Understanding the Effective Receptive Field in
Deep Convolutional Neural Networks

Wenjie Luo* Yujia Li* Raquel Urtasun Richard Zemel
Department of Computer Science
University of Toronto
{wenjie, yujiali, urtasun, zemell}@cs.toronto.edu

Abstract

We study characteristics of receptive fields of units in deep convolutional networks.
The receptive field size is a crucial issue in many visual tasks, as the output must
respond to large enough areas in the image to capture information about large
objects. We introduce the notion of an effective receptive field, and show that it
both has a Gaussian distribution and only occupies a fraction of the full theoretical
receptive field. We analyze the effective receptive field in several architecture
designs, and the effect of nonlinear activations, dropout, sub-sampling and skip
connections on it. This leads to suggestions for ways to address its tendency to be
too small.

1 Introduction

Deep convolutional neural networks (CNNs) have achieved great success in a wide range of problems
in the last few years. In this paper we focus on their application to computer vision: where they are
the driving force behind the significant improvement of the state-of-the-art for many tasks recently,
including image recognition [10, 8], object detection [17, 2], semantic segmentation [12} (1], image
captioning [20], and many more.

One of the basic concepts in deep CNNSs is the receptive field, or field of view, of a unit in a certain
layer in the network. Unlike in fully connected networks, where the value of each unit depends on the
entire input to the network, a unit in convolutional networks only depends on a region of the input.
This region in the input is the receptive field for that unit.

The concept of receptive field is important for understanding and diagnosing how deep CNNs work.
Since anywhere in an input image outside the receptive field of a unit does not affect the value of that
unit, it is necessary to carefully control the receptive field, to ensure that it covers the entire relevant
image region. In many tasks, especially dense prediction tasks like semantic image segmentation,
stereo and optical flow estimation, where we make a prediction for each single pixel in the input image,
it is critical for each output pixel to have a big receptive field, such that no important information is
left out when making the prediction.

The receptive field size of a unit can be increased in a number of ways. One option is to stack more
layers to make the network deeper, which increases the receptive field size linearly by theory, as
each extra layer increases the receptive field size by the kernel size. Sub-sampling on the other hand
increases the receptive field size multiplicatively. Modern deep CNN architectures like the VGG
networks [18] and Residual Networks [8} 6] use a combination of these techniques.

In this paper, we carefully study the receptive field of deep CNNs, focusing on problems in which
there are many output unites. In particular, we discover that not all pixels in a receptive field contribute
equally to an output unit’s response. Intuitively it is easy to see that pixels at the center of a receptive
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field have a much larger impact on an output. In the forward pass, central pixels can propagate
information to the output through many different paths, while the pixels in the outer area of the
receptive field have very few paths to propagate its impact. In the backward pass, gradients from an
output unit are propagated across all the paths, and therefore the central pixels have a much larger
magnitude for the gradient from that output.

This observation leads us to study further the distribution of impact within a receptive field on the
output. Surprisingly, we can prove that in many cases the distribution of impact in a receptive field
distributes as a Gaussian. Note that in earlier work [20] this Gaussian assumption about a receptive
field is used without justification. This result further leads to some intriguing findings, in particular
that the effective area in the receptive field, which we call the effective receptive field, only occupies a
fraction of the theoretical receptive field, since Gaussian distributions generally decay quickly from
the center.

The theory we develop for effective receptive field also correlates well with some empirical observa-
tions. One such empirical observation is that the currently commonly used random initializations
lead some deep CNNs to start with a small effective receptive field, which then grows during training.
This potentially indicates a bad initialization bias.

Below we present the theory in Section[2]and some empirical observations in Section 3} which aim
at understanding the effective receptive field for deep CNNs. We discuss a few potential ways to
increase the effective receptive field size in Section[4]

2 Properties of Effective Receptive Fields

We want to mathematically characterize how much each input pixel in a receptive field can impact
the output of a unit n layers up the network, and study how the impact distributes within the receptive
field of that output unit. To simplify notation we consider only a single channel on each layer, but
similar results can be easily derived for convolutional layers with more input and output channels.

Assume the pixels on each layer are indexed by (4, j), with their center at (0, 0). Denote the (i, j)th
pixel on the pth layer as z? j» With xo as the input to the network and y; ; = x}'; as the output
on the nth layer. We want to measure how much each 29 0i contributes to ¥ 0. We define the
effective receptive field (ERF) of this central output unit as region containing any input pixel with a

non-negligible impact on that unit.

The measure of impact we use in this paper is the partial derivative 0yg o/ 35c0 It measures how
much 00 changes as z?¥ ; changes by a small amount; it is therefore a natural measure of the

importance of ; With respect to yo,0. However, this measure depends not only on the weights of
the network, but are in most cases also input-dependent, so most of our results will be presented in
terms of expectations over input distribution.

The partial derivative dyo o/0x? ; can be computed with back-propagation. In the standard setting,
back-propagation propagates the error gradient with respect to a certain loss function. Assuming we
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have an arbitrary loss [, by the chain rule we have

Then to get the quantity dyo,0/dx ;, we can set the error gradient 01 /dyo o = 1 and 9l /dy; ; = 0
forall i # 0 and j # 0, then propagate this gradient from there back down the network. The resulting
ol)oz? . ; equals the desired dyo,0/ 0z ;.j- Here we use the back-propagation process without an
exphc1t loss function, and the process can be easily implemented with standard neural network tools.

In the following we first consider linear networks, where this derivative does not depend on the input
and is purely a function of the network weights and (4, j), which clearly shows how the impact of the
pixels in the receptive field distributes. Then we move forward to consider more modern architecture
designs and discuss the effect of nonlinear activations, dropout, sub-sampling, dilation convolution
and skip connections on the ERF.

2.1 The simplest case: a stack of convolutional layers of weights all equal to one

Consider the case of n convolutional layers using k x k kernels with stride one, one single channel
on each layer and no nonlinearity, stacked into a deep linear CNN. In this analysis we ignore the
biases on all layers. We begin by analyzing convolution kernels with weights all equal to one.



Denote g(i, j,p) = 0l/0x] ; as the gradient on the pth layer, and let g(i,j,n) = 9l1/dy; ;. Then
9(,,0) is the desired gradient image of the input. The back-propagation process effectively convolves
g(,,p) with the k x k kernel to get g(,,p — 1) for each p.

In this special case, the kernel is a k X k matrix of 1’s, so the 2D convolution can be decomposed
into the product of two 1D convolutions. We therefore focus exclusively on the 1D case. We have the
initial gradient signal u(¢) and kernel v(¢) formally defined as

k—1
u(t) = 8(t), v(t)= Y 6(t—m), whered(t) = { b i;g , (1)
m=0 ’
andt =0,1,—1,2,—2, ... indexes the pixels.

The gradient signal on the input pixels is simply 0 = w * v * - - - * v, convolving u with n such v’s. To
compute this convolution, we can use the Discrete Time Fourier Transform to convert the signals into
the Fourier domain, and obtain

oo o

k—1
Uw) = Z w(t)e ¥t =1, V(w) = Z V(t)eiwt = Z o—jwm 2
m=0
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Applying the convolution theorem, we have the Fourier transform of o is
k—1 "
Flo)=Fluxvx--xv)(w)=U(w) V(w)" = (Z e—me> 3)
m=0
Next, we need to apply the inverse Fourier transform to get back o(¢):
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We can see that o(t) is simply the coefficient of e ~7“* in the expansion of (anzo e‘J"””) .

. n
Case £ = 2: Now let’s consider the simplest nontrivial case of k = 2, where (Z’:n_:lo e‘J“””) =

(1 + e~9“)". The coefficient for =7+ is then the standard binomial coefficient (), so o(t) = (7).
It is quite well known that binomial coefficients distributes with respect to ¢ like a Gaussian as n
becomes large (see for example [13]), which means the scale of the coefficients decays as a squared
exponential as ¢ deviates from the center. When multiplying two 1D Gaussian together, we get a 2D

Gaussian, therefore in this case, the gradient on the input plane is distributed like a 2D Gaussian.

Case k£ > 2: In this case the coefficients are known as “extended binomial coefficients” or “polyno-
mial coefficients”, and they too distribute like Gaussian, see for example [3,116]]. This is included as a
special case for the more general case presented later in Section[2.3]

2.2 Random weights

Now let’s consider the case of random weights. In general, we have

k—1k—1

g(ig,p—1)=> > wk g(i +a,i+b,p) 6)

a=0 b=0
with pixel indices properly shifted for clarity, and w? , is the convolution weight at (a,b) in the
convolution kernel on layer p. At each layer, the initial weights are independently drawn from a fixed
distribution with zero mean and variance C. We assume that the gradients g are independent from the
weights. This assumption is in general not true if the network contains nonlinearities, but for linear
networks these assumptions hold. As E,, [wf; ») = 0, we can then compute the expectation

k—1k—1

Ew,input[g(i7jvp - 1)] = Z ZEw [wZ,b]Einput [g(l + avi + bap)] = O» Vp (7)
a=0 b=0



Here the expectation is taken over w distribution as well as the input data distribution. The variance
is more interesting, as

k—1k—1 k—1k—1
Varlg(i, j,p—1)] ZZV&r o) Var[g(i+a,i+b, p)] :CZZVar[g(i+a,i+b,p)}. (8)
a=0 b=0 a=0 b=0

This is equivalent to convolving the gradient variance image Var[g(,, p)] with a k x k convolution
kernel full of 1’s, and then multiplying by C to get Var[g(,,p — 1)].

Based on this we can apply exactly the same analysis as in Section [2.1] on the gradient variance
images. The conclusions carry over easily that Var[g(., ., 0)] has a Gaussian shape, with only a slight
change of having an extra C" constant factor multiplier on the variance gradient images, which does
not affect the relative distribution within a receptive field.

2.3 Non-uniform kernels

More generally, each pixel in the kernel window can have different weights, or as in the random
weight case, they may have different variances. Let’s again consider the 1D case, u(t) = J(t) as
before, and the kernel signal v(t) = an_:lo w(m)d(t — m), where w(m) is the weight for the
mth pixel in the kernel. Without loss of generality, we can assume the weights are normalized, i.e.

Yo w(m) =1.

Applying the Fourier transform and convolution theorem as before, we get

k—1 n
Uw) - V(w)---V(w) = (Z w(m)ej‘””> , ©)

m=0

the space domain signal o(#) is again the coefficient of e~7«! in the expansion; the only difference is
that the e 7™ terms are weighted by w(m).

These coefficients turn out to be well studied in the combinatorics literature, see for example [3]] and
the references therein for more details. In [3]], it was shown that if w(m) are normalized, then o(t)
exactly equals to the probability p(S,, = t), where S, = Y. | X; and X,’s are i.i.d. multinomial
variables distributed according to w(m)’s, i.e. p(X; = m) = w(m). Notice the analysis there
requires that w(m) > 0. But we can reduce to variance analysis for the random weight case, where
the variances are always nonnegative while the weights can be negative. The analysis for negative
w(m) is more difficult and is left to future work. However empirically we found the implications of
the analysis in this section still applies reasonably well to networks with negative weights.

From the central limit theorem point of view, it dictates that as n — oo, the distribution of 1/n( % S, —
E[X]) converges to Gaussian A/(0, Var[X]) in distribution. This means, for a given n large enough,
S, is going to be roughly Gaussian with mean nE[X] and variance nVar[X]. As o(t) = p(S,, = t),
this further implies that o(¢) also has a Gaussian shape. When w(m)’s are normalized, this Gaussian
has the following mean and variance:

k-1 k-1 2
[Snl=n Z mw(m), Var[S,] = Z m?w(m) — <Z mw(m)) (10)
m=0 m=0

This indicates that o(t) decays from the center of the receptive field squared exponentially according
to the Gaussian distribution. The rate of decay is related to the variance of this Gaussian. If we take
one standard deviation as the effective receptive field (ERF) size which is roughly the radius of the

ERF, then this size is y/Var[S,,] = /nVar[X;] = O(v/n).

On the other hand, as we stack more convolutional layers, the theoretical receptive field grows linearly,
therefore relative to the theoretical receptive field, the ERF actually shrinks at a rate of O(1//n),
which we found surprising.

In the simple case of uniform weighting, we can further see that the ERF size grows linearly with
kernel size k. As w(m) = 1/k, we have

k—1

2 =l ? n(k2 —
VS ] = Vi | S - (Z k) — M= —ogeym).an

m=0 m=0



Remarks: The result derived in this section, i.e., the distribution of impact within a receptive field
in deep CNNs converges to Gaussian, holds under the following conditions: (1) all layers in the CNN
use the same set of convolution weights. This is in general not true, however, when we apply the
analysis of variance, the weight variance on all layers are usually the same up to a constant factor. (2)
The convergence derived is convergence “in distribution”, as implied by the central limit theorem.
This means that the cumulative probability distribution function converges to that of a Gaussian, but
at any single pomt in space the probability can deviate from the Gaussian. (3) The convergence result
states that \/n(1.5, —E[X]) — N(0, Var[X]), hence S,, approaches ' (nE[X], nVar[X]), however
the convergence of S, here is not well defined as A/ (nE[X], nVar[X]) is not a fixed distribution, but
instead it changes with n. Additionally, the distribution of .S,, can deviate from Gaussian on a finite
set. But the overall shape of the distribution is still roughly Gaussian.

2.4 Nonlinear activation functions

Nonlinear activation functions are an integral part of every neural network. We use o to represent an
arbitrary nonlinear activation function. During the forward pass, on each layer the pixels are first
passed through o and then convolved with the convolution kernel to compute the next layer. This
ordering of operations is a little non-standard but equivalent to the more usual ordering of convolving
first and passing through nonlinearity, and it makes the analysis slightly easier. The backward pass in

this case becomes
k—1k—1

g9(i,j,p—1) =0} ZZwabgz—Faz—i—bp) (12)

a=0 b=0

where we abused notation a bit and use o7 j' to represent the gradient of the activation function for
pixel (4, j) on layer p.

p

For ReLU nonlinearities, o7 ;/ = [z}, > 0] where I|.] is the indicator function. We have to

make some extra assumptions about the activations :cp to advance the analysis, in addition to

the assumption that it has zero mean and unit variance. A standard assumption is that acp has a
symmetrlc distribution around O [[7]. If we make an extra simplifying assumption that the gradlents
o' are independent from the weights and g in the upper layers, we can simplify the variance as
Var[g(i,j,p—1)] = E[o? ’2] > a2 Varfw] [Var[g(i +a,i+b,p)], and E[o] ’2] Var(o}] ;'] =
1/4 is a constant factor. Followmg the variance analysis we can again reduce this case to the uniform
weight case.

Sigmoid and Tanh nonlinearities are harder to analyze. Here we only use the observation that when
the network is initialized the weights are usually small and therefore these nonlinearities will be in
the linear region, and the linear analysis applies. However, as the weights grow bigger during training
their effect becomes hard to analyze.

2.5 Dropout, Subsampling, Dilated Convolution and Skip-Connections

Here we consider the effect of some standard CNN approaches on the effective receptive field.
Dropout is a popular technique to prevent overfitting; we show that dropout does not change the
Gaussian ERF shape. Subsampling and dilated convolutions turn out to be effective ways to increase
receptive field size quickly. Skip-connections on the other hand make ERFs smaller. We present the
analysis for all these cases in the Appendix.

3 Experiments

In this section, we empirically study the ERF for various deep CNN architectures. We first use
artificially constructed CNN models to verify the theoretical results in our analysis. We then present
our observations on how the ERF changes during the training of deep CNNs on real datasets. For all
EREF studies, we place a gradient signal of 1 at the center of the output plane and 0 everywhere else,
and then back-propagate this gradient through the network to get input gradients.

3.1 Verifying theoretical results

We first verify our theoretical results in artificially constructed deep CNNs. For computing the ERF
we use random inputs, and for all the random weight networks we followed [7, 5] for proper random
initialization. In this section, we verify the following results:
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Uniform Random Random + ReL.U Uniform Random Random + ReLLU
20 layers, theoretical RF size=41 40 layers, theoretical RF size=81
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Figure 1: Comparing the effect of number of layers, random weight initialization and nonlinear
activation on the ERF. Kernel size is fixed at 3 x 3 for all the networks here. Uniform: convolutional
kernel weights are all ones, no nonlinearity; Random: random kernel weights, no nonlinearity;
Random + ReLU: random kernel weights, ReLU nonlinearity.

ERFs are Gaussian distributed: As shown in Fig. we can observe perfect Gaus-
sian shapes for uniformly and randomly weighted convolution kernels without nonlinear
activations, and near Gaussian shapes for randomly weighted kernels with nonlinearity.
Adding the ReLU nonlinearity makes the distribution a
bit less Gaussian, as the ERF distribution depends on the
input as well. Another reason is that ReL.U units output
exactly zero for half of its inputs and it is very easy to
get a zero output for the center pixel on the output plane,
which means no path from the receptive field can reach ReLU Tanh Sigmoid
the output, hence the gradient is all zero. Here the ERFs are averaged over 20 runs with different
random seed. The figures on the right shows the ERF for networks with 20 layers of random weights,
with different nonlinearities. Here the results are averaged both across 100 runs with different
random weights as well as different random inputs. In this setting the receptive fields are a lot more
Gaussian-like.

\/n absolute growth and 1/./n relative shrinkage: In Fig. 2} we show the change of ERF size and
the relative ratio of ERF over theoretical RF w.r.t number of convolution layers. The best fitting line
for ERF size gives slope of 0.56 in log domain, while the line for ERF ratio gives slope of -0.43. This
indicates ERF size is growing linearly w.r.t v/N and ERF ratio is shrinking linearly w.r.t. \/iﬁ Note

here we use 2 standard deviations as our measurement for ERF size, i.e. any pixel with value greater
than 1 — 95.45% of center point is considered as in ERF. The ERF size is represented by the square
root of number of pixels within ERF, while the theoretical RF size is the side length of the square in
which all pixel has a non-zero impact on the output pixel, no matter how small. All experiments here
are averaged over 20 runs.

Subsampling & dilated convolution increases receptive field: The figure on the right shows
the effect of subsampling and dilated convolution. The reference baseline is a convnet with
15 dense convolution layers. Its ERF is shown in the left-most figure. We then replace 3 of
the 15 convolutional layers with stride-2 convolution to get the ERF for the ‘Subsample’ figure,
and replace them with dilated convolution with factor
2,4 and 8 for the ‘Dilation’ figure. As we see, both of
them are able to increase the effect receptive field signif-
icantly. Note the ‘Dilation’ figure shows a rectangular
ERF shape typical for dilated convolutions.

3.2 How the ERF evolves during training Conv-Only — Subsample Dilation

In this part, we take a look at how the ERF of units in the top-most convolutional layers of a
classification CNN and a semantic segmentation CNN evolve during training. For both tasks, we
adopt the ResNet architecture which makes extensive use of skip-connections. As the analysis shows,
the ERF of this network should be significantly smaller than the theoretical receptive field. This is
indeed what we have observed initially. Intriguingly, as the networks learns, the ERF gets bigger, and
at the end of training is significantly larger than the initial ERF.
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Figure 2: Absolute growth (left) and relative shrink (right) for ERF

CIFAR 10 CamVid

Before Training  After Training Before Training  After Training

Figure 3: Comparison of ERF before and after training for models trained on CIFAR-10 classification
and CamVid semantic segmentation tasks. CIFAR-10 receptive fields are visualized in the image
space of 32 x 32.

For the classification task we trained a ResNet with 17 residual blocks on the CIFAR-10 dataset. At
the end of training this network reached a test accuracy of 89%. Note that in this experiment we did
not use pooling or downsampling, and exclusively focus on architectures with skip-connections. The
accuracy of the network is not state-of-the-art but still quite high. In Fig. 3| we show the effective
receptive field on the 32x32 image space at the beginning of training (with randomly initialized
weights) and at the end of training when it reaches best validation accuracy. Note that the theoretical
receptive field of our network is actually 74 x 74, bigger than the image size, but the ERF is still not
able to fully fill the image. Comparing the results before and after training, we see that the effective
receptive field has grown significantly.

For the semantic segmentation task we used the CamVid dataset for urban scene segmentation. We
trained a “front-end” model [21] which is a purely convolutional network that predicts the output
at a slightly lower resolution. This network plays the same role as the VGG network does in many
previous works [[12]. We trained a ResNet with 16 residual blocks interleaved with 4 subsampling
operations each with a factor of 2. Due to these subsampling operations the output is 1/16 of the
input size. For this model, the theoretical receptive field of the top convolutional layer units is quite
big at 505 x 505. However, as shown in Fig.[3] the ERF only gets a fraction of that with a diameter
of 100 at the beginning of training. Again we observe that during training the ERF size increases and
at the end it reaches almost a diameter around 150.

4 Reduce the Gaussian Damage

The above analysis shows that the ERF only takes a small portion of the theoretical receptive field,
which is undesirable for tasks that require a large receptive field.

New Initialization. One simple way to increase the effective receptive field is to manipulate the
initial weights. We propose a new random weight initialization scheme that makes the weights at the
center of the convolution kernel to have a smaller scale, and the weights on the outside to be larger;
this diffuses the concentration on the center out to the periphery. Practically, we can initialize the
network with any initialization method, then scale the weights according to a distribution that has a
lower scale at the center and higher scale on the outside.



In the extreme case, we can optimize the w(m)’s to maximize the ERF size or equivalently the
variance in Eq. Solving this optimization problem leads to the solution that put weights equally at
the 4 corners of the convolution kernel while leaving everywhere else 0. However, using this solution
to do random weight initialization is too aggressive, and leaving a lot of weights to 0 makes learning
slow. A softer version of this idea usually works better.

‘We have trained a CNN for the CIFAR-10 classification task with this initialization method, with
several random seeds. In a few cases we get a 30% speed-up of training compared to the more
standard initializations [5,[7]. But overall the benefit of this method is not always significant.

We note that no matter what we do to change w(m), the effective receptive field is still distributed
like a Gaussian so the above proposal only solves the problem partially.

Architectural changes. A potentially better approach is to make architectural changes to the CNN,
which may change the ERF in more fundamental ways. For example, instead of connecting each unit
in a CNN to a local rectangular convolution window, we can sparsely connect each unit to a larger
area in the lower layer using the same number of connections. Dilated convolution [21] belongs to
this category, but we may push even further and use sparse connections that are not grid-like.

5 Discussion

Connection to biological neural networks. In our analysis we have established that the effective
receptive field in deep CNNs actually grows a lot slower than we used to think. This indicates
that a lot of local information is still preserved even after many convolution layers. This finding
contradicts some long-held relevant notions in deep biological networks. A popular characterization
of mammalian visual systems involves a split into "what" and "where" pathways [19]. Progressing
along the what or where pathway, there is a gradual shift in the nature of connectivity: receptive
field sizes increase, and spatial organization becomes looser until there is no obvious retinotopic
organization; the loss of retinotopy means that single neurons respond to objects such as faces
anywhere in the visual field [9]. However, if the ERF is smaller than the RF, this suggests that
representations may retain position information, and also raises an interesting question concerning
changes in the size of these fields during development.

A second relevant effect of our analysis is that it suggests that convolutional networks may automati-
cally create a form of foveal representation. The fovea of the human retina extracts high-resolution
information from an image only in the neighborhood of the central pixel. Sub-fields of equal reso-
lution are arranged such that their size increases with the distance from the center of the fixation.
At the periphery of the retina, lower-resolution information is extracted, from larger regions of the
image. Some neural networks have explicitly constructed representations of this form [11]. However,
because convolutional networks form Gaussian receptive fields, the underlying representations will
naturally have this character.

Connection to previous work on CNNs. While receptive fields in CNNs have not been studied
extensively, [[7, 5] conduct similar analyses, in terms of computing how the variance evolves through
the networks. They developed a good initialization scheme for convolution layers following the
principle that variance should not change much when going through the network.

Researchers have also utilized visualizations in order to understand how neural networks work. [14]
showed the importance of using natural-image priors and also what an activation of the convolutional
layer would represent. [22] used deconvolutional nets to show the relation of pixels in the image and
the neurons that are firing. [23] did empirical study involving receptive field and used it as a cue for
localization. There are also visualization studies using gradient ascent techniques [4] that generate
interesting images, such as [[15]. These all focus on the unit activations, or feature map, instead of the
effective receptive field which we investigate here.

6 Conclusion

In this paper, we carefully studied the receptive fields in deep CNNs, and established a few surprising
results about the effective receptive field size. In particular, we have shown that the distribution of
impact within the receptive field is asymptotically Gaussian, and the effective receptive field only
takes up a fraction of the full theoretical receptive field. Empirical results echoed the theory we
established. We believe this is just the start of the study of effective receptive field, which provides a
new angle to understand deep CNNs. In the future we hope to study more about what factors impact
effective receptive field in practice and how we can gain more control over them.
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