latent code as input and synthesize an image.

However, the latent code is sampled from a predefined prior and lacks interpretability.

Exploring how to manipulate the latent code to generate an image with desired properties

has been widely explored [132, 151, 195]. Pioneering work is InfoGAN [41], which tries to

maximize the mutual information between the prior and the generated image distribution.

[244] transfers face rigging information from an existing model to control face attribute

disentanglement in the StyleGAN latent space. [225] aims to find the latent space vectors

that correspond to meaningful edits, while [82] exploits PCA to disentangle the latent space.
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Figure 5.1: Overview. We exploit StyleGAN as a synthetic data generator, and label the generated data in an extremely efficient way.

This “dataset” is used to train an inverse graphics network that predicts 3D properties from single-view images.

In our work, we manipulate the latent space to synthesize multi-view images suitable for

training inverse graphics techniques.

5.3 Our Approach

We start by providing an overview of our approach (Fig. 5.1), and describe the individual

components in more detail in the following subsections. Specifically, we leverage the fact

that the recent state-of-the-art GAN architecture StyleGAN [119] learns to produce highly

realistic images of objects, and allows for a reliable control over the camera. We manually

select a few camera views that covers all common viewpoints of objects, and use StyleGAN

to generate a large number of examples per view, which we explain in Sec. 5.3.1. While

training inverse graphics models typically requires known camera poses for images, in

Sec. 5.3.2 we provide an efficient way to annotate camera poses for the created StyleGAN

dataset. In Sec. 5.3.3, we exploit this dataset to train inverse graphics networks utilizing

the state-of-the-art differentiable renderers, DIB-R and DIB-R++ [38, 39]. We show our

created StyleGAN dataset significantly improves real imagery 3D reconstruction results.

Incorporating expressive rendering equations [39] further allows us to recover advanced

lighting and surface material from real images, which enables many artistic applications

including material editing and relighting.

5.3.1 StyleGAN as Synthetic Data Generator

We first aim to utilize StyleGAN to generate multi-view imagery. StyleGAN is a 16 layers

neural network that maps a latent code z ∈ Z drawn from a normal distribution into a

realistic image. The code z is first mapped to an intermediate latent code w ∈ W which is

transformed to w∗ = (w∗
1, w

∗
2, ..., w

∗
16) ∈ W ∗ through 16 learned affine transformations. We

call W ∗ the transformed latent space to differentiate it from the intermediate latent space

W . Transformed latent codes w∗ are then injected as the style information to the StyleGAN

Synthesis network.

Different layers control different image attributes. As observed in [119], styles in early
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Figure 5.2: StyleGAN Viewpoint & Content Disentanglement. We show examples of cars (first two rows) synthesized in chosen

viewpoints (columns). To get these, we fix the latent code w∗
v that controls the viewpoint (one code per column) and randomly sample the

remaining dimensions of (Style)GAN’s latent code (to get rows). Notice how well aligned the two cars are in each column. In the third

row we show the same approach applied to horse and bird StyleGAN.

layers adjust the camera viewpoint while styles in the intermediate and higher layers

influence shape, texture and background. We empirically find that the latent code w∗
v :=

(w∗
1, w

∗
2, w

∗
3, w

∗
4) in the first 4 layers controls camera viewpoints. That is, if we sample a

new code w∗
v but keep the remaining dimensions of w∗ fixed (which we call the content

code), we generate images of the same object depicted in a different viewpoint. Examples

are shown in Fig. 5.2.

We further observe that a sampled code w∗
v in fact represents a fixed camera viewpoint. That

is, if we keep w∗
v fixed but sample the remaining dimensions of w∗, StyleGAN produces

imagery of different objects in the same camera viewpoint. This is shown in columns in

Fig. 5.2. Notice how aligned the objects are in each of the viewpoints. This makes StyleGAN

a multi-view data generator!

“StyleGAN” multi-view dataset We manually select several views, which cover all the com-

mon viewpoints of an object ranging from 0-360 in azimuth and roughly 0-30 in elevation.

We pay attention to choosing viewpoints in which the objects look most consistent. We

show all of our selected viewpoints in Fig. 5.3. Specifically, we demonstrate on car, bird

and horse StyleGAN models. The created car, bird and horse training datasets contain 39,

22 and 8 views, respectively. We find that these views are sufficient to learn accurate 3D

inverse graphics networks. Notice the high consistency of both the car shape and texture as

well as the background scene across the different viewpoints.

We further show examples from our StyleGAN-generated dataset in Fig. 5.4. We samplew∗

such that our dataset contains objects with various shapes, textures and viewpoints. In

particular, in the first six rows, one can notice a diverse variants of car types (Standard Car,

SUV, Sports car, Antique Car, etc) . We find that StyleGAN can also produce rare car shapes

like trucks, but with a lower probability.
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Car Viewpoints

Horse Viewpoints

Bird Viewpoints

Figure 5.3: All Viewpoints. We show an example of a car, a bird and a horse synthesized in all of our chosen viewpoints. While shape

and texture are not perfectly consistent across views, they are sufficiently accurate to enable training accurate inverse graphics networks in

our downstream tasks. Horses and birds are especially challenging due to articulation. One can notice small changes in articulation across

viewpoints. Dealing with articulated objects is subject to future work.
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Figure 5.4: Dataset Overview. We synthesize multi-view datasets for three classes: car, horse, and bird. Our datasets contain objects

with various shapes, textures and viewpoints. Notice the consistency of pose of object in each column (for each class). Challenges

include the fact that for all of these objects StyleGAN has not learned to synthesize views that overlook the object from above due to the

photographer bias in the original dataset that StyleGAN was trained on.
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Segmentation Since differentiable renderers also utilize segmentation masks during training,

we further apply MaskRCNN [84] to get instance segmentation in our generated dataset. As

StyleGAN sometimes generates unrealistic images or images with multiple objects, we filter

out “bad” images which have more than one instance, or small masks (less than 10% of the

whole image area).

Discussion StyleGAN datasets have two limitations. First, we could not find views that

would depict the object from a higher up camera, i.e., a viewpoint from which the roof of

the car or the back of the horse would be more clearly visible. This is mainly due to the

original dataset on which StyleGAN was trained on, which lacked such views. This leads to

challenges in training inverse graphics networks to accurately predict the top of the objects.

Secondly, for articulated objects such as the horse and bird classes, StyleGAN does not

perfectly preserve object articulation in different viewpoints, which leads to challenges

in training high accuracy models using multi-view consistency loss. We leave further

investigation of articulated objects to future work.

5.3.2 Camera Initialization

Inverse graphics tasks require camera pose information during training, which is challenging

to acquire for real imagery. Pose is generally obtained by annotating keypoints for each

object and running structure-from-motion (SfM) techniques [266, 272] to compute camera

parameters. However, keypoint annotation is quite time consuming – requiring roughly

3-5minutes per object which we verify in practice using the LabelMe interface [213]. In our

work, we utilize StyleGAN to significantly reduce annotation effort since samples with the

same w∗
v share the same viewpoint. Therefore, we only need to assign a few selected w∗

v

into camera poses, instead of annotating all the images.

Although StyleGAN datasets largely reduce the amount of images that require labelling,

annotation of kyepoints is still time-consuming. We further propose a more efficient way

to accelerate it. Specifically, instead of accurate keypoints annotation, we annotate the

chosen viewpoint codes with a rough absolute camera pose. To be specific, we classify each

viewpoint code into one of 12 azimuth angle bins, uniformly sampled along 360 deg. We

assign each code a fixed elevation (0◦) and camera distance. These camera poses provide a

very coarse annotation of the actual pose – the annotation serves as the initialization of the

camera which we will optimize during training. This allows us to annotate all views (and

thus the entire dataset) in only 1 minute – making annotation effort neglible. We call our

method LazyInit.
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Azimuth=0◦ Azimuth=30◦ Azimuth=30◦ Azimuth=180◦ Azimuth=210◦ Azimuth=270◦

Figure 5.5: Annotation Comparisons. We show two different annotation methods: LazyInit and SfM. Top row shows the classified

pose bin annotations, while the images show the annotated keypoints. For 39 viewpoints car class, annotating pose bins took 1 min,

while keypoint annotation took 3-4 hours. We empirically find that pose bin annotation is sufficient in training accurate inverse graphics

networks (when optimizing camera parameters during training in addition to optimizing the network parameters).

Discussion We visualize our two different annotation types in Fig 5.5. We show annotated

bins in the top. We also show the annotated keypoints for the (synthesized) car example in

the image, based on which we can compute camera poses using SfM. LazyInit provides very

coarse annotations while SfM results in more accurate camera poses. However, it is still

noisy due to the view inconsistency in StyleGAN images. When training inverse graphics

models we will propagate gradients to camera poses as well to improve the pose annotation

in each view. In practice, we find starting from either SfM or LazyInit, the converged camera

poses are very similar to each other. Since LazyInit requires much less time, we adopt it

in all our inverse graphics experiments. Comparison between two methods are shown in

Sec. 5.4.2.

5.3.3 Training Inverse Graphics Neural Networks

Now we discuss how to train inverse graphics networks with StyleGAN dataset. We verify

two rendering equations in training. We first employ the rasterization based renderer, DIB-R,

to recover shape and texture from images. We further apply more expressive rendering

equations, utilizing DIB-R++ to predict advanced lighting and material parameters from

real images.

Shape and Texture Recovery Following CMR [116], we first adopt DIB-R as the differentiable

graphics renderer, training a 3D prediction network to infer 3D shape and texture from

images. We turn off lighting and surface material in this setting.

Let I denote an image captured in camera viewpoint v from our StyleGAN dataset, and

M is its corresponding object mask. The inverse graphics network F , parameterized by

ϑ, makes a prediction as follows: {S, T} = F (I;ϑ), where S is the shape while T is the

texture. To train the network, it takes the prediction as input and produces rendered image

and mask {Ĩ , M̃} = R(v, S, T ). We slightly modify the loss function in [38] to fit for the

new dataset:

L = λcolLcol(Ĩ , I) + λIOULIOU(M̃,M) + λlapLlap(π) + λperLper(Ĩ , I) + λmovLmov(S)

(5.1)
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Here, Lcol is the standard L1 image reconstruction loss defined in the RGB color space. LIOU

computes the intersection-over-union between the ground-truth mask and the rendered mask.

Llap is the commonly used regularization loss to ensure the shape is well behaved. Lper is

the perceptual loss that helps the predicted texture look more realistic. Finally, following

CMR [116], we add Lmov to further regularize the shape deformation to be uniform and

small. Its key idea is to learn a mean shape, where the final shape is equal to the mean shape

plus predicted deformation. Lmov tries to minimize the difference between the mean shape

and final shape, which helps stabilize the shape prediction.

Training with Multi-view Consistency and Noisy Camera Multi-view consistency loss is typi-

cally used with the synthetic Shapenet dataset [33, 38, 39] but rarely adopted for real-image

inverse graphics tasks due to the lack of available data. Thanks to StyleGAN dataset, we

have access to multi-view images for each object so we apply it during training. We find that

this loss is key in obtaining highly accurate results. In particular, we follow the multi-view

loss defined in Eq. (3.19). While more views provide more constraints, empirically, two

views have been proven sufficient. We randomly sample views for efficiency.

When we use the above loss functions, we will jointly train the neural network F and

optimize viewpoint cameras (which were fixed in DIB-R). We assume that different images

generated from the same w∗
v correspond to the same viewpoint. Optimizing the camera

jointly with the weights of the network allows us to effectively deal with noisy initial camera

annotations.

Predicting Advanced Lighting and Material StyleGAN have shown powerful ability to generate

photorealistic images. The synthesized images contain not only delicate texture, but also

exquisite lighting effects. By incorporating more expressive rendering equations, we can

further infer advanced lighting and surface material parameters. We modify the network

to jointly predict geometry π, lighting γ and SVBRDF θ 1 from the input images. We

then choose DIB-R++ to render the 3D properties back to images and adopt the same loss,

minimizing the input images and rendered images to train the network.

While DIB-R can also be employed to predict lighting, we show the rasterization based

renderer only supports low-frequency lighting, e.g., Spherical Harmonics, which fails to

account for high order lighting effects. As a result, it sometimes “bakes in” lighting in

texture, especially for the images with strong reflection or specular effects. In contrast,

DIB-R++ supports more expressive rendering equations to represent secondary lighting

1To distinguish two settings, we use {S, T} to represent shape and texture in the first setting while {π,γ,θ} to represent shape,

material and lighting in the second case. θ contains both surface albedo map and surface reflectance parameters.
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effects, disentangling accurate material and faithful lighting which can further be used in

material editing and relighting applications.

5.4 Experiments

In this section, we showcase our approach on inverse graphics tasks (single-view 3D object

reconstruction). We first describe our StyleGAN dataset in Sec. 5.4.1, then show the

results of shape and texture recovery in Sec. 5.4.2. Lastly, we exhibit lighting and material

prediction as well as material editing and relighing application in Sec. 5.4.3.

5.4.1 StyleGAN Dataset

StyleGAN Models We choose three category-specific StyleGAN models, one representing

a rigid object class, and two representing articulated (and thus more challenging) classes.

We use the official car and horse model from StyleGAN2 [120] repo which are trained on

LSUN Car and LSUN Horse with 5.7M and 2M images. We also train a bird model on

NABirds [252] dataset, which contains 48k images.

Our “StyleGAN” Dataset We first randomly sample 6000 cars, 1000 horse and 1000 birds

with diverse shapes, textures, and backgrounds from StyleGAN. After filtering out images

with bad masks as described in Sec. 5.3.1, 55429 cars, 16392 horses and 7948 birds images

remain in our dataset which is significant larger than the Pascal3D car dataset [272] (4175

car images). Note that nothing prevents us from synthesizing a significantly larger amount

of data, but in practice, this amount turned out to be sufficient to train good models. We

provide all views and car, bird and horse examples in Fig. 5.3 and Fig. 5.4.

5.4.2 Shape & Texture Recovery with DIB-R

Experimental Details We first train a inverse graphics network with DIB-R to predict shapes

and texture maps from images. Our DIB-R based inverse graphics model was trained with

Adam ([124]), with a learning rate of 1e-4. We set λIOU, λcol, λlap, and λmov to 3, 20, 5, and

2.5, respectively. We first train the model with Lcol loss for 3K iterations, and then fine-tune

the model by adding Lpecept to make the texture more realistic. We set λpercept to 0.5. The

model converges in 200K iterations with batch size 16. Training takes around 120 hours on

four V100 GPUs.

Results on StyleGAN Dataset We show 3D reconstruction results in Fig. 5.6. Notice the

quality of the predicted shapes and textures, and the diversity of the 3D car shapes we obtain.
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Input Prediction Multiple Views Input Prediction Multiple Views

Figure 5.6: Shape & Texture Reconstruction Results. Given input images (1st column), we predict 3D shape, texture, and render them

into the same viewpoint (2nd column). We also show renderings in 3 other views in remaining columns to showcase 3D quality. Our

model is able to reconstruct cars with various shapes, textures and viewpoints. We also show the same approach on harder (articulated)

objects, i.e., bird and horse.
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Figure 5.7: Comparison on Pascal3D Testing Set. We compare inverse graphics networks trained on Pascal3D and our StyleGAN

dataset. Notice considerably higher quality of prediction when training on the StyleGAN dataset.

Our method also works well on more challenging (articulated) classes, e.g. horse and bird.

We provide additional examples in Fig. 5.8.

Evaluation on Pascal3D Dataset We test our model on Pascal3D test set and show qualitative

results in Fig. 5.7. Additional results are provided in Fig. 5.9. Note that the images from

Pascal3D dataset are different from those our StyleGAN-model was trained on. Our model

is trained on GAN images generated by StyleGAN [119], thanks to this powerful generative

model, the distribution of GAN images is similar to the distribution of real images, allowing

our model to generalize well.

To evaluate our dataset, we also train exactly the same inverse graphics model on the

Pascal3D car dataset [272] and compare with the model trained on our StyleGAN dataset.
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Input Pred. Multiple Views for the predicted shape and texture

Figure 5.8: 3D Reconstruction Results for Car, Horse, and Bird Classes. We show car, horse and bird examples tested on the images

from the StyleGAN dataset test sets. Notice that the model struggles a little in reconstructing the top of the back of the horse, since such

views are lacking in training.



92 CHAPTER 5. SINGE-VIEW REAL IMAGERY 3D OBJECT RECONSTRUCTION

P
as

ca
l3

D
O

u
rs

P
as

ca
l3

D
O

u
rs

P
as

ca
l3

D
O

u
rs

P
as

ca
l3

D
O

u
rs

P
as

ca
l3

D
O

u
rs

P
as

ca
l3

D
O

u
rs

Input Pred. Multiple Views

Figure 5.9: Comparison on PASCAL3D Imagery. We compare PASCAL-model with StyleGAN-model on PASCAL3D test set. While

the predictions from both models are visually good in the corresponding image view, the prediction from StyleGAN-model have much

better shapes and textures as observed in other views.
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Pascal3D dataset has annotated keypoints, which we utilize to train the baseline model,

termed as as Pascal3D-model. As shown in Fig. 5.7 and Fig. 5.9, although the Pascal3D-

model’s prediction is visually good in the input image view, rendered predictions in other

views are of noticeably lower quality than ours, which demonstrates that StyleGAN dataset

helps recover 3D geometry and texture better than Pascal3D dataset.

Dataset Size Annotation

Pascal3D 4K 200-350h

StyleGAN 50K ∼1min

Model Pascal3D test StyleGAN test

Pascal3D 0.80 0.81

Ours 0.76 0.95

(a) Dataset Comparison (b) 2D IOU Evaluation

Table 5.1: (a): We compare dataset size and annotation time of Pascal3D with our StyleGAN dataset. (b): We evaluate re-projected 2D

IOU score of our StyleGAN-model vs the baseline Pascal3D-model on the two datasets.

We also quantitatively evaluate the two models in Table 5.1 for the car class. We report the

estimated annotation time in Table. 5.1 (a) to showcase efficiency behind our StyleGAN

dataset. It takes 3-5 minutes to annotate keypoints for one object, which we empirically

verify. Thus, labeling Pascal3D required around 200-350 hours while ours takes only 1

minute to annotate a 10 times larger dataset.

In Table 5.1 (b), we evaluate shape prediction quality by the re-projected 2D IOU score. Our

model outperforms the Pascal3D-model on the SyleGAN test set while Pascal3D-model is

better on the Pascal test set. This is not surprising since there is a domain gap between two

datasets and thus each one performs best on their own test set. Note that this metric only

evaluates quality of the prediction in input view and thus not reflect the actual quality of the

predicted 3D shape/texture.

Human Study To analyze the quality of 3D prediction, we conduct an AMT user study

on the Pascal3D test set which contains 220 images. We implement our user interface,

visualized in in Fig. 5.10, on Amazon Mechanical Turk. For each example, we show the

input image and predictions rendered in 6 views such that users can better judge the quality

of 3D reconstruction. We show results for both our inverse graphics network (trained on the

StyleGAN dataset) and the one trained on the Pascal3D dataset. We also compare shape

reconstruction and textured models separately, such that users can judge the quality of both,

shape and texture, more easily.

We randomize the order of ours vs baseline in each HIT to avoid any bias. We ask users

to choose results that produce more realistic and representative shape, texture and overall

quality with respect to the input image. We separate judgement of quality into these three

categories to disentangle effects of 3D reconstruction from texture prediction. We also

provide “no preference” options in case of ties. Our instructions emphasize that more
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Figure 5.10: User Study Interface (AMT). Predictions are rendered in 6 views and we ask users to choose the result with a more realistic

shape and texture that is relevant to the input object. We compare both the baseline (trained on Pascal3D dataset) and ours (trained on

StyleGAN dataset). We randomize their order in each HIT.

Overall Shape Texture

Ours 57.5% 61.6% 56.3%

Pascal3D-model 25.9% 26.4% 32.8%

No Preference 16.6% 11.9% 10.8%

Overall Shape Texture

All Agree 26.1% 29.6% 27.1%

Two Agree 61.1% 58.6% 62.1%

No Agreement 12.8% 11.8% 10.8%

(a) 3D Quality Study (b) Annotator Agreement

Table 5.2: User study results: (a): Quality of 3D estimation (shape, texture and overall). (b): Annotators agreement analysis. “No

agreement” stands for the case where all three annotators choose different options.

“representative” results of the input should be selected, to avoid users being biased by good

looking predictions that are not consistent with the input (e.g., such as in the case of overfit

networks).

We evaluate the two networks on all 220 images from the Pascal3D test set (which are

“in-domain” for the Pascal3D-trained network). For each image we ask three users to perform

evaluation, which results in 660 votes in total. We report the average of all votes as our

final metric and report annotator agreement analysis in Table 5.2. Users show significant

preference of our results versus the baseline, which confirms that the quality of our 3D

estimation. Moreover, for shape, texture, and overall evaluation, there are 88.2%, 89.2%,

and 87.2% cases where at least two out of three users choose the same option.

Ablation Study In Fig 5.11 we ablate the importance of using multiple views in our dataset,

i.e., by encouraging multi-view consistency loss during training. We compare predictions

from inverse graphics networks trained with and without the losses and find significant

differences in quality. Absence of multi-view consistency loss results in strong degradation

in new views. This further indicates the superiority of our StyleGAN dataset compared
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Figure 5.11: Ablation Study. We ablate the use of multi-view consistency and perceptual losses by showing results of 3D predictions.

Clearly, the texture becomes worse in the invisible part if we remove the multi-view consistency loss (rows 2, 5, denoted by “w.o M. V.”,

which denotes that no multi-view consistency was used during training), showcasing the importance of our StyleGAN-multivew dataset.

Moreover, the textures become quite smooth and lose details if we do not use the perceptual loss (rows 3, 6, noted by “w.o P.”, which

denotes that no perceptual loss was used during training).
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Figure 5.12: Comparison of Different Camera Initialization Methods. The first row shows predictions from SfM -Initialization

(cameras computed by running SFM on annotated keypoints) and the second row show results obtained by training with LazyInit-
Initialization (cameras are coarsely annotated into 12 view bins). Notice how close the two predictions are, indicating that coarse viewpoint

annotation is sufficient for training accurate inverse graphics networks. Coarse viewpoint annotation can be done in 1 minute.
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Annotation Type Annotation Time Training Time 2D IOU

SfM 3-4h 60h 0.953

LazyInit 1min 60h 0.952

Quaternion Mean Max

qxyz 1.43◦ 2.95◦

qw 0.42◦ 1.11◦

(a) Time & Performance (b) Camera Difference after Training

Table 5.3: Comparison of different camera initialization methods. First table shows annotation time required for the StyleGAN dataset,

and training times of the LazyInit-model and SfM -model on the dataset with respective annotations (binned viewpoints or cameras

computed with SFM from annotated keypoints). The LazyInit-model requires significantly less annotation time, and its final performance

is comparable to the SfM -model. Second table shows the difference of the camera parameters after training both methods (which

optimize cameras during training). They converge to very similar camera positions. This shows that coarse view annotation along with

camera optimization during training is sufficient in training high accuracy inverse graphics networks.

to Pascal3D dataset, which provides only single-view images and has strong performance

degradation in new views. We also investigate the effects of perceptual loss and find it

also play an import role in training. Clearly, it helps keep texture more realistic, where the

models wihout it will results very blurry results.

We further conduct an ablation study to demonstrate the effectiveness of our LazyInit

camera initialization. We train another inverse graphics network with a more accurate SfM

camera initialization. Such an initialization is done by manually annotating object keypoints

in each of the selected views (w∗
v) of a single car example, which takes about 3-4 hours

(around 200 minutes, 39 views). Note that this is still a significantly lower annotation effort

compared to 200-350 hours required to annotate keypoints for every single object in the

Pascal3D dataset. We then compute the camera parameters using SfM. We refer to the two

inverse graphics networks trained with different camera initializations as LazyInit-model

and SfM -model, respectively.

We quantitatively evaluate two initialization methods in Table. 5.3. We first compare the

annotation and training times. While it takes the same amount of time to train, view-

model saves on annotation time. The performance of view-model and keypoint -model

are comparable with almost the same 2D IOU re-projection score on the StyleGAN test

set. Moreover, during training the two camera systems converge to the same position.

We evaluate this by converting all the views into quaternions and compare the difference

between the rotation axes and rotation angles. Among all views, the average difference of

the rotation axes is only 1.43◦ and the rotation angle is 0.42◦. The maximum difference of

the rotation axes is only 2.95◦ and the rotation angle is 1.11◦.

We further qualitatively compare the two methods in Fig. 5.12, showing that they perform

very similarly. Both, qualitative and quantitative comparisons, demonstrated that LazyInit-

camera initialization is sufficient for training accurate inverse graphics networks and no

additional annotation is required. This demonstrates a scaleable way for creating multi-view

datasets with StyleGAN, with roughy a minute of annotation time per class.
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Input Multiple Views for the predicted shape and texture

Figure 5.13: 3D Reconstruction Failure Cases. We show examples of failure cases for car, bird and horse. Our method tends to fail to

produce relevant shapes for objects with out-of-distribution shapes (or textures).

Failure Cases We find that our inverse graphics network fails on out-of-distribution im-

ages/shapes, as shown in Fig. 5.13. For example, the reconstruction results for Batmobile

and Flinstone cars are not representative of the input cars. We anticipate that this issue can

be addressed by augmenting the dataset on which StyleGAN is trained with more diverse

objects. Part of the issue is also caused by GANs not capturing the tails of the distribution

well, which is an active area of research.

5.4.3 Lighting & Material Prediction with DIB-R++

Experimental Settings We further apply DIB-R++ to learn to predict advanced lighting and

materials from StyleGAN dataset. We train the inverse graphics models on the car images,

which contain various lighting conditions, ranging from high specular paint to nearly diffuse.

We apply SG shading and jointly predict shape π, material θ and lighting γ. Here, π

is represented by a sphere topology and we predict 642 vertex movements. θ contains a

256× 256 diffuse texture map and two global β and s. γ contains K = 32 SG bases. To

evaluate the role of the more expressive rendering equations, we also run DIB-R as the

baseline, predicting the same shape and texture but with Spherical Harmonic light on the

same dataset by using the same training procedure.

Results on StyleGAN dataset We qualitatively evaluate DIB-R++ results and compare with

DIB-R in Fig. 5.14. DIB-R++ reconstructs more faithful material and lighting components,

producing an interpretable decomposition. Specifically, it can represent the dominant light
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Figure 5.14: Results on Real Imagery from the StyleGAN-generated Car Dataset. In Row(1,3), we show DIB-R++ can recover a

meaningful decomposition as opposed to DIB-R (Row(2,4)), as shown by cleaner texture maps and directional highlights (e.g., car

windshield).

direction more accurately, while naive Spherical Harmonic shading from DIB-R tends to

merge reflectance with lighting. More comparisons can be found in Fig. 5.17.

Evuluation on LSUN Dataset Since images in Pascal3D dataset are captured from far camera

poses, they are generally of low resolution and contain mostly diffuse appearance. Thus, we

show reconstruction results on real images from LSUN [281] in Fig. 5.15, which contains

images with more lighting variations. More comparisons can be found in Fig. 5.18.

During inference, we do not need any camera pose and predict shapes in canonical view.

However, camera poses are needed to re-render the shape. Since ground-truth camera poses

are not available for real images in LSUN dataset, we manually adjust the camera poses in

Fig. 5.15 and Fig. 5.18. As a result, the re-rendered images are slightly misaligned with GT.

However, DIB-R++ still accounts for specularities and predicts correct predominant lighting

directions and clean textures.

Material Editing and Relighting Finally, we demonstrate some applications of DIB-R++ to

artistic manipulation in Fig. 5.16. On the left, we show examples of editing the diffuse

albedo, where we can insert text, decals or modify the base tint. Since our textures are

not contaminated by lighting, clean texture maps can be easily edited by hand and the

re-rendered images look natural. On the right, we show examples of editing lighting and

surface materials, where we rotate the light (top) or increase glossiness (bottom). We also

showcase results where we change lighting orientation or modify the object’s glossiness

with consistent shading, which is not feasible with a naive, Lambertian-only shading model.
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Figure 5.15: Prediction on LSUN Dataset (Cars). DIB-R++, trained on StyleGAN dataset, can generalize well to real images. Moreover,

it also predicts correct high specular lighting directions and usable, clean textures.

RGB Input Re-rendered Edited diffuse albedo RGB Input Rotating envmap

RGB Input Re-rendered Edited diffuse albedo RGB Input Increasing specular albedo

Figure 5.16: Material Editing. Our method allows for artistic manipulation of appearance, such as novel view synthesis, material editing

(both diffuse and specular components), and relighting, thanks to our effective disentanglement.

5.5 Summary

In this chapter, we introduced a new powerful way to train inverse graphics models. We

propose a state-of-the-art image synthesis approach, generating training data to train in-

verse graphics networks. We showcased our approach to obtain significantly higher quality

3D reconstruction results while requiring 10,000× less annotation effort than standard

datasets. By incorporating with more expressive rendering equations, we can also effec-

tively disentangle material and lighting, enabling applications such as material editing and

relighting.



100 CHAPTER 5. SINGE-VIEW REAL IMAGERY 3D OBJECT RECONSTRUCTION

Input Decomposition Texture Envmap Pred. albedo Re-rendered (with light)

D
IB

-R
+

+
D

IB
-R

D
IB

-R
+

+
D

IB
-R

D
IB

-R
+

+
D

IB
-R

D
IB

-R
+

+
D

IB
-R

D
IB

-R
+

+
D

IB
-R

D
IB

-R
+

+
D

IB
-R

Figure 5.17: Prediction on Real-world Dataset (Cars). DIB-R++ accounts for high specular light and always have cleaner textures

compared to DIB-R .
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Figure 5.18: Prediction on LSUN Dataset (Cars). Our model, trained on StyleGAN dataset, can be well generalized to real images.

Moreover, it also accounts for high specular light and predict correct lighting directions and clean textures.



Chapter 6

Differentiable Structured Light

Triangulation

We consider the problem of designing sequences of structured-light patterns for active stereo

triangulation of a static scene. Unlike existing approaches that use predetermined patterns

and reconstruction algorithms tied to them, we generate patterns on the fly in response

to generic specifications: number of patterns, projector-camera arrangement, workspace

constraints, spatial frequency content, etc. Our pattern sequences are specifically optimized

to minimize the expected rate of correspondence errors under those specifications for

an unknown scene, and are coupled to a sequence-independent algorithm for per-pixel

disparity estimation. We achieve this by introducing a differentiable structured light imaging

formation model and embedding it into learning frameworks. We design patterns from a

machine learning perspective, deriving an objective function to evaluate performance of the

patterns and optimizing patterns to minimize it. We demonstrate automatically optimized

pattern sequences, in under three minutes on a laptop, that can outperform state-of-the-art

triangulation techniques.

6.1 Introduction

A key tenet in structured-light triangulation is that the choice of projection patterns matters

a lot. Over the years, the field has seen significant boosts in performance—in robustness,

3D accuracy, speed and versatility—due to new types of projection patterns, and new vision

algorithms tailored to them [215, 214]. These advances continue to this day, for improved

robustness to indirect light [74, 175, 77, 71, 79, 45, 37, 277]; computational efficiency [175,

54, 55]; high-speed imaging [126]; outdoor 3D scanning [76, 167]; and for 3D imaging

102
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Figure 6.1: Overview. Top: A projection pattern is a 1D image projected along a projector’s rows. A sequence of them defines a

code matrix, whose columns encode pixel position. We present a framework for computing stereo correspondences using optimal code

matrices, which we generate on the fly. These matrices minimize the expected number of stereo errors that occur when the individual

matrix columns are not very distinctive (red=similar, blue=dissimilar). Middle: A whole space of optimal matrices exists, for different

numbers of projection patterns, image signal-to-noise ratio, spatial frequency content (sample patterns shown above), etc. Bottom: We

use two automatically-generated four-pattern sequences to compute the depth map of the object shown on left. Both are optimized for a

one-pixel tolerance for stereo errors, without (middle) and with (right) a bounding-box constraint. Both depth maps are unprocessed

(please zoom in).

with specialized computational cameras [187], consumer-oriented devices [174, 52] and

time-of-flight cameras [113, 20, 218, 10].

Underlying all this work is a fundamental question: what are the optimal patterns to use

and what algorithm should process the images they create? This question was originally

posed by Horn and Kiryati twenty years ago [94] but the answer was deemed intractable

and not pursued. Since then, pattern design has largely been driven by practical considera-

tions [219, 201, 202, 289, 93] and by intuitive concepts borrowed from many fields (e.g.,

communications [203], coding theory [214], number theory [201], numerical analysis [136],

etc.)

In this chapter we present the first computational approach to optimal design of patterns

for structured light. We focus on the oldest, most accuracy-oriented version of this task:

projecting a sequence of patterns one by one onto a static scene and using a camera to

estimate per-pixel depth by triangulation. We view this problem from a machine learning

perspective, deriving an objective function over the space of pattern sequences that quantifies

the expected number of incorrect stereo correspondences. We introduce a differentiable

structure light triangulation imaging formation model and embed it into learning frameworks

which allows us to optimize patterns by minimizing the objective function using standard



104 CHAPTER 6. DIFFERENTIABLE STRUCTURED LIGHT TRIANGULATION

tools [124].

Our optimization takes as input the projector’s resolution and the desired number of pro-

jection patterns. In addition to these parameters, however, it can generate patterns that

are precisely optimized for 3D accuracy on the system at hand (Figure 6.1): for the spe-

cific arrangement of projector and camera; the shape and dimensions of the 3D scanning

volume; the noise properties and peak signal-to-noise ratio of the overall imaging system;

the defocus properties of the projector lens; a desired upper bound on the patterns’ spatial

frequency; and any unknown scene geometry. Thus, in contrast to prior work, we do not

provide a closed-form expression or “codebook” for a one-size-fits-all pattern sequence; we

give a way to generate scene-independent pattern sequences on the fly at near-interactive

rates—less than three minutes on a standard laptop—so that the patterns and the associated

reconstruction algorithm can be easily and automatically adapted for best performance. We

call this paradigm structured light à la carte.

At the heart of our approach lies an extremely simple differentiable structured light imaging

formation model, from which we derive a decoding algorithm for computing stereo cor-

respondences independently of projection pattern. It also makes the pattern optimization

problem itself tractable: by giving us a way to quantify the expected errors a pattern se-

quence will cause, it leads to an objective function over sequences that can be optimized

numerically.

From a conceptual point of view our work makes three important contributions over the

state of the art. First and foremost, our optimization-based approach turns structured-light

imaging from a problem of algorithm design (for creating patterns [215], unwrapping

phases [97, 100, 197, 74], computing correspondences [219], handling projector defocus [9,

79]) into one of problem specification (how many patterns, what working volume, what

imaging system, etc.). The rest is handled automatically by pattern sequence optimization

framework. Second, we demonstrate optimized pattern sequences that can outperform

state-of-the-art encoding schemes on hard cases: low numbers of patterns, geometrically-

complex scenes, low signal-to-noise ratios. These are especially important in settings where

speed and low-power imaging are of the essence. Third, our formulation gives rise to new

families of pattern sequences with unique properties, including (1) sequences designed to

recover approximate, rather than exact, correspondences and (2) sequences designed with

information about free space and stereo geometry already built in. This encodes geometric

scene constraints directly into the optical domain for added reliability—via the patterns

themselves—rather than enforcing them by post-processing less reliable 3D data.
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Figure 6.2: Viewing Geometry. We assume the projector-camera system has been rectified, i.e., epipolar lines are along rows.

6.2 Optimal Structured Light

Fundamentally, structured-light triangulation requires addressing two basic questions: (1)

what patterns to project onto the scene and (2) how to compute projector-camera stereo

correspondences from the images captured. Specifying a “good” set of projection patterns

can be thought of as solving a one-dimensional position encoding problem for pixels on an

epipolar line. Conversely, computing the stereo correspondence of a camera pixel can be

thought of as a position decoding problem. We begin by formally defining both problems,

then talk about how to solve them with a differentiable structured light image formation

model under learning frameworks.

The Code Matrix A set of K projection patterns implicitly assigns a K-dimensional code

vector cp to each pixel p on the epipolar line (Figure 6.2). The elements of cp are the pixel’s

intensity in the individual patterns, they can be non-binary, and must be chosen so that each

code vector is as distinctive as possible. This becomes harder to do as K decreases (i.e.,

vectors with fewer dimensions are less distinctive) and as the number of pixels increases (i.e.,

there are more vectors to be distinguished). We represent the code vectors of an epipolar

line with a code matrix C. This matrix has size K ×N for an epipolar line with N pixels.

Position Decoding Consider a camera pixel q. The K intensities observed at that pixel define

a K-dimensional observation vector oq. Given this vector and the code matrix C, the goal

of position decoding is to infer its corresponding projector pixel p∗:

p∗ = Decode(oq,C) . (6.1)

Note that p∗ may or may not agree with the true correspondence p (Figure 6.2), as finding

accurate correspondence is a difficult problem because observations are corrupted by mea-

surement noise and because the relation between observation vectors and code vectors can

be highly non-trivial for general scenes.
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Figure 6.3: Generative Model of Image Formation for a Single Epipolar Line Across K Images. Each column of matrix O is an

observation vector (red) and each row collects the observations from a single image across all pixels on the epipolar line (yellow). All

yellow rows are associated with the same input image and all red columns are associated with the same camera pixel q. The gray column

and row are associated with the same projector pixel p.

Position Encoding The code matrix C should be chosen to minimize decoding error. For a

given projector-camera system and a specific scene, we quantify this error by counting the

incorrect correspondences produced by decoder:

Error(C, ǫ)
def
=

M∑

q=1

✶

(
∣
∣Decode(oq,C)−Match(q)

∣
∣ > ǫ

)

, (6.2)

where Match(q) is the true stereo correspondence of image pixel q; ǫ is a tolerance threshold

that permits small correspondence errors; ✶() is the indicator function; and the summation

is over all pixels on the epipolar line.

We now formulate optimal position encoding as the problem of finding a code matrix C∗
ǫ

that minimizes the expected number of incorrect correspondences:

C∗
ǫ = argmin

C

E
[
Error(C, ǫ)

]
(6.3)

where E
[ ]

denotes expectation over a user-specified domain of plausible scenes and imaging

conditions. We call C∗
ǫ the optimal code matrix for tolerance ǫ.

Key Objective We seek an efficient solution to the nested optimization problem in Eq. (6.3).

To do this, we introduce a differentiable structured light image formation model defined

with the epipolar geometry (Section 6.3). This leads to a correlation-based decoder for

structured-light reconstruction that is nearly optimal in low, Gaussian distributed noise

settings (Section 6.4). Using this decoder, we derive a softmax-based approximation to the

objective function of Eq. (6.2). We then embed everything inside learning frameworks and

optimize patterns that minimize the expected number of stereo mismatches (Section 6.5).



6.3. DIFFERENTIABLE EPIPOLAR-ONLY IMAGING FORMATION MODEL 107

6.3 Differentiable Epipolar-Only Imaging Formation Model

In this section, we introduce our differentiable structured light imaging formation model. To

simplify our formal analysis we assume that all light transport is epipolar. Specifically, we

assume that observation vectors depend only on code vectors on the corresponding epipolar

line. This condition applies to conventionally-acquired images when global light transport,

projector defocus and camera defocus are negligible.1 It also applies to all images captured

by an epipolar-only imaging system regardless of scene content–even in the presence of

severe global light transport [190].

When epipolar-only imaging holds and the system has been calibrated radiometrically, the

relation between code vectors and observation vectors is given by (Figure 6.3):

[

o1 · · · oM

]

︸ ︷︷ ︸
observation matrix O

=
[

c1 · · · cN

]

︸ ︷︷ ︸
code matrix C

T+ 1
[

a1 · · · aM

]

︸ ︷︷ ︸
ambient vector a

+E (6.4)

where o1, . . . ,oM are the observation vectors of all pixels on an epipolar line; a =

[a1, . . . , aM ] is the contribution of ambient illumination vector to these pixels; 1 is a column

vector of all ones; matrix E is the observation noise; and T is the N ×M epipolar transport

matrix. Element T[p, q] of this matrix describes the total flux transported from projector

pixel p to camera pixel q by direct surface reflection, global transport, and projector or

camera defocus.

The epipolar-only model of Eq. (6.4) encodes the geometry and reflectance of the scene as

well as the scene’s imaging conditions. Note that although it is very simple, this formula is

differentiable and the gradients from the observation O w.r.t to the code C is naturally the

light transport matrices T. Such differentiability allows us to embed the image formation

model into learning frameworks to optimize the optimal code matrix C. More importantly,

by adjusting epipolar transport matrices T, ambient vectors a, and noise matrices E, we

can represent various imaging conditions and specifically optimize C for them. Next, we

describe the parameter space of T, a, and E under specific imaging conditions.

6.3.1 Plausible Parameter Space

Epipolar Transport Matrices Let us first consider the space of plausible matrices T. Even

though the space of N ×M matrices is extremely large, the matrices relevant to structured-

light imaging belong to a much smaller space. This is because the elements of T associated

with indirect light generally have far smaller magnitude than direct elements—and can thus

be ignored [190]. This in turn makes the observation matrix O very efficient to compute. In

1See Figure 6.8 for experiments with scenes with significant indirect light, where this condition does not strictly hold.
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Figure 6.4: Geometric Constraints. (a) Top view of the epipolar plane. (b) T is always lower triangular because the 3D rays of all other

elements intersect behind the camera. (c) T’s non-zero elements are restricted even further by knowledge of the working volume (e.g.,

black square in (a)): its depth range (red) and its angular extent from the projector (green) and the camera (blue) define regions in T

whose intersection contains all valid correspondences.

particular, we consider imaging conditions for the following two families:

(A) Direct-only T, unconstrained: The non-zero elements of T represent direct surface

reflections and each camera pixel receives light from at most one projector pixel. It follows

that each column of T contains at most one non-zero element. Moreover, the location of

that element is a true stereo correspondence. The observation vector is therefore a noisy

scaled-and-shifted code vector:

oq = T[p, q] · cp + aq + eq (6.5)

where vector eq denotes noise. We assume that the location of the non-zero element in

each column of T is drawn randomly from the set {1, . . . , N} and its value, T[p, q], is a

uniform i.i.d random variable over [0, 1]. This amounts to being completely agnostic about

the location and magnitude of T’s non-zero elements.

(B) Direct-only T with geometry constraints We now restrict the above family to exclude

geometrically-implausible stereo correspondences. These are elements of T whose asso-

ciated 3D rays either intersect behind the image plane or outside a user-specified working

volume (Figure 6.4a). We specify these invalid elements with a binary indicator matrix G

(Figure 6.4b, 6.4c). Given this matrix, we assume that the location of the non-zero element

in each column of T is drawn uniformly from the column’s valid elements.

Observation Noise and Ambient Vector The optimality of our position decoder (Section 6.4)

relies on noise being signal independent and normally distributed. The position encoder

of Section 6.5, on the other hand, can accommodate any model of sensor noise as long as

its parameters are known. We assume that the elements of the ambient vector a follow a

uniform distribution over [0, amax], where amax is the maximum contribution of ambient

light expressed as a fraction of the maximum pixel intensity.
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Figure 6.5: ZNCC v.s. Native Decoding. Left: We project K micro phase shifting (MPS) patterns [74] of maximum frequency F onto a
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similar comparison for 10 Gray codes (purple) and 10 XOR-04 codes (green), projected along with their binary complement. We used the

binarization technique in [219] for “native” decoding. Since these codes have no frequency bound we plot them against image PSNR. In

all cases, ZNCC decoding yields comparable results.

6.4 Optimal Position Decoding

Now we talk about our decoder derived from the epipolar-only image formation model.

Suppose we are given a code matrix C and an observation vector oq that conforms to

Eq. (6.4). Our task is to identify the stereo correspondence of pixel q. We seek a generic

solution to this problem that does not impose constraints on the contents of the code matrix:

it can contain code vectors defined a priori—such as MPS [74] or XOR [77] codes—or be a

general matrix computed automatically through optimization.

Fortunately, from the differentiable imaging formation model, we derive an extremely

simple and near-optimal algorithm to do this: just compute the zero-mean normalized

cross-correlation (ZNCC) [164] between oq and the code vectors, and choose the one that

maximizes it. This algorithm becomes optimal as noise goes to zero and belongs to Gaussian

distribution: 2

Recall the differentiable image formation model in Sec. 6.3. To be simple, we derive it

from the pixelwise image formation model (Eq. (6.5)). Assume the true correspondence of

camera pixel q is projector column p, we first compute the mean value of the observation

vector oq and code vector cp:

mean(oq) = T[p, q] ·mean(cp) + aq + mean(eq) . (6.6)

Here, mean() is over the elements of a code vector. T[p, q] and aq are scalars, so they will

2ZNCC is a direct generalization of the widely known correlation-based decoder for communication channels corrupted by additive

white Gaussian noise [203].
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not change. Simply minus Eq. (6.5) with Eq. (6.6), we immediately get rid of the ambient

term:

oq −mean(oq) = T[p, q] · (cp −mean(cp)) + eq −mean(eq) . (6.7)

When the noise is in Gaussian distribution and it goes to zero, eq −mean(eq) also goes to

zero. It indicates that if q and p are true correspondence, the normalized correlation between

oq −mean(oq) and cp −mean(cp) should be close to one. Therefore, given an observation

vector oq and code matrix C, we propose to use ZNCC to evaluate the probability of

correspondence matching between oq and each code vector cp, then pick up the maximum

one:

ZNCC(oq, cp) =
oq −mean(oq)

‖oq −mean(oq)‖
·

cp −mean(cp)

‖cp −mean(cp)‖
. (6.8)

Decode(oq,C) = argmax
1≤p≤N

ZNCC(oq, cp) . (6.9)

The proposed ZNCC decoder has two important implications. First, as a sequence-independent

decoder, ZNCC performs comparable or even better than those specifically designed ones

(Figure 6.5). It suggests that there is potentially no accuracy advantage to be gained by

designing decoding algorithms tailor-made for specific codes 3. Second, it allows us to

transform the nested position-encoding optimization of Eq. (6.3) into a conventional non-

linear optimization. This opens the door to automatic generation of optimized code matrices,

discussed next.

6.5 Optimal Position Encoding

With the differentiable imaging formation model and the derived sequence-independent

position decoder, now we can embed them inside learning frameworks to automatically

optimize patterns for the chosen imaging conditions. We begin by developing a continuous

approximation to the function Error() in Eq. (6.2). This function counts the decoding errors

that occur when a given code matrix C is applied to a specific scene and imaging condition,

i.e., a specific transport matrix T, observation noise E, and ambient vector a. To evaluate

the position-encoding objective function on matrix C, we draw S fair samples over T, E

3Strictly speaking this applies to decoders that estimate depth at each pixel independently. Note that ZNCC decoding does incur a

computational penalty: it requires O(N) operations versus O(K) of most specialized decoders.
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and a:

E
[
Error(C, ǫ)

]
= (1/S)

∑

T,E,a

Error(T,E, a,C, ǫ) . (6.10)

Softmax Approximation of Decoding Errors Consider a binary variable that tells us whether or

not the optimal decoder matched camera pixel q to a projector pixel p. We approximate this

variable by a continuous softamx function using Eqs. (6.12)-(6.13): Equation (6.12) states

that in order for projector pixel p to be matched to q, the ZNCC score of p’s code vector

must be greater than all others. Eq. (6.13) approximates the indicator variable with softmax

function. It also introduces a softmax ratio µ, as the scalar µ goes to infinity, the ratio tends

to 1 if pixel p’s ZNCC score is the largest and tends to 0 otherwise:

✶

(

|Decode(oq,C)−p | = 0

)

(6.11)

= ✶

(

argmax
1≤r≤N

ZNCC(oq, cr) = q

)

(6.12)

=
µ→∞

exp

(

µ · ZNCC(oq, cp)

)

∑N
r=1 exp

(

µ · ZNCC(oq, cr)

) (6.13)

def
= fµ(C,oq, p) . (6.14)

To count all correct matches on an epipolar line, we evaluate the softmax value at the true

stereo match of every pixel q, and then compute their sum. Using the notation in Eq. (6.14):

Correct(T,E, a,C) =
M∑

q=1

fµ(C,oq,Match(q)) . (6.15)

Finally, incorporating the tolerance parameter ǫ to permit small errors in stereo correspon-

dences we get:

Correct(T,E, a,C, ǫ) =
M∑

q=1

ǫ∑

r=−ǫ

fµ(C,oq,Match(q) + r) (6.16)

Error(T,E, a,C, ǫ) = M − Correct(T,E, a,C, ǫ) . (6.17)

Forward and Backward Steps Now we can combine the differentiable image formation model,

the ZNCC decoder and the objective function together, optimizing patterns with gradients
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descent algorithms. The optimization procedure contains forward and backward steps,

where the former evaluate the performance of the patterns while the latter update the patterns

to minimize the error. Specifically, in the forward process, given a randomized code C,

we sample the light transport matrices G 4, observation noise E, and ambient vector a

to synthesize the observation matrix O via the image formation model(Eq. (6.4)). We

then decode the position and calculate the error with the defined error matrix(Eq. (6.17)).

Conversely, in the backward process, thanks to all the differentiable operations, we compute

the gradients of the patterns and update them to minimize the error. During updating, we

constrain the patterns by user-defined frequency and values, e.g., setting the maximum

frequency as 16 and the value range in [0, 1]. We repeat the loop until it converges.

Sampling Scenes and Imaging Conditions Constructing fair samples of the observation noise

E and ambient vector a is straightforward and omitted. To construct a direct-only matrix

whose geometric constraints are a matrix G, we proceed as follows. We first randomly

assign a valid stereo correspondence to each camera pixel according to G. This specifies

the location of the single non-zero element in each column of T (Figure 6.3). We then

assign a random value 5 to each of those elements independently. The result is a valid

direct-only transport matrix, i.e., a sample from family (B) in Section 6.4. Note such an

image formation model is done in simulation. We investigate how to optimize the real-world

projector-camera systems in next chapter.

Optimization Settings We use the Adam optimizer [124] to perform stochastic gradient

descent on the objective function in Eq. (6.10) with a fixed learning rate of 0.01. The user-

specified parameters are (1) the number of projector pixels N ; (2) the number of camera

pixels M ; (3) the number of projection patterns K; (4) the desired tolerance parameter ǫ;

and (5) the geometric constraint matrix G. The result of the optimization is a code matrix

C∗
ǫ .

We initialize the optimization with a random K × N code matrix C and draw a total of

S = 500 samples (T,E, a) at iteration 1 to define the objective function of Eq. (6.10).

These samples act as a “validation set” and remain fixed until convergence. For gradient

calculations we use a minibatch containing two new randomly-drawn samples per iteration.

Optimization converges in around 250 iterations (152 seconds on an 8-core 2.3GHz Mac-

Book Pro laptop for a six-pattern matrix). We found that increasing the number of samples

had no appreciable effect on the quality of C∗
ǫ (i.e., the number of decoding errors on other

randomly-generated scenes and imaging conditions). What does make a big difference,

4Recall that we use G to denote light transport matrices with geometric constraints.
5The random value is drawn from albedo distributions, which we set it as uniform distribution over [0, 1]
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Figure 6.6: A Walk in the Space of Optimal Codes. To better visualize code structure, the pairwise scores ZNCC(ci, cj) of code

vectors are shown as a jet-color-mapped matrix (deep red =1, deep blue =−1). These can be treated as a confusion matrix. Row 1:

We set the maximum spatial frequency of the patterns to F =4 and the image PSNR to be maximal for our imaging conditions (frame

rate=50Hz, camera gain=1, known read noise, pixel intensity that spans the full interval [0, 1]). We then compute the optimal code matrix

for our 608-pixel projector for different numbers of patterns and no other constraints. Row 2: We then choose K=4 (outlined in red in

Row 1) and compute optimal matrices for different bounds on the maximum spatial frequency, with everything else fixed as above. Row

3: We now set the frequency to 8 (outlined in red in Row 2) and compute optimal matrices for different values of pixel PSNR (i.e., the

maximum image intensity gets increasingly smaller), again with everything else fixed as above. Rows 4 and 5: We follow the exact same

process for different lower bounds on disparity (i.e., the maximum scene depth is increasingly being restricted), and different tolerances in

correspondence error.

however, is the value of the softmax multiplier µ: there is significant degradation in quality

for µ < 300, but increasing it beyond that value has little effect. We use µ = 300 for all

results shown. See Sec. 6.6 for more details.

Advanced Sensor Noise Modeling Although the ZNCC decoder is optimal only for additive

Gaussian noise, the objective function in Eq.(6.10) can incorporate any sensor noise model:

we simply draw samples of E from the camera’s noise distribution. We found that this

improves the real-world performance of the optimized codes. Sec. 6.6 for more details.

6.6 Experiments

The Space of Optimal Code Matrices Figure 6.6 shows several code matrices generated by our

optimizer. It is clear by inspection that the codes exhibit a very diverse structure that adapts

significantly in response to user specifications. Increasing the frequency content (Row 2)
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produces confusion matrices with much less structure—as one would intuitively expect

from vectors that are more distinctive. Interestingly, codes adapted to lower peak signal-to-

noise ratio (PSNR) conditions have confusion matrices with coarser structure. We did not,

however, observe an appreciable difference in the real-world performance of those matrices.

Row 3 of Figure 6.6 illustrates the codes’ adaptation to geometric constraints. Specifically,

only points on the plane at infinity can have Decode(q)=q and for 3D points that are closer, a

camera pixel can only be matched to a projector pixel on its right (Figure 6.4b). Comparing

the code matrix for an unrestricted T (red box on Row 3) to that of a lower-triangular T

(first column in Row 4) one sees significant re-organization in the confusion matrix; the

optimization effectively “focuses” the codes’ discriminability to only those code vectors that

yield valid 3D points. On the other hand, code matrices that compute approximate, rather

than exact correspondences, exhibit coarser structure in their confusion matrix (Row 4).

Experimental System We further validate the optimized patterns with real devices. We

acquired all images at 50Hz and 8 bits with a 1280× 1024 monochrome camera supplied

by IDS (model IDS UI-3240CP-M), fitted with a Lensation F/1.6 lens (model CVM0411).

For pattern projection we used a 100-lumen DLP projector by Keynote Photonics (model

LC3000) with a native resolution of 608× 684 and only the red LED turned on. We disabled

gamma correction, verified the system’s linear radiometric response, and measured the

sensor’s photon transfer curve. This made it possible to get a precise measure of PSNR

independently for each pixel on the target. We experimented with three different models of

pixel noise for our position-encoding optimization: (1) additive Gaussian, (2) Poisson shot

noise with additive read noise, and (3) exponential noise [233] with additive read noise.

Ground Truth We printed a random noise pattern of bounded frequency onto a white sheet

of paper and placed it on a planar target 60cm away from the stereo pair (Figure 6.7,

bottom row, third column). We used two different pattern sequences to obtain “ground-truth”

disparity maps: 160 conventional phase-shifted patterns (10 shifts of 16 sinusoidal patterns,

with frequencies 1 through 16) and 20 XOR patterns (including the complement codes). We

adjusted the aperture so that the maximum image intensity was 200 for a white projection

pattern (i.e., a high-PSNR regime at the brightest pixels) and focused the lens on the target.

We decode the captured images by ZNCC decoding to assign a depth to each pixel and

further validate the depth consistency between two codes. For 97% of pixels the disparities

were identical in the two maps; the rest differed by ±1 disparity. Thus, correctness above

97% against these maps is not significant. We optimize all of our code matrices for these

high-PSNR conditions with the exponential-plus-read-noise model.
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Figure 6.7: Quantitative Evaluation. Top row and first two columns of bottom row: Each data point represents three independent

acquisitions with the same pattern sequence (x-axis is frequency). Error bars indicate the smallest and largest fraction of correct

correspondences in those runs. We used ǫ = 0 for optimization in the top row and ǫ = 1 in the bottom. Solid lines show results

when no geometry constraints are imposed on code optimization and on decoding. Dashed lines show what happens when we use a

depth-constrained geometry matrix G (Figure 6.4c). For EPS and MPS, the constraint is used only for decoding, i.e., we search among

the valid correspondences for the one that maximizes the ZNCC score. Our codes, on the other hand, are optimized for that constraint and

decoded with it as well. Bottom row, right: RMSE plots.

Quantitative Evaluation We focus here on the most challenging cases: very small number

of patterns and low PSNR. To evaluate low-PSNR performance, we reduced the aperture

so that the brightest pixel intensity under a white projection pattern is 60, and counted the

pixels whose correspondences are within ǫ of the ground truth. Figure 6.7 compares our

optimized code matrices against those of MPS and EPS, using the same ZNCC decoder for

all codes. Several observations can be made from these results. First, our code matrices

outperform MPS and EPS—which represent the current state of the art—in all cases shown.

This performance gap, however, shrinks for larger numbers of patterns. Second, our codes

perform significantly better than EPS and MPS at higher spatial frequencies. This is despite

the fact that those coding schemes were specifically designed to produce high-frequency

patterns. It is also worth noting that the performance degradation of MPS and EPS at high

frequencies cannot be explained by camera defocus because the camera’s aperture was

small in these experiments (i.e., large depth of field). Third, geometric constraints confer

a major performance advantage to all codes at low pattern counts. The gain, however, is

higher for our codes since they are optimized precisely for them. Fourth, code matrices that

are geometry-constrained and optimized for a small error tolerance tend to produce low

root-mean-squared errors (RMSE) for most frequencies.

Qualitative Results Reconstructions of several objects are shown in Figure 6.1 (using four

patterns) and Figure 6.8 (using five and six patterns). The comparison in Figure 6.1 indicates
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Figure 6.8: Qualitative Comparisons. We acquired depth maps for the scenes on the left using three methods, with the same ZNCC

decoder and the same triangular geometry matrix G (Figure 6.4b). For each method, we reconstructed the scenes for several maximum

frequencies in the range [4, 32] and show depth maps for each method’s best-performing frequency. Top row: Reconstructing a dark,

varnished and sculpted wooden trunk with five patterns. Middle row: Reconstructing a scene with significant indirect transport (a bowl,

candle, and convex wedge) using conventional imaging and six patterns. Bottom row: Depth map acquired with many more patterns,

along with cross-sections of the above depth maps (blue points) and a histogram of disparity errors (please zoom in to the electronic copy).

For reference, we include the cross-sections of depth maps acquired using epipolar-only imaging [190] with the exact same patterns (green

points), as well as of “ground truth” depth maps acquired with 160 shifted cosine patterns of frequencies 16 to 31 using epipolar-only

imaging (red points).

that computing geometry-constrained codes has a clear effect on the quality of the results—a

trend observed in our quantitative comparisons as well. In Figure 6.8 we specifically chose

to reconstruct a dark scene as well as a scene with significant indirect light to compare

performance under low-PSNR conditions and general light transport. We observe that our

depth maps have significantly fewer outliers than EPS and MPS and are less influenced by

depth discontinuities. Moreover, despite not being specifically optimized for indirect light,

we obtain better depth maps there as well.

6.6.1 Ablation Study

Optimization Hyper-parameters Two hyper-parameters require tuning in our framework: (1)

the multiplier µ in the softmax approximation of Eq. 6.13, and (2) the mini-batch size for

performing stochastic gradient descent. Figure 6.9 shows the effect of these two parameters

in optimizing a code matrix with 4 patterns and maximum frequency 16, without any

geometry constraints.

As can be seen from Figure 6.9 (left), when the multiplier µ decreases, the softmax approxi-

mation of the objective function is less accurate. As a result, the optimization does not lead

to a good local minimum. On the other hand, increasing the multiplier beyond 300 does

not have any noticeable impact on minimizing the objective function. Thus, to avoid any

floating-point arithmetic issues and to have more stable gradients, we picked µ = 300 for
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Figure 6.9: Hyper-parameter Tuning. We show validation error (on 500 fixed random samples) over iterations in optimization of a

sample code matrix of 4 patterns and 608 pixels with maximum frequency 16.

all of our code optimizations.

To perform the gradient descent, in each iteration we draw random samples of T, E, and a,

where each sample includes all the valid camera pixels. It can be seen from Figure 6.9 (right)

that increasing the sample size does not affect the attained minimum of the objective function

over the pre-drawn validation set. Therefore, to speed up the optimization process we used

2-sample mini-batches for all our code optimizations.

To gain some intuition about why the mini-batch size does not affect the results, consider the

following. Since in each iteration we draw new samples of T, E, and a, we are essentially

training on an infinite-sized dataset, which helps avoid overfitting. As a result, even small

mini-batch sizes can still converge to good local minima.

Together, the fast convergence rate of our optimization–less than 250 iterations–and the

ability to use very small mini-batch sizes for gradient computation, allow us to optimize

code matrices at near-interactive rates.

Sensor Noise Lastly, we performed a new experiment of reconstructing the object with

patterns optimized for different camera noise models, and comparing the depth maps to each

other. Figure 6.10 shows 3D acquisition results using codes that were optimized for three

different noise models. Of the three, the exponential-plus-additive-Gaussian model is the

most pessimistic about the effect of signal-dependent noise: unlike Poisson shot noise whose

variance increases linearly with the signal, noise variance in the exponential model increases

quadratically with the signal. Nevertheless, despite the very significant difference between

the three noise models, reconstruction results for all three noise-optimized codes were very

similar. While the Poisson-plus-additive-Gaussian codes yielded error histograms which
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Figure 13: Code performance as a function of camera noise model. Please zoom into the electronic copy for details.
Figure 6.10: Code Performance as a Function of Camera Noise Model. Each column is patterns optimized under a specific noise

model, while each row is a specific pattern setting. We show the raw depth maps in top left and the confusion matrix in the middle

right. To assess it quantitatively, we also compare 2D slices of the reconstructed 3D pointset against those computed by the ground-truth

sequence, and show the histogram of differences in the computed and ground-truth disparities in the bottom part. Please zoom into the

electronic copy for details.

were marginally better for four patterns—as would be expected from a model that captures

the actual noise statistics of a conventional CMOS sensor under incoherent illumination—the

effect is relatively small. We decided to fix the model to exponential-plus-additive-Gaussian

for all subsequent code optimizations.

6.7 Summary

We believe this is just a small first step in designing optimized codes for structured light.

The specific imaging regime we chose to study—small numbers of patterns, low-PSNR

conditions—leaves a lot of room for further exploration. On the high-accuracy end of the

spectrum, the ability to quickly optimize patterns after an initial 3D scan could lead the way

to new adaptive 3D scanning techniques [125, 74].

Although derived from differentiable imaging formation model, our position-encoding objec-

tive function can be viewed as an extremely simple one-layer neural network. Understanding

how to best exploit the power of deeper architectures for active triangulation is an exciting

direction for future work, which we further explore in next chapter.



Chapter 7

Optimizing Illuminations for Active

Imaging Systems with Optical Stochastic

Gradient Descent

We consider the problem of optimizing the performance of an active imaging system by

automatically discovering the illuminations it should use, and the way to decode them. Our

approach tackles two seemingly incompatible goals: (1) “tuning” the illuminations and

decoding algorithm precisely to the devices at hand—to their optical transfer functions,

non-linearities, spectral responses, image processing pipelines—and (2) doing so without

modeling or calibrating the system; without modeling the scenes of interest; and without

prior training data. The key idea is to formulate a stochastic gradient descent (SGD)

optimization procedure that puts the actual system in the loop: projecting patterns, capturing

images, and calculating the gradient of expected reconstruction error. We apply this idea to

structured-light triangulation to “auto-tune” several devices—from smartphones and laser

projectors to advanced computational cameras. Our experiments show that despite being

model-free and automatic, optical SGD can boost system 3D accuracy substantially over

state-of-the-art coding schemes.

7.1 Introduction

Fast and accurate structured-light imaging on your desk—or in the palm of your hand—has

been getting ever closer to reality over the last two decades [28, 219, 174, 52]. Already, the

high pixel counts of today’s smartphones and home-theater projectors theoretically allow 3D

accuracies of 100 microns or less. Similar advances are occurring in the domain of time-of-

119
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Figure 7.1: Top: Optimal structured light with smartphones. We placed a randomly-colored board in front of an Optoma 4K projector

and a Huawei P9 phone, let them auto-tune for five color-stripe patterns and the 1-tolerance penalty (Table 7.1), and used the resulting

patterns (middle) to reconstruct a scene (inset). Middle & Bottom: Auto-tuning systems for 4 patterns on various imaging systems. Note

the patterns’ distinct spatial structure and frequency content, especially for Episcan3D [187] which employs a scanning-laser projector.

flight (ToF) imaging as well, with inexpensive continuous-wave ToF sensors, programmable

lasers, and spatial modulators becoming increasingly available [227, 20, 8, 113, 112, 141,

30, 142, 87]. Unfortunately, despite the wide availability of all these devices, achieving

optimal performance with a given hardware system is still an open problem whose theoretical

underpinnings have only recently attracted attention [80, 78, 172, 75, 94, 201, 10].

To address this challenge, we introduce optical SGD, a computational imaging technique that

learns on the fly (1) a sequence of optimized illuminations for multi-shot depth acquisition

with a given system, and (2) an optimized reconstruction function for depth map estimation.

Optical SGD achieves this by controlling in real-time the system it is optimizing, and

capturing images with it. The only inputs to the optimization are the number of shots and a

function to penalize depth error at a pixel.

To prepare a system for optical SGD, we adjust its settings for the desired imaging conditions

(e.g., exposure time, light source brightness, etc.) and place a randomly-textured “training

board” in its field of view (Figure 7.1). The process runs automatically after that, minimizing

a rigorously-derived estimate of the expected reconstruction error for the system at hand.

Optical SGD requires no radiometric or geometric calibration; no manual initialization; no
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prior training data; and most importantly, no precise image formation model for the system

or the scenes of interest.

The key idea behind our approach is to push the hardest computations in this optimization—

i.e., calculating derivatives that depend on an accurate model of the system—to the optical

domain, where they are easy to do (Figure 7.2). Intuitively, optical SGD treats the imaging

system as a perfect “end-to-end model” of itself—with realistic noise and optical imperfec-

tions all included.

Using this idea as a starting point, we develop an optimization procedure that runs partly

in the numerical and partly in the optical domain. It begins with a random set of K

illuminations; uses them to illuminate the training board; captures real images to estimate

the gradient of the expected reconstruction error; and updates its illuminations by stochastic

gradient descent [124, 246]. Applying this procedure to a given system requires (1) a way

to repeatedly acquire higher-accuracy (but still noisy) depth maps of the training board, and

(2) programmable light sources that allow small adjustments to their illumination.

At a conceptual level, optical SGD is related to three lines of recent work. First, the end-to-

end optimization of computational imaging systems is becoming increasingly popular [123,

95, 31, 229, 236, 248]. These methods train deep neural networks and require precise models

of the system or extensive training data, whereas our approach needs neither. Second, the

principle of replacing “hard” numerical computations with “easy” optical ones goes back

several decades to the field of optical computing [13, 67, 133]. It has been revived recently

for calculations such as optical correlation [34], hyperspectral imaging [217] and light

transport analysis [189] but we are not aware of any attempts to implement SGD in the

optical domain, as we do. Third, optical SGD can also be thought of as training a small,

shallow neural network with a problem-specific loss; noisy labels [35, 286, 273] and noisy

gradients [183]; and with training and data-augmentation strategies [127, 85] that are

implemented partly in the optical domain.

We believe our work represents the first attempt to reduce illumination coding—a hard

problem with a rich history [94, 214, 215, 201, 202, 79, 77, 74, 175, 71, 37, 277, 220, 207,

221]—to an online procedure akin to self-calibration [140, 143]. In addition to this basic

contribution, we introduce two important new elements to the optimization of structured-

light triangulation systems: neighborhood decoding and neural network decoding. The

former generalizes the recently-proposed ZNCC decoder [172] to take into account a tiny

neighborhood at each pixel (3×1 or 5×1). This seemingly straightforward extension more

than doubles per-pixel disparity accuracy in our tests, highlighting the hitherto unnoticed

role the decoder can play in per-pixel depth estimation. On the other side, we change the
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Figure 7.2: Algorithm Illustration. Differentiable imaging systems allow us to “probe” their behavior by differentiating them in the

optical domain, i.e., by repeatedly adjusting their control vector, taking images, and computing image differences. Projector-camera

systems, as shown above, are one example of a differentiable system where projection patterns play the role of control vectors. Many

other combinations of programmable sources and sensors have this property (Table 7.1).

fixed ZNCC decoder to a learnable decoder by inserting a 2-layer neural network and convert

the raw intensity to high-dimension feature. We find that the decoding accuracy can be

further improved when applying ZNCC in feature space.

We first develop our approach in the context of more general 3D imaging systems, and focus

specifically on structured-light triangulation in Section 7.4.

7.2 Differentiable Imaging Systems

Many devices available today allow us to control image formation in an extremely fine-

grained—almost continuous—manner: off-the-shelf projectors can adjust a scene’s illumi-

nation at the resolution of individual gray levels of a single projector pixel; spatial light

modulators can do likewise for phase [170] or polarization [176]; programmable laser drivers

can smoothly control the temporal waveform of a laser at sub-microsecond scales [113];

and sensors with coded-exposure [287, 265, 188] or correlation [75, 88, 112] capabilities

can adjust their spatio-temporal responses at pixel and microsecond scales.

Our focus is on the optimization of programmable imaging systems that rely on such devices

for fine-grained control of illumination and sensing. In particular, we restrict our attention to

systems that approximate the idealized notion of a differentiable imaging system. Intuitively,

differentiable imaging systems have the property that a small adjustment to their settings

will cause a small, predictable change to the image they output (Figure 7.2):

Definition 1 (Differentiable Imaging System) An imaging system is differentiable if the
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following two conditions hold 1:

• the behavior of its sources, sensors, and/or optics during the exposure time is governed

by a single N -dimensional vector, called a control vector, that takes continuous values;

• for a stationary scene S, the directional derivatives of the image with respect to the

system’s control vector, i.e.,

Da img(c,S)
def
= lim

h→0

img(c + ha,S)− img(c,S)

h
, (7.1)

are well defined for any control vector c and unit-length adjustment a, where img(c,S)

is the noise-less image.

As we will see in Section 7.3, differentiable imaging systems open the possibility of optical

SGD—iteratively adjusting their behavior in real time via optical-domain differentiation—to

optimize performance on a given task.

The specific task we consider in this chapter is depth imaging. More formally, we seek a

solution to the following general optimization problem:

Definition 2 (System Optimization for Depth Imaging) Given

• a differentiable imaging system that outputs a noisy intensity image ik in response to a

control vector ck;

• a differentiable decoder that estimates a depth map d from a sequence of K ≥ 1

images acquired with control vectors c1, . . . , cK :

d = rec(i1, c1, . . . , iK , cK , θ) (7.2)

where θ is a vector of additional tunable parameters; and

• a pixel-wise penalty function ρ() that penalizes differences between the estimated depth

map d and the ground-truth depth map g,

compute the settings that minimize expected reconstruction error:

ĉ1, . . . ĉK , θ̂ =argmin
c1,...,cK ,θ

Escenes, noise

[
M∑

m=1

ρ(d[m]− g[m])
]

(7.3)

where the index m ranges over image pixels and expectation is taken over noise and a space

of plausible scenes.

Different combinations of light source, sensor, decoder and penalty function lead to different

1Here, we specifically define differentiable imaging system for the active imaging system, i.e., the structured light system.
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Light source Camera sensor Decoder

†DMD projector [126] †Grayscale †max-ZNCC [172]

†Laser projector [187] †RGB filter †max-ZNCCp (Sec. 7.4)

LCoS projector [47] †Coded-exposure [287] †max-ZNCCp-NN (Sec. 7.4)

Projector array [138] Correlation ToF [75] deep neural net [55]

MHz laser [113] ToF sensor array [227]

MHz laser + DMD [188] Light field [139]

MHz laser array [245]

† ǫ-tolerance [172] L2 [94] † L1 [78] M-estimator [292]† ǫ-tolerance [?] L2 [17] † L1 [?] M-estimator [18]

0 xǫ−ǫ 0 x 0 x 0 x

Table 7.1: Devices and penalty functions compatible with our framework. † indicates the choices we validate experimentally.

instances of the system optimization problem (Table 7.1). Correlation time-of-flight (ToF)

systems, for example, capture K ≥ 3 images of a scene, and vectors c1, . . . , cK control

their associated laser modulation and pixel demodulation functions [75, 113]. In active

triangulation systems that rely on K images to compute depth, the control vectors are simply

the projection patterns (Figure 7.2). In both cases, the decoder maps the K observations at

each pixel to a depth (or stereo disparity) value. The common penalty function choices could

be ǫ-tolerance [172], L2 [94], L1 [78], and M-estimator [292]. Each optimizes reconstruction

error under different metric. For instance,ǫ-tolerance tries to minimize correspondence error

less than ǫ while L1 minimizes average correspondence error. In the following we use a

vector-valued function err(d,g) to collect all pixel-wise penalties into a single vector:

err(d,g)[m] = ρ(d[m]− g[m]) . (7.4)

7.3 Optical SGD Framework

Suppose for a moment that we have a perfect forward model for the image formation process,

i.e., we have a perfect model for (1) the system’s light sources, optics, and sensors, (2) the

scenes to be imaged, and (3) the light transport between them.

In that case, the widespread success of optimization techniques such as Stochastic Gradient

Descent (SGD) [209, 246, 124] suggest a way to minimize our system-optimization objective

numerically: approximate it by a sum of reconstruction errors for a large set of fairly-drawn,

synthetic training scenes, and for realistic noise; find a way to efficiently evaluate its gradient

with respect to the unknowns θ, c1, . . . , cK ; and apply SGD to (locally) minimize it.

Model-driven Optimization by Numerical SGD Approximating the expectation in Eq. (7.3)
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Numerical SGD:

Input: scene generator, noise generator,

evaluator of img(c,S),J(c, S)
Output: optimal θ, c1, . . . , cK

initialize with random θ, c1, . . . , cK

generate scenes S1, . . . ,ST

while not converged do

choose random mini-batch of scenes

for each scene S in mini-batch do

for each control vector ck do

synthesize image ik by evaluat-

ing img(ck,S) & adding noise

estimate d from i1, . . . , iK
evaluate err(d, g)
evaluate∇θerr(d, g)

for all k, evaluate∇ck
err(d, g)

evaluate total gradient using Eq.(7.5)

update θ←θ+∆θ, ck←ck+∆ck
apply constraints to θ, c1, . . . ,cK

return θ, c1, . . . , cK

Optical SGD:

Input: <none>

Output: optimal θ, c1, . . . , cK

initialize with random θ, c1,. . . ,cK

position in front of system a sceneS

while not converged do

choose random mini-batch of image rows

compute their ground-truth depth map g

for each control vector ck do

supply control vector ck to system

capture image & store it in ik

estimate d from i1, . . . , iK
evaluate err(d, g) on mini-batch

evaluate∇θerr(d, g) on mini-batch

for all k, compute J(ck,S) optically &

use it to evaluate∇ck
err(d, g)

evaluate total gradient using Eq.(7.5)

update θ←θ+∆θ, ck←ck+∆ck
apply constraints to θ, c1, . . . ,cK

return θ, c1, . . . , cK

Figure 7.3: Numerical vs. Optical-domain Implementation of SGD, with Red Boxes Highlighting Their Differences.

with a sum we get:

Escenes, noise

[
M∑

m=1

ρ(d[m]− g[m])
]
≈

1

T

T∑

t=1

‖err(dt,gt)‖1 (7.5)

where ‖.‖1 denotes the L1 norm of a vector and dt,gt are the reconstructed shape and ground-

truth shape for the t-th training sample, respectively. Each training sample consists of a scene

St and the noise present in the images i1, . . . , iK acquired for that scene. Figure 7.3 (left)

outlines the basic steps of the resulting numerical SGD procedure.

Optical Computation of the Image Jacobian What if we do not have enough information about

the imaging system and its noise properties to reproduce them exactly, or if the forward

image formation model is too complex or expensive to simulate? Fortunately, differentiable

imaging systems allow us to overcome these limitations by implementing the difficult

gradient calculations directly in the optical domain.

More specifically, SGD requires evaluation of the gradient with respect to θ and c1, . . . , cK
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of vector err(dt,gt):

∇θerr =
∂err

∂rec

∂rec

∂θ
(7.6)

∇ckerr =
∂err

∂rec

∂rec

∂ck
+

∂err

∂rec

∂rec

∂ik

∂ik
∂ck

(7.7)

≈
∂err

∂rec

∂rec

∂ck
+

∂err

∂rec

∂rec

∂ik

(
∂img

∂c

)

c=ck
S=St

︸ ︷︷ ︸

image Jacobian J(c,S) for ck and St

(7.8)

with points of evaluation omitted for brevity. Eq. (7.8) is obtained by approximating ik with

its noise-less counterpart. Of all the individual terms in Eqs. (7.6)-(7.8), only one depends

on a precise model of the system and scene: the image Jacobian J(c,S).

For a system that captures an M -pixel image in response to an N -element control vector,

J(c,S) is an M × N matrix. Intuitively, element [m,n] of this matrix tells us how the

intensity of image pixel m will change if element n of the control vector is adjusted by an

infinitesimal amount. As such, it is related to the system’s directional image derivatives

(Eq. (7.1)) by a matrix-vector product:

Da img(c,S) = J(c,S) a . (7.9)

It follows that if we have physical access to both a differential imaging system and a scene

S, we can compute individual columns of this matrix without having any computational

model of the system or the scene. All we need is to implement a discrete version of Eq. (7.9)

in the optical domain, as illustrated in Fig. 7.2 with a projector-camera system. This leads to

the following “optical subroutine:”

Optical-domain computation of n-th column of J(c,S)

Input: control vector c, adjustment magnitude h
Output: noisy estimate of the column

step 0: position scene S in front of system

step 1: set control vector to c and capture noisy image i

step 2: set control vector to c + ha, where a is the unit vector along dimension n, and capture new image i
′

step 3: return (i′ − i)/h
step 4: (optional) repeat steps 1 & 2 to get multiple samples of i and i

′ & return the empirical distribution

of (i′ − i)/h

Optical SGD The above subroutine makes it possible to turn numerical SGD—which

depends on system and scene models—into an optical algorithm that is model free. To do

this, we replace with image-capture operations all steps in Figure 7.3 (left) that require
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Figure 18: Decoder for K-pattern triangulation.
Figure 7.4: Decoder for K-pattern Triangulation.

modeling of systems and scenes.2

Practical implementations of optical SGD face three challenges: (1) a closed-form expression

must be derived for a scene’s expected reconstruction error (Eq. (7.5)) in order to evaluate

its gradient, (2) imaging a large set of real-world training scenes is impractical, and (3) the

image Jacobian is too large to acquire by brute force. Below we address these challenges by

exploiting the structure of the system-optimization problem specifically for triangulation-

based systems. The resulting optical SGD procedure is shown in Figure 7.3 (right).

7.4 Auto-Tuning Structured Light

We now turn to the problem of optimizing projector-camera systems for structured-light

triangulation (Figure 7.2). In this setting, c1, . . . , cK represent 1D patterns projected se-

quentially onto a scene and the reconstruction task is to compute, independently for every

camera pixel, its stereo correspondence on the projector plane. This task is equivalent to

computing the pixel-to-column correspondence map d, where d[m] is the projector column

that contains the stereo correspondence of camera pixel m (Figure 7.4). We thus optimize a

projector-camera system by minimizing errors in d.3 Furthermore, we define the disparity

of pixel m to be the difference of d[m] and the pixel’s column on the image plane.

Image Jacobian of Projector-camera Systems We treat projectors and cameras as two non-

linear “black-box” functions proj() and cam(), respectively (Figure 7.5). These account for

device non-linearities as well as internal low-level processing of patterns and images (e.g.,

2Since optical-domain Jacobian estimation relies on noisy images, it introduces an additional source of stochasticity in the SGD

procedure [124, 246, 273, 181, 183, 35].
3The pixel-to-column correspondence map requires no knowledge of a system’s epipolar geometry, radial distortion or Euclidean

calibration. As a result, optical SGD can be applied even without this information.
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formation in general projector-camera systems. The projector function maps a
Figure 7.5: Image Formation in General Projector-camera Systems. The projector function proj() maps a control vector of digital

numbers to a vector of outgoing radiance values. Similarly, the camera function cam() maps a vector of sensor irradiance values to a

vector holding the processed image.

non-linear contrast enhancement, color processing, demosaicing, etc.).

Between the two, light propagation is linear and can thus be modeled by a transport matrix

T(S). This matrix is unknown and generally depends on the scene’s shape and material

properties, as well as the system’s optics [79, 172]. It follows that the image and its Jacobian

are given by

i = cam(T(S) proj(c) + ambient)
︸ ︷︷ ︸

img(c,S)

+ e (7.10)

J(c,S) =
∂c

∂irr
︸︷︷︸
camera

non-linearities
(M×M)

T(S)
︸ ︷︷ ︸

optics, 3D shape,
reflectance, etc.

(M×N)

∂proj

∂c
︸ ︷︷ ︸

projector
non-linearities

(N×N)

(7.11)

where noise may include a signal-dependent component and irr denotes the vector of

irradiances incident on the camera’s pixels. Thus, auto-tuning a system without indirect

light forces it to account for its non-linearities and end-to-end optical transfer function.

Neighborhood Decoding For perfectly linear systems and low signal-independent noise,

a very simple correspondence-finding algorithm was recently shown to be optimal in a

maximum-likelihood sense [172]: (1) treat the intensities i1[m], . . . , iK [m] observed at pixel

m as a K-dimensional “feature vector,” (2) compare it to the vector of intensities at each

projector column, and (3) choose the column that is most similar according to the zero-mean
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normalized cross-correlation (ZNCC) score4 (Figure 7.4):

zm[n]
def
= ZNCC(

[
i1[m], . . . , iK [m]

]
,
[
c1[n], . . . , cK [n]

]
) (7.12)

d[m] = arg max
1≤n≤N

zm[n] . (7.13)

Here we generalize this decoder in three ways. First, we expand feature vectors to include

their 1× p neighborhood (on the same image row as pixel m, in the case of images). We

use small, 3- or 5-pixel neighborhoods in our experiments, making it possible to exploit

intensity correlations that may exist in them:

(ZNCCp similarity) zm[n] = ZNCC(fm, f̂n) (7.14)

where fm, f̂n are vectors collecting these intensities. Second, we model the projector’s

response curve as an unknown monotonic, scalar function g() consisting of 32 linear

segments [96]. This introduces a learnable component to the decoder, whose 32-dimensional

parameter vector θ is optimized by optical SGD along with c1, . . . , cK . Third, we add a

second learnable component to better exploit neighborhood correlations, and to account for

noise and system non-linearities that cannot be captured by the scalar response g() alone.

This consists of two ResNet blocks [85, 86], for the camera and projector, respectively:

(ZNCC-NNp similarity) zm[n] = ZNCC(fm + F(fm), g(f̂n) + F̂(g(f̂n))) (7.15)

where F() and F̂() are neural nets with two fully-connected layers of dimension (pK)×(pK)

and a ReLU in between. Thus the total number of learnable parameters in the decoder—and

thus in vector θ—is 4p2K2 + 32.5

Optimization with Penalty Functions Optimizing the expected reconstruction error of Eq. (7.5)

requires a differentiable estimate of the total penalty, ‖err(d,g)‖1, incurred on a given scene.

A tight closed-form approximation can be expressed in terms of the scene’s ground-truth

correspondence map g, the ZNCC score vectors of all pixels, and the vector of pixel-wise

penalties:

‖err(d,g)‖1 ≈
M∑

m=1

softmax(µzm) · err(index−g[m],0) (7.16)

where · denotes dot product; µ is the softmax temperature; zm is given by Eqs. (7.12)-(7.15);

0 is the zero vector; and index is a vector whose i-th element is equal to its index i. Proof

is provided in the Appendix Sec. C.1.

4For two vectors v1,v2, their ZNCC score is the normalized cross correlation of v1 −mean(v1) and v2 −mean(v2).
5Strictly speaking, ZNCC’s optimality does not carry over to ZNCCp, ZNCC-NNp or general non-linear systems. Nevertheless, we

use them for optical SGD as we found these similarities to be very effective empirically.
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7.4.1 Efficient Optical-Domain Implementation
Different Rows ⇔ Different Training Scenes Suppose we place an object in front of the system

whose ground-truth correspondence map, g, is known. In principle, since the column corre-

spondence of each camera pixel must be estimated independently of all others, each pixel

can be thought of as a separate instance of the depth estimation task. To reduce correlations

between these instances we use randomly-textured boards for training (Figure 7.1). This

allows us to treat each camera row as a different “training scene” that consists of points with

randomly-distributed albedos.

Circular Pattern Shifts ⇔ Different Scene Depths While the albedo of scene points in the

system’s field of view may be random, their depth is clearly not: since our training boards

are nearly planar and (mostly) stationary, the pixel-to-column correspondence map varies

smoothly across rows and is fixed in time. To break their temporal continuity we move

the patterns instead of the scene: we apply the same randomly-chosen circular shift to all

K projection patterns prior to projection and image capture, and alter that shift every few

iterations. This changes the pixel-to-column correspondence map, and results in images that

would have been obtained had the scene moved in depth.6 It also allows optimization of

patterns that span all columns of a projector even when the training scene does not.

Acquisition of Ground-truth Correspondences Optical SGD hinges on being able to compute

ground truth far more accurately than the procedure it is optimizing. Since our focus

is on optimizing systems for minimal numbers of patterns, we use the same system for

ground-truth estimation but with many more patterns. We first assess a system’s maximum

attainable accuracy and precision by reconstructing a training board repeatedly with two

independent coding schemes—160 phase-shifted patterns [214] and 30 patterns optimized

for the 0-tolerance penalty [172]—and cross-validating both across runs and across coding

schemes.

Specifically, We acquire the ground truth with the following routine:

1. Project 30 a la carte (0-tolerance) [172] patterns onto the scene, and use the ZNCC de-

coder to compute a pixel-to-column correspondence map.

2. Repeat the previous step 10 times to capture 10 maps.

3. Fuse the captured maps into a single map g1 by majority vote.

To verify the captured ground truth, we compare it with another map acquired with a different

family of patterns:

1. Project 160 shifted cosine patterns (10 shifts for frequencies in the range of [16-31])

along with 11 shifted cosine patterns of frequency N
11

, where N is the number of

6Note that this “simulation” does not account for signal-to-noise ratio reductions caused by the squared-distance falloff of irradiance.



7.4. AUTO-TUNING STRUCTURED LIGHT 131

projector columns.

2. Compute a sub-pixel map [74].

3. Round the fractional correspondences to the nearest integer, to obtain an integer pixel-

to-column correspondence map g2.

We say that the pixel-to-column correspondence map g1 captured by the first routine is an

ǫ-tolerance ground truth if no pixel in g1 and g2 differs by more than ǫ; i.e. for each image

pixel, the column correspondences captured by these two routines are at most ǫ columns

apart from each other. In our experiments, we were able to acquire 0-tolerance ground truth

for the training board and our test scenes with all the imaging systems used in this work

except the indirect light experiment in Fig. 7.9. For that experiment only 1-tolerance ground

truth was possible.

Although an accurate ground truth is required for evaluation of different systems and for

comparison to prior art, we do not need the most accurate ground truth while auto-tuning a

system. This is because small errors can introduce an additional source of stochasticity, and

helps the optimization not to overfit. Therefore, during training, the optical SGD (outlined

in Figure 7.3) uses just one set of 30 a la carte patterns. We re-compute the ground truth

every 50 iterations to account for minor disturbances (e.g., slight motions of the board or the

camera).

Efficient Acquisition of Image Jacobians Although the Jacobian is large, it is usually very

sparse for scenes without indirect light transport (e.g., our training boards). This makes it

possible to acquire several columns of the Jacobian at once from just one invocation of the

optical-domain subroutine of Section 7.3. In particular, an adjustment vector with N/B

equally-spaced non-zero elements will yield the sum of N/B columns of the Jacobian. If

B is large enough to avoid overlap between the non-zero elements of these columns, exact

recovery is possible.

Figure 7.6 (third column) illustrates one sample adjustment vector and its corresponding

image difference, where the adjustment vector has N/B equally-spaced non-zero elements.

We empirically set B = 7 and fix the adjustment magnitude h to 0.15. This adjustment

magnitude provides enough change in the image while being small enough to approximate

the directional derivatives.

Frequency Constraint We always enforce a weak max-frequency constraint to pattern opti-

mization because we found that it leads to a more stable optimization. When auto-tuning

on board, in particular, we band-limit patterns to frequency 2⌊log2 N/4⌋, which is the closest

power of 2 to half the Nyquist rate. This limit is fixed in all our experiments, with the

exception of auto-tuning for indirect light (see Fig. 7.9 and Sec. 7.5.2). Enforcing the max
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projection pattern c scene overview adjustment vector a

2D projection pattern for vector c captured image i image difference i′ − i

(a) (b) (c)
Optical-domain differentiation on an actual projector-camera system. (a) 1D plot of a sample projection

Figure 7.6: Optical-domain Differentiation on an Actual Projector-camera System. (a) 1D plot of a sample projection pattern c and

its corresponding 2D projection pattern. (b) a photo of the experimental setup and the corresponding camera image of the scene under the

projection pattern depicted in (a). (c) adjustment vector and its corresponding image difference.

frequency constraint is done in the Fourier domain; at the end of each optical SGD iteration,

we set Fourier coefficients higher than the specified max frequency to zero.

Numerical Considerations We adopt RMSprop [246] and Tensorflow [7] for the numerical

loop of Optical SGD. The learning rate is set to 0.001, and allowed to decay by 50%

every 350 iterations. We use a softmax temperature of µ = 200, a step size of B = 7 for

Jacobian acquisition, and initialize patterns with uniform noise in the range [0.45, 0.55].

Mini-batches are created by randomly choosing 15% of image rows in each SGD iteration.

We estimate ground-truth correspondences and the image Jacobian every 50 and 15 iterations,

respectively. To ensure a stable optimization, we band-limit the patterns’ frequency to 1/2

Nyquist for the projector being used. Optimization typically converges in 1000 iterations

and takes approximately one hour. The main bottleneck is image acquisition, which runs at

15Hz for our unsynchronized HDMI-driven devices.

Figure 7.7 illustrates how the patterns (and decoder) evolve in a sample auto-tuning run—

with marked improvements in reconstruction performance over time. Crucially, performance

on a much darker scene with lots of depth discontinuities shows a similar trend, suggesting

lack of over-fitting.

7.4.2 Optical SGD for Low-SNR Scenes

Auto-tuning a system for low-SNR conditions (e.g. low projector brightness, distant scene

and/or high ambient light) introduces a major challenge: the image difference i′ − i due to

adjustment (Figure 7.6(c)) may be below the image quantization level. This will lead to

incorrect gradient estimates that can cause optical SGD to fail. To cope with this challenge,
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Figure 7.7: Optical SGD in Action for the LG-IDS Pair and the Training Board in Figure 7.1. Top: The red graph shows the

progress of the optimization objective (Eq. 7.5) across iterations when auto-tuning on the training board for four patterns, the zero-tolerance

penalty, and the ZNCC-NN3 decoder. The green graph shows ‖err(d,g)‖1 as a function of iteration for the previously-unseen (and

much more challenging) test scene below. Middle: Visualizing the evolution of pattern c1 as a grayscale image whose i-th column is

the pattern at iteration i. Bottom: Three snapshots of the optimization, each showing the patterns at iteration i; the disparity map of the

training board (inset) reconstructed from those patterns; and the disparity map of the test scene reconstructed from the same patterns.

we do not auto-tune systems under these conditions. Instead we always capture images

under conditions where the image difference i′ − i can be computed reliably, and then

corrupt these images by (1) down-scaling them and adding zero-mean Gaussian noise to

simulate reduced signal level, and (2) adding Poisson noise to simulate high ambient-light

contributions. These unquantized images are then used to compute the gradients required by

optical SGD.

Intuitively, this approach leads to images with lower quantization error, so that very small

image gradients can still be estimated. We use this method only for auto-tuning systems for

far-field imaging (Fig. 7.13, and Sec. 7.5.4). In all other cases, auto-tuning is performed

without any image corruption.

7.4.3 Optical SGD for Scenes with Indirect Light

Auto-tuning a system for settings with significant indirect light requires specific considera-

tions as well.
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Capturing the Ground Truth It is well-known that indirect light can corrupt shape estimates

obtained by structured light [175, 74]. In such cases, simply increasing the number of

structured light patterns does not guarantee that correct correspondences will be acquired.

To mitigate the influence of indirect light as much as possible, we used the same method

as described in Sec. 7.4.1 to obtain ground truth, but captured the images by operating

EpiScan3D in epipolar-only imaging mode [187]. Note that this mode was employed only

for acquiring the ground truth.

Optimization Parameters Indirect light leads to a less-sparse Jacobian. Consequently, we

use larger spacing between non-zero elements of the adjustment vector. Furthermore, we

observed that using a lower max-frequency for patterns yields a more stable optimization.

We empirically set F to 1
8

of Nyquist limit, and chose B = 23 for translucent training scene

(refer to Sec. 7.5.2).

Hadamard Multiplexing for Image Jacobian Acquisition Indirect light reduces the SNR of direct

surface reflections and therefore the SNR of optically-computed gradients. To improve

the gradient estimation, we acquired the image Jacobian by Hadamard multiplexing [221]

which is known to improve performance in low-SNR conditions. Specifically, instead of

using adjustment vectors that have a single non-zero element, we use those defined by the

S-matrix of appropriate size, and demultiplex the captured images after acquisition. This

leads to higher-SNR gradients and improves the performance of optical SGD considerably

(Fig. 7.9 and Sec. 7.5.2).

7.4.4 Optical SGD for Color Structured Light Systems

To apply the optical auto-tuning framework to color structured light systems, we followed

two approaches:

Approach 1: Color Structured Light with Demosaiced RGB Images. First, we use demosaiced

RGB images as the input to the algorithm 7. For such a system running on K ′ color patterns,

there are K = 3K ′ control vectors, and 3K ′ corresponding images. With this modification,

the same methods as Eq. (7.12)-(7.16), can be applied for both decoding and auto-tuning a

system.

Approach 2: Color Structured Light with Raw Single-channel Images. As another option, we

simply use raw single-channel Bayer image as the input. Operating on Bayer mosaic

introduces a mismatch between the number of control vectors and the number of patterns:

for K ′ RGB patterns, the number of captured images is K ′ but the number of control vectors

is K = 3K ′. This size mismatch between “image feature vector” and “projector feature

vector” (as defined in section 4) prevents direct application of the ZNCC or ZNCCp decoders

7We capture raw single-channel images with camera, and use standard OpenCV algorithm for demosaicing.
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(Eq. (7.12)-(7.14)). Here we simply modify ZNCC-NNp for this purpose, by slightly

changing the neural network architecture for image feature vector F(). Specifically, we

define F() to be a neural net with two fully connected layers of dimensions (pK)×(3pK)×

(3pK). Moreover, since each pixel in a 2 × 2 Bayer tile has a different spectral response

and a different local neighbourhood, we use a distinct neural network for each pixel in

a Bayer tile. This means the total number of learnable parameters for image features is

4(3p2K2 + 9p2K2). Eq. (7.16) then can be utilized to auto-tune the patterns and decoder.

7.5 Experiments

7.5.1 Quantitative Comparison with State-of-the-art Methods
Experimental Setup We used the LG-IDS pair as our imaging system. The scene was placed

approximately 1m from the system. We chose a scene with both high- and low-albedo

surfaces, different geometries, texture, and depth discontinuities. An image of the scene

under all-white projection pattern is shown in Figures 7.8.

We used all the decoding methods with K = 4 to compare their performance. Fig. 7.8 shows

the comparisons for patterns auto-tuned with 0-tolerance. In Figure 7.8, we used percentage

of pixels with no error as the evaluation metric, which is equivalent to 0-tolerance penalty.

In both figures, The improvements along the columns (marked with green) show the impact

of our proposed decoding algorithms on existing encoding methods, while the last row

showcases this work’s contributions in both decoding and pattern optimization.

Three observations can be made about these results. First, despite being automatic and

calibration free, optical SGD yields state-of-the-art performance. Second, comparing the

second columns of Figures 7.8 with their first columns indicates neighbourhood decoding

has a drastic impact on the performance of system for all the patterns. For instance, it

improves the percentage of zero-error pixels for MPS, Hamiltonian, and a la carte by 89%,

56%, and 86%, respectively. Furthermore, the neural net decoder provides another level

of improvement in the performance for auto-tuned patterns, but has almost no effect on

patterns which are not optimized with auto-tuning. This suggests that the neural network

decoder is most useful when it is optimized along with the patterns. It also justifies our

default choice of ZNCCp decoder for state-of-the-art patterns used in Section 7.5.

7.5.2 Indirect Light Experiment
Experimental Setup We used EpiScan3D [187] (operated as a conventional projector-camera

system) to reconstruct a scene made of beeswax and other translucent materials, approxi-

mately 80cm away. Ground truth for auto-tuning was acquired as described in Sec. 7.4.3.
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% of pixels with no error Ground Truth & Camera Image

ZNCC ZNCC5 ZNCC-NN5

MPS [74] 27.42 51.70 49.53

Hamiltonian [78]9.46 14.72 15.03

a la carte [172] 33.14 61.78 61.76

auto-tuned 32.29 67.33 72.24

visualization: 0-tolerance disparity maps overlaid with raw disparity

Decoding: ZNCC Decoding: ZNCC5 Decoding: ZNCC-NN5
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Figure 7.8: Comparison of Different Coding-decoding Methods based on Percentage of Zero-error Pixels. The table lists the

no-error reconstruction rates (i.e. the percentage of pixels with zero error) of each pattern, decoded with all the decoding methods. Their

corresponding 0-tolerance disparity maps (pixels with zero error are drawn in the figures) are shown with the same layout as the table.

The raw disparity maps are also shown as insets, for reference. Table entries and disparity maps marked as blue represent the current state

of the art. Entries and disparity maps marked as green indicate the best-performing decoder for 3 previously-proposed pattern sequences

(MPS, Hamiltonian, a la carte). Note that the best results of these patterns are obtained with decoders introduced in this paper. The best

performance, shown in red, is obtained by auto-tuning with the ZNCC-NN5 decoder.
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As a baseline, we auto-tuned with the training board for the 2-tolerance penalty and ZNCC-

NN5 decoder, and used it to reconstruct the scene. This produced a result considerably worse

than the MPS16-ZNCC5 decoder combination. (Figure 7.9). Auto-tuning with a beeswax

training scene at a similar distance improved performance significantly (75% of pixels

with error ≤2) but did not outperform MPS16. We then made three small changes to the

auto-tuning procedure: (1) bringing the training scene closer (40cm); (2) using Hadamard

multiplexing [221] for Jacobian acquisition during optical SGD; and (3) refining the auto-

tuned patterns and decoder by running additional Optical SGD iterations with a higher

softmax temperature (µ=1000). This provides an even tighter continuous approximation to

the total penalty, ‖err(d,g)‖1, at the expense of a harder optimization landscape. Figure 7.9

shows the performance improvements caused by individual modifications to our basic optical

SGD procedure. Upon convergence, this yielded patterns and a decoder that performed well

above MPS16 on the test scene 80cm away.

test scene & ground-truth disparity map auto-tuning with board at 80cm MPS16 & ZNCC5

46% 79%

auto-tuning with wax training scene at 80cm auto-tuning with wax training scene at 40cm auto-tuning with wax training scene at 40cm

& Hadamard multiplexing Hadamard multiplexing & refinement

76% 84% 87%

Figure 7.9: Auto-tuning for Indirect Light. To better visualize reconstruction accuracy, only pixels with error ≤ 2 are shown in the

disparity maps above. The total percentage of such pixels is indicated in yellow in the upper left, with the correspondence error map

shown as an inset (darkest blue for error=0, darkest red for error ≥ 20).

7.5.3 OpticalSGD for Different Imaging Systems

This section explores the applicability of optical auto-tuning framework to a broad range of

structured light imaging systems.

Simulations with Mitsuba CLT [238, 103] and ModelNet [270] To assess how well an auto-tuned

system can perform on other scenes, we treated the Mitsuba CLT renderer as a black-box

projector-camera system and auto-tuned it using a virtual training board similar to those in

Figure 7.1(middle). We then used the optimized patterns and optimized ZNCC-NN3 decoder
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Figure 7.10: Auto-tuning Mitsuba CLT for Four Patterns and the 0-tolerance Penalty. Left: Performance of optimized patterns

and ZNCC-NN3 decoder across iterations of optical SGD. We measure performance by reconstructing the virtual training board (red

plot) as well as ModelNet objects (green plot, averaged over 30 models). Optical SGD performs considerably better on ModelNet than

state-of-the-art patterns combined with our ZNCC3 decoder (dashed lines). Right: Disparity maps for a sample model.

to reconstruct a set of 30 randomly-selected models from the ModelNet dataset [270]. The

results in Figure 7.10 show no evidence of over-fitting to the virtual training board, and

mirror those of Figure 7.7.

Auto-Tuning Color Projector-Camera Systems We used the methods described in section 7.4.4

to auto-tune two different projector-camera systems for color structured light.

Color structured light with cellphone. The results are shown in Figure 7.1 (top row). In this

experiment, we auto-tuned the system for K = 5 patterns, the ZNCC-NN5 decoder, and

1-tolerance penalty function.

Color vs. monochrome structured light experiment. To do so, we used the same projector

(LG) and base camera system (Prosilica AVT with Schneider lens), with the only difference

being that the color version of the system had a Bayer filter fitted onto the sensor (models

Prosilica 1920c and Prosilica 1920, respectively). Thus, the color camera provided color

information at the expense of lower quantum efficiency for its pixels. For both systems, we

auto-tune for the 0-tolerance penalty and the ZNCC-NN5 decoder.

Figure 7.11 compares disparity maps obtained with color patterns and gray patterns, using

the approach in Section 7.4.4 to handle color. Two observations can be made about the

results. First, despite their lower quantum efficiency and lower number of patterns, 3 color

patterns perform comparably to 4 gray patterns. Second, auto-tuning on demosaiced images

works better than using the raw images. Intuitively, auto-tuning on demosaiced images

benefits from the inference taking place in the demosaicing procedure.

7.5.4 Operating Range of an Auto-Tuned System
Experimental Setup We used the LG-IDS system in Figure 7.12 to reconstruct the training

board in geometrical arrangements that are different from those used for auto-tuning. We
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Figure 7.11: Comparison of Auto-tuned Color Patterns with Gray Patterns. Top: Auto-tuning gray patterns for LG-AVT. (a) scene

image captured by the monochrome camera. (b) 0-tolerance ground-truth. (c-d) 0-tolerance disparity map (overlaid with raw disparity

map) for K = 4 and K = 3 with their percentages of zero-error pixels. Bottom: Auto-tuning color patterns for LG-AVT. (a) scene

image captured by the color camera. (b) 0-tolerance ground-truth. (c) 0-tolerance disparity map (overlaid with raw disparity map) for

K = 3 color pattern, auto-tuned on demosaiced images with its percentage of zero-error pixels. (d) 0-tolerance disparity map (overlaid

with raw disparity map) for K = 3 color pattern, auto-tuned on raw images with its percentage of zero-error pixels.

compare the performance of K = 4 sequences of MPS, Hamiltonian, a la carte patterns

decoded with ZNCC5 (which gives the best performance for the patterns), and patterns

auto-tuned for 0-tolerance penalty with ZNCC-NN5 decoder. .

Varying Stereo Baseline First, we analyze the performance of patterns on the same system

but with different baselines. For this case, we fix the camera’s and the training board’s

position and orientation, and move the projector to change the stereo baseline. The camera-

to-board distance was approximately 80cm and we tested five baselines (12cm, 24cm, 36cm,

and 48cm). We compare the performance of MPS, Hamiltonian, and a la carte with the

performance of a system auto-tuned to one of two different baselines (12cm and 48cm).

Figure 7.12 (left) shows the experimental setup, and patterns’ performance according to the

evaluation metrics corresponding to 0-tolerance penalty.

Discussion. Three observations can be made about the results: First, by increasing the

baseline the performance of all the patterns drops. Second, training on a particular baseline

provides the best performance on that baseline (regardless of penalty function). Third,

although optimizing on a particular baseline gives the best performance, auto-tuning a

system on one baseline continues to perform well in other baselines as well, outperforming

existing methods.

Varying Surface Orientation Second, we analyze the effect of surface orientation on recon-

struction performance. Here, we fix the baseline (24cm), and the training board’s distance

with respect to the system (0.8m); and rotate the board (0, 15, 30, and 45 degree). We
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Figure 7.12: Comparison of Auto-tuned Patterns Optimized on Different Geometrical Arrangements with Existing Patterns.

auto-tune the system at one of two board orientations, and compare their performance with

other existing patterns. Figure 7.12 (right) shows the experimental setup, and the patterns’

performance at different orientations.

Discussion. The results show similar behavior to the case of varying baseline. First, almost

all the methods’ performance drops when the surface tilts away from the baseline; the only

exception is the case of auto-tuning at 45 degree which performs better as tilt increases.

Second, systems auto-tuned on a specific orientation perform best at that orientation. Third,

a system tuned for zero tilt, generalizes well to other tilts, outperforming other existing

methods at different angles. This does not always hold for a system tuned for 45 degree tilt.

This suggests systems tuned with a board parallel to the baseline perform well for a larger

range of orientations.

Varying Distance Finally, we evaluate the influence of object-to-system distance on the

performance of patterns. For this experiment, we used a room corner as the test scene

(Figure 7.13, top right). While keeping the baseline (20cm) and scene fixed, we translated
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Figure 7.13: Reconstructing a Room Corner from Different Standoff Distances After Auto-tuning for a Specific Distance (or a

Range of Distances). We observe that the frequency content of patterns optimized for 0.8m (red) is much higher than those for 0.8-5.8m

(green).

the camera-projector pair backward from the corner (0.8m, 1.8m, 2.8m, 3.8m, 4.8m, and

5.8m) and auto-tune the system for 3 distances using the L1 penalty: one for a training

board at 0.8m, one for a training board at 5.8m, and one for the range of 0.8 to 5.8 meters

(by drawing random distance samples).

Discussion. We use the approach described in section 7.4.2 to auto-tune for distances

beyond 0.8m because the projection patterns are too dim at distances beyond 2m to compute

gradients reliably. We also choose L1 penalty since it produces more reasonable results

for far distance. Figure 7.13 shows an overview of the experimental setup, and the average

disparity error as a function of depth. Similarly, systems auto-tuned on a specific distance

perform best at that distance range.

7.6 Summary

Our optical-domain implementation of SGD offers an alternative way to solve optimal coding

problems in imaging, that emphasizes real-time control—and learning by imaging—over

modeling. Although we have shown that very competitive coding schemes for structured

light can emerge on the fly with this approach, the question of how a system can be

tuned even further—for specific materials, for specific families of 3D shapes, for complex

light transport, etc.—remains wide open. Another interesting direction would be extend

OpticalSGD to other imaging systems to discover their optimal imaging parameters. We

leave it as future work.



Chapter 8

Conclusion

In this thesis, we propose to differentiate imaging systems and embed them into learning

based reconstruction frameworks to boost 3D reconstruction. The thesis conducts novel

differentiable reformulation on rendering pipelines and structured light systems, where each

demonstrates new capabilities in 3D reconstruction, achieving large-margin performance

improvement compared to prior works. In this chapter, we first introduce key insights we

learned from the accomplished works and their limitations in Sec. 8.1. We then talk about

promising future directions in Sec. 8.2.

8.1 Learned Lessons

Single-view 3D Object Reconstruction with Differentiable Rendering Single-view 3D object re-

construction is a challenging problem, where our goal is to infer 3D properties from a single

image. It becomes even more difficult when we want to jointly recover shape, texture,

light and material which are highly entangled together in the image. Traditional supervised

methods rely on images accompanied with 3D ground truth while differentiable rendering

techniques relax the data requirement. In Chapter 3, we propose DIB-R, an interpolation-

based renderer that supports to compute gradients from 2D images to most 3D attributes,

including vertex positions, vertex colors, multiple lighting models, texture mapping, etc. It

shows faithful shape and texture prediction under low-frequency lighting assumption.

However, DIB-R is still limited in disentangling clean texture from high-frequency lighting

effects. This is the main reason why DIB-R++ came out in Chapter 4. By explicitly

modelling the high-frequency lighting models, DIB-R++ demonstrates new capabilities to

jointly predict shape, texture, light and material from a single image in an unsupervised way.

It presents clean texture and accurate lighting estimation, especially for the images captured
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with secondary lighting effects like specular or reflection.

By comparing these two methods, the lesson we learned is that differentiable rendering based

single-view 3D object reconstruction cannot recover 3D properties beyond its rendering

equations. In other words, if the rendering effects cannot be expressed by the differentiable

rendering pipeline, it is impossible to recover the corresponding 3D properties in the learning

tasks. It also indicates the limitation of DIB-R++: as a one-bounce ray tracing based renderer,

it fails to account for more advanced rendering effects like shadows or scatter media which

require at least two bounces. To further disentangle them, we need a new renderer that takes

more than one bounce into consideration, as well as being fast enough to be embedded in

learning frameworks.

On the other side, single-view 3D object reconstruction problem is highly ill-posed, where

another key to disentangling everything lies in the training data. We find successful inverse

graphics models rely on multi-view images. Therefore, in Chapter 5 we propose to use

StyleGAN to create high-quality, multi-view training images and demonstrate that the neural

networks trained on StyleGAN dataset can be well applied to real images to predict reliable

3D properties, since they have similar distributions. The benefits of multi-view images are

two folds: On one hand, the shape is partially observed in the image. Similar to shape

curving, novel views help regularize the shape to be correct for both visible and invisible

parts. Moreover, texture, material and light are generally merged together to generate

the final object appearance. Luckily, lighting effects are view-dependent so multi-view

data could help decouple it from texture. Interestingly, even with multi-view images, we

find that the predicted texture, material and lighting parameters, though exhibiting very

close rendering effects to the input image, are not exactly the same from the ground truth

parameters. It indicates that even multi-view data is not sufficient to find a unique solution.

We might need multi-view, multi-illumination data to further constrain this problem.

Structured Light Triangulation with Optimized Patterns In Chapter 6 and 7, we move to struc-

tured light systems. While all the previous works define system illuminations with manually

designed patterns, in Chapter 6 we propose à la carte, a new paradigm where by differentiat-

ing structured light imaging formal models and embed them into learning frameworks, it is

able to design patterns from a machine learning perspective and automatically optimize them

by minimizing the expected disparity loss. We show the optimized patterns significantly

outperform previous hand-crafted ones.

While à la carte considers a simplified imaging formation model in simulation and ignores

realistic hardware properties, in Chapter 7 we further propose OpticalSGD to embed the real

structured light systems in learning frameworks, optimizing patterns for the actual hardware
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devices, and doing so without any requirement of system modelling. The strong performance

boost from à la carte to OpticalSGD indicates the huge domain gap between the simulated

imaging formation models and the actual devices. À la carte adopts a simplified linear

model, which fails to account for more practical optical phenomenons like camera lens blur,

radiometric response functions, as well as the camera and projector noise. Hardware-in-the-

loop can inherently take them into consideration during training, generating patterns that

perfectly match the hardware device properties.

OpticalSGD differentiates hardware systems by computing gradients in optical domain.

However, currently they are computed in a numeric way. The efficiently gradient computa-

tion is implemented with spatial spacing, which relies on the sparse property of the light

transport matrices. As a result, it can hardly be extended to other systems without such

properties. Developing general and fast gradient computation techniques might be the key

to generalize to more broader imaging systems.

8.2 Future Work

Conceptually, differentiating and embedding imaging systems in learning frameworks can be

treated as a new way of applying imaging priors to learning systems. The biggest advantage

is that it could jointly optimize imaging settings as well as reconstruction algorithms, where

they boost each other, achieving huge improvement compared to previous methods. In

practice, differentiable imaging systems lie in the intersection of two important research

areas: machine learning and computational imaging, where promising future research

happens in both sides. We propose to continue to push the boundaries of 3D reconstruction

in both areas, with special focus on the below directions.

3D Representations Choosing proper 3D representations that perfectly match imaging sys-

tems is critical in 3D reconstruction, which influences the design of differentiable imaging

systems and reconstruction algorithms, as well as their usage in downstream applications.

Our differentiable rendering works [38, 39, 291] utilize explicit mesh representations. Com-

posed of explicit geometry and SVBRDF, they are readily usable in graphics engines like

Maya or Blender. However, meshes generally require pre-defined topology which are

limited in representing complex objects, e.g., shapes beyond 0-genus. On the other side,

implicit representations in Nerf-series works [171] demonstrate ability to represent complex

geometry and exhibit excellent effects in novel view synthesis. However, they typically lack

interpretability and editability, and are not compatible with graphics engines.

As such, exploring how to develop hybrid representations that leverage the complementary
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benefits of explicit and implicit representations is an important direction. As a first try,

our recent work [178] combines explicit tetrahedral mesh and implicit SDF field together,

achieving promising effects in complex object reconstruction. We demonstrate detailed

shapes, exquisite texture maps, accurate lighting and material parameters are all inferable

from 2D photographs only. Moreover, the predicted 3D attributes can be directly exported

to any graphics engine for artists to edit. Next, we will continue to explore proper 3D

representations for more challenging cases, e.g., discovering suitable representations in

large-scale scene or video reconstruction tasks.

Universal Differentiable Framework Differentiate imaging systems enable joint optimization

for reconstruction algorithms and imaging settings, which demonstrate huge improvements

over prior works. However, different imaging systems have distinct imaging formation

models. Currently, each imaging system requires a specific differentiable design. For

example, in my previous works, rendering pipelines, structured light systems have totally

different designs.

Therefore, it is also important to develop universal differentiable frameworks that can be

applied to all the imaging systems, back propagating gradients to their imaging parameters

efficiently, no matter which imaging formation models they have. Existing gradient descent

based methods can hardly handle the non-differentiable, physical procedures in imaging

process. We plan to investigate advanced optimization algorithms like Bayesian optimization

or reinforcement learning to solve the problem. We anticipate the frameworks can be

potentially applied to a wide range of imaging systems, from conventional cameras to

cutting-edge medical imaging or astronomy imaging.
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Supplementary Material for DIB-R

A.1 Derivation of DIB-R Renderer
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Figure A.1: Illustration of Our Differ-

entiable Rasterization.

In this section we show how to back propogate gradients from

barycentric weights to the vertex positions via differentiable

functions Ω. As shown in Fig. A.1, the pixel at position ~pi

is covered by the face fj with three vertices ~v0, ~v1, ~v2, where

~pi and ~vk are 2D coordinates on the image plane and ωk is

corresponding barycentric weight. Here, k = 0, 1, 2. We show

how to compute ω0 = Ω0(~v0, ~v1, ~v2, ~pi) below, and weights ω1

and ω2 can be calculated similarly.

With the sum of barycentric weights being equal to 1, we have:

ω0 + ω1 + ω2 = 1 . (A.1)

We can rewrite it in matrix form as:

ω0 = 1−
[

1 1
]
[

ω1

ω2

]

. (A.2)

The Barycentric weights are calculated via pixel position ~pi and face vertex positions ~v0, ~v1

and ~v2:

~pi = ω0~v0 + ω1~v1 + ω2~v2 , (A.3)

where we can also rewrite it as:

[

~v1 − ~v0 ~v2 − ~v0

]
[

ω1

ω2

]

=
[

~pi − ~v0

]

. (A.4)
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Thus we have: [

ω1

ω2

]

=
[

~v1 − ~v0 ~v2 − ~v0

]−1 [

~pi − ~v0

]

. (A.5)

If we merge Equation (A.2) and Equation (A.5), we can easily derive that:

ω0 = 1−
[

1 1
] [

~v1 − ~v0 ~v2 − ~v0

]−1 [

~pi − ~v0

]

. (A.6)

In this way, ω0 can be treated as a output of a function while the input variables are pixel

coordinate ~pi and vertex positions ~v0, ~v1 and ~v2. We rewrite the weight ω0 as the Ω0 function

and thus gradients can be back propagated from ω0 to vertex positions:

ω0 = Ω0(~v0, ~v1, ~v2, ~pi) (A.7)

∂ω0

∂~vk
=

∂Ω0

∂~vk
(A.8)
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Supplementary Material for DIB-R++

B.1 BRDF Model for DIB-R++

For the BRDF, we use a simplified version of the isotropic Disney BRDF [29]:

fr(x,ωi,ωo) =
a

π
+

D(ωh)F (ωo,ωh)G(ωi,ωo)

4|n · ωi||n · ωo|
, (B.1)

where a is the diffuse albedo, D is the (micro-)normal distribution function (NDF), F is the

Fresnel term, G is a geometry or shadowing factor, and ωh = (ωi + ωo)/‖ωi + ωo‖ is the

half-vector.

MC Shading For the NDF, we use the GGX/Trowbridge–Reitz distribution parameterized

by a roughness parameter β > 0, which we map to α = (β + 1)2/8 to allow for more

perceptually linear change [57]:

D(MC)(ωh;α) =
α2

π
(
(n · ωh)2(α2 − 1) + 1

)2 . (B.2)

We importance sample this term directly using inverse transform sampling [199, 29]. For

the geometry term, we use the Schlick model [222], which is given by

G(ωi,ωo) = G1(ωi)G1(ωo)

G1(ω;n, α) =
n · ω

(n · ω)(1− α) + α
.

(B.3)

Finally, for the Fresnel reflection coefficient, we use the SG approximation1 [57] given by:

F (ωo,ωh) = s+ (1− s)2(−5.55473(ωo·ωh)−6.98316)(ωo·ωh) , (B.4)

1Note that this is not related to our SG model. It is common to replace the 1 − (ωo · ωh)
5 term in Schlick’s model by an SG to

remove the power and improve efficiency.
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where s is the specular albedo at normal incidence, which we define as a linear combination

between relative IORs and albedo using a metallic parameter m ∈ [0, 1]:

F0 = Lerp
(
|1− η|2/|1 + η|2, a,m

)
. (B.5)

Here, η = 1.5 (vector) and m is the blending weight. This interpolation allows us to treat

conductors and dielectric with the same approximation. Intuitively, if a material is dielectric

we use the IOR, otherwise we use the albedo to “tint” the reflection.

SG Shading Similar to Wang et al. [259], we approximate the NDF D using a single SG

lobe

D(SG)(ωh;α) ≈ Gd

(

ωh;n,
2

α2
,

1

πα2

)

, (B.6)

and apply a spherical warp [259] to orient the distribution lobe about the reflected view

direction:

D(SG Warped)(ωh;α) ≈ Gd

(

ωh; 2(ωo · n)n− ωo,
λd

4|n · ωo|
,µd

)

, (B.7)

where λd and µd are those of Eq. (B.6). Since the Fresnel and geometry terms cannot be

approximated with SGs, we assume that their values are constant across the entire BRDF

lobe and pull them out of the integral. The cosine foreshortening term is approximated with

a single SG as |n · ωi| ≈ Gc(ωi;n, 2.133, 1.17) [166]. The outgoing radiance can finally

be evaluated in closed form by integrating against the environment map, also given as a

mixture of SGs.
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Supplementary Material for

OpticalSGD

C.1 Proof of Eq.(7.16)

The total penalty of a correspondence map d with ground truth map g is defined as:

‖err(d,g)‖1 =
M∑

m=1

ρ(d[m]− g[m]) (C.1)

Using ZNCC-based decoders (Eqs. (7.12)-(7.15)) for acquiring correspondence map d, we

have:

err(d,g)[m] = ρ(arg max
1≤n≤N

zm[n]− g[m]) (C.2)

Now, we define a max-indicator vector im as follows:

im[j] =







1 if j = argmax1≤n≤N zm[n]

0 otherwise

Using im, we can rewrite Eq. (C.2):

err(d,g)[m] = ρ((im · index)− g[m](im · 1)) (C.3)

where index is a vector whose i-th element is equal to its index i; 1 represents an all-one

vector; and · denotes the dot product.
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We can now further simplify Eq. (C.3) by factoring im:

err(d,g)[m] = im · [ρ(index[0]− g[m]), . . . , ρ(index[n]− g[m])] . (C.4)

On the other hand, it is straightforward to show:

lim
µ→∞

softmax(µzm) = im (C.5)

By combining Eq. (C.4) and Eq. (C.5), we get:

err(d,g)[m] = lim
µ→∞

softmax(µzm) · [ρ(index[0]− g[m]), . . . , ρ(index[n]− g[m])]
︸ ︷︷ ︸

err(index−g[m],0)

,

(C.6)

Therefore, for sufficiently large µ, we can conclude:

‖err(d,g)‖1 ≈
M∑

m=1

softmax(µzm) · err(index−g[m],0) (C.7)

QED. �
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projector
projector response

function

projector

columns

pattern spatial

frequency limit
camera

image exposure

time

camera response

function

LG-PH550 non-linear 1280 256 IDS-UI324x 33msec linear

LightCrafter linear 400 64 C2B [265] 17msec linear

Optoma 4K non-linear 3840 512 Huawei P9 33msec non-linear

LG-PH550 non-linear 1280 256 AVT-1920c 17msec linear

LG-PH550 non-linear 1280 256 AVT-1920 17msec linear

PicoPro non-linear 1280 256 IDS-UI324x 17msec linear

Table C.1: List of the experimental imaging systems.

encoding

scheme
decoder

optimized for

penalty
Reference

radiometrically

calibrated projector?

auto-tuning

applied?

Hamiltonian ZNCC L1 [78] Yes No

MPS ZNCC none [74] Yes No

A la carte ZNCC 0-tolerance [172] Yes No

Hamiltonian ZNCC5 L1 this thesis Yes No

MPS ZNCC5 none this thesis Yes No

A la carte ZNCC5 0-tolerance this thesis Yes No

Hamiltonian ZNCC-NN5 0-tolerance & L1 this thesis Yes decoder only

MPS ZNCC-NN5 0-tolerance & L1 this thesis Yes decoder only

A la carte ZNCC-NN5 0-tolerance & L1 this thesis Yes decoder only

auto-tuned ZNCC 0-tolerance & L1 this thesis No patterns only

auto-tuned ZNCC5 0-tolerance & L1 this thesis No patterns only

auto-tuned ZNCC-NN5 0-tolerance & L1 this thesis No patterns & decoder

Table C.2: List of the coding-decoding methods used for experiments.

C.2 List of Devices & Encoding-Decoding Methods

To better reproduce our method, we list all the devices and encoding-decoding algorithms

we use in Chapter 7. Table C.1 lists all the devices we used while Table C.2 shows all the

encoding-decoding methods used in the experiments.
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