
D
RAFT

Lower bound for deterministic semantic-incremental branching

programs solving GEN

Dustin Wehr

January 7, 2011

Abstract

We answer a problem posed in [GKM08] regarding a restricted model of small-space computation,
tailored for solving the GEN problem. They define two variants of “incremental branching programs”,
the syntactic variant defined by a restriction on the graph-theoretic paths in the program, and the more-
general semantic variant in which the same restriction is enforced only on the consistent paths - those
that are followed by at least one input. They show that exponential size is required for the syntactic
variant, but leave open the problem of superpolynomial lower bounds for the semantic variant. Here we
give an exponential lower bound for the semantic variant by generalizing lower bound arguments from
[BCM+09] [Weh10] for a similar restricted model tailored for solving a special case of GEN called Tree
Evaluation.

1 How to read this paper

The introduction 2 (which is short and should be read entirely) defers several definitions to Section 3.1;
the reader should refer there to read any unfamiliar definitons as they arise. The proof of our main result
spans Sections 3.2, 4.1, 4.3. All but the most-casual readers should read Section 3.2, which sets up and
outlines the proof. Sections 3.3 and 4.2 can safely be skipped by readers only interested in our main result.

2 Introduction

An instance T of m-GEN is just a function from [m]× [m] to [m], where [m] = {1, . . . ,m}. T is a YES
instance iff m is in the closure of the set {1} under the operation T . Depending on the computation model,
T is given as m2dlogme bits or, more naturally, as m2 elements of [m]. The computation model we use,
m-way branching programs (defn 1), is the standard one for studying the nonuniform space complexity of
problems represented in the second way.

We refer to them2, [m]-valued input variables that define them-GEN instances by the names {(x, y)}x,y∈[m],
and we refer to input T ’s value of variable (x, y) by T (x, y). Throughout, we only talk about deterministic
branching programs. A deterministic semantic-incremental branching program (BP) solving m-GEN
is an m-way BP B that computes m-GEN such that for every state q of B that queries a variable (x, y) and
every input T that visits q, for both z ∈ {x, y} either z = 1 or there is an earlier edge on the computation
path of T labeled z. The main goal is Corollary 1 in Section 4.3:

There is a constant c > 0 such that for infinitely-manym every deterministic semantic-incremental
BP solving m-GEN has at least 2c m/ log m states.

1

D
RAFT

3 Preliminaries / Outline

3.1 Definitions

Definition 1 (k-way branching program). A deterministic k-way branching program B computing a function
g : [k]|Vars| → Out , where Vars and Out are finite sets, is first of all a directed multi-graph whose nodes are
called states, having a unique in-degree 0 state called the start state. Every state is labeled with an input
variable (an element of Vars) except for |Out | output states with out-degree 0 labelled with distinct output
values (the elements of Out). Every state has k out-edges, labeled with distinct elements of [k]. An input
I (a mapping X 7→ XI from Vars to [k]) defines a computation path from the start state through B in the
obvious way: from a non-output state q labeled with X ∈ Vars, I follows the edge out of q labeled XI .
The computation path of I must be finite, ending at the output state labeled with g(I). The size of B is its
number of states. We say that B solves a decision problem if |Out | = 2.

Definition 2 (rooted dag, root uroot, leaf, child, parent, arc, size). A rooted dag G is a directed acyclic
graph with a unique out-degree 0 node called the root, denoted uroot. In-degree 0 nodes are called leaves.
We refer to the edges of G as arcs in order to avoid confusion with the edges of a branching program. The
nodes with arcs into u are the children of u and the nodes that receive arcs coming out of u are the parents
of u.

Definition 3 (Dag Evaluation Problem). An input is a 4-tupple 〈G, k,~l, ~f〉. G is a connected rooted dag
and k ≥ 2 is an integer. ~l consists of a dlog ke-bit string specifying a value in [k] for each leaf node of G, and
~f consists of a kddlog ke-bit string specifying a function from [k]d to [k] for each non-leaf node of G with d
children. Each non-leaf receives a value in the expected way; namely, by applying its function to the values
of its children. The function version of the problem asks for the value of the root. The decision version asks
if the root value is 1.

The next definition subsumes the previous one; it makes precise how inputs to the Dag Evaluation
Problem are presented to k-way BPs, and introduces notation that we will use throughout this paper. The
variable G denotes a connected rooted dag (see definition 2) with at least two nodes throughout this paper.

Definition 4 (DEG : Dag Evaluation Problem for fixed dag G). The size of an input to DEG is determined
by a parameter k ≥ 2, and we write DEG(k) for the problem restricted to inputs with size paramter k. The
[k]-valued input variables Vars of DEG(k) are as-follows:

lu for each leaf u ∈ G
fu(~a) for each node u ∈ G of in-degree d ≥ 1 and each ~a ∈ [k]d

We write lIu and f I
u(~a) for the value input I:Vars → [k] assigns to variables lu and fu(~a). For u ∈ G we

define uI , the value of I on u, inductively: if u is a leaf then uI = lIu, and if u has children v1, . . . , vd then
uI = f I

u(vI
1 , . . . , v

I
d). DEG(k) is a decision problem; the output is YES if uI

root = 1 and NO otherwise.

We generalize the definition from [BCM+09] [Weh10] of deterministic thrifty BPs solving the Tree Eval-
uation Problem (which is the Dag Evaluation Problem for the complete binary trees):

Definition 5. A k-way BP solving DEG(k) is thrifty if for every state q that queries an internal node variable
fu(a1, . . . , ad), if v1, . . . , vd are the children of u then every input I that visits q has vI

1 = a1, . . . , v
I
d = ad.

Definition 6 (Black pebbling cost of G). Let G be a rooted dag. A pebbling configuration C of G is
given by a subset of the nodes of G which are said to be pebbled. A complete pebbling sequence for G
is a sequence of pebbling configurations π = C1, . . . , Ct∗ such that every node is unpebbled in C1, the root is
pebbled in Ct, and for all t ∈ {1, . . . , t∗ − 1}, configuration Ct+1 is obtained from Ct by one of the following
types of pebbling moves:

1. If all the children of node u are pebble in Ct, then in Ct+1 a pebble can placed on u and simultaneously
zero or more of the children of u can have their pebbles removed.

2. A pebble is removed from some node.1

1We don’t actually need to include this as a possible move.

2

D
RAFT

We say π requires p pebbles if p is the maximum over all Ct of the number of nodes pebbled in Ct. Finally,
the pebbling cost of G is the minimum number of pebbles required for a complete pebbling sequence for
G.

3.2 Outline of proof

For arbitrary G and k, Theorem 1 gives lower bounds for thrifty BPs solving DEG(k) in terms of k and
the pebbling cost of G. Let Th be the complete binary tree with 2h−1 nodes. Theorem 1 is a generalization
of the following result from [Weh10], stated in terms of the notation introduced above:

For any h, k ≥ 2 every deterministic thrifty BP solving DETh(k) has at least kh states.

Theorem 3 uses Theorem 1 to get lower bounds for semantic-incremental BPs solving m-GEN in terms
of the pebbling cost of dags with indegree 2.2 The bulk of that proof consists of showing that for any G
with indegree 2, there is a polynomial-bounded3 reduction g from DEG to GEN such that thrifty BPs can
efficiently simulate semantic incremental BPs that solve instances of GEN from the range of g.4 Corollary 1
uses Theorem 3 for each member of a particular hard-to-pebble family of dags, whose existence was proved
in [PTC76].

3.3 Remarks on proofs by Gál, Koucký, McKenzie

The authors of [GKM08] obtain exponential lower bounds for syntactic incremental BPs solving m-GEN
in two ways. Both methods also work for a nondeterminstic variant of syntactic incremental BPs. First,
they use the Raz/McKenzie lower bounds for monotone circuits [RM99] to get a lower bound of 2nε for some
ε > 0 and sufficiently large n5. The first method works for a possibly-larger larger class of BPs, but the
definition of that class is not simple.6 Their second method uses a probabilistic argument7 combined with
the same pebbling result that we use to get a lower bound of 2cn/ log n for some c > 0 and sufficiently large
n.

4 Results

4.1 Lower Bound for Thrifty BPs

Theorem 1. If G has pebbling cost p then for any k ≥ 2 every thrifty deterministic BP solving DEG(k) has
at least kp states.

Proof. Fix G, k and a deterministic thrifty BP B that solves DEG(k). Let n be the number of nodes in G
and Q the states of B. If u is a non-leaf node with d children then the u variables are fu(~a) for each ~a ∈ [k]d,
and if u is a leaf node then there is just one u variable lu. We sometimes say “fu variable” just as an in-line
reminder that u is a non-leaf node. When it is clear from the context that a state q is on the computation
path of an input I, we just say “q queries u” instead of “q queries the thrifty u variable of I”.

We want to assign a black pebbling sequence to each input; to do this we need the following lemma.

Lemma 1. For any input I and non-leaf node u, there is at least one state q on the computation path of
I that queries u,8 and for every such q, for each child v of u there is a state on the computation path of I
before q that queries v.

2This could be generalized to work for families of dags with unbounded indegree, but we have no use for that generalization
here.

3And very efficiently computable, though we don’t need that fact.
4More precisely, if E is the set of DEG(k) instances, and there is a size s semantic incremental BP solving the set of GEN

instances g(E), then there is a thrifty BP solving DEG(k) of size at most s.
5ε not given explicitly.
6See section 3.1 “Tight Computation of GEN” of [GKM08].
7See Lemma 5.2 “Symmetrization Lemma” of [GKM08].
8Recall that “queries u” means queries the thrifty u variable of I.

3

D
RAFT

Proof. Fix an input I. We prove the lemma for I starting with the root, and then the children of the root,
and so on. Let v1, . . . , vd be the children of uroot. I must visit at least one state that queries its thrifty uroot

variable, since otherwise B would make a mistake on an input J that is identical to I except

fJ
u (vI

1 , . . . , v
I
d) =

{
2 if uI

root = 1
1 otherwise

Now let u be any non-leaf node and q any state on the computation path of I that queries u. Suppose the
lemma does not hold for this q, so for some child v of u there is no state before q that queries v. For every
a 6= vI there is an input Ia that is identical to I except vIa = a. Now Ia visits q since I and Ia have the
same computation path up to q; hence the thrifty assumption is violated.

We define the pebbling sequence for each input I by following the computation path of I from beginning
to end, associating the t-th state visited by I with the t-th pebbling configuration Ct, such that Ct+1 is
either identical to Ct or follows from Ct by applying a valid pebbling move. Let q1, . . . , qt∗ be the states on
the computation path of I up to the state qt∗ immediately following the first state that queries the root;
Ct∗ will be the last configuration, and the only configuration where the root is pebbled. Note that q1 must
query a leaf by Lemma 1. We associate q1 with the empty configuration C1.

Assume we have defined the configurations C1, . . . , Ct associated with the first t < t∗ states, and assume
C1, . . . , Ct is a valid sequence of configurations (where adjacent identical configurations are allowed), but
neither it nor any prefix of it is a complete pebbling sequence. We also maintain that for all t′ ≤ t, if the
node queried by qt′ is not a leaf, then its children are pebbled in Ct′ and it is not. Let u be the node queried
by qt. By the I.H. u is not pebbled in Ct. We define Ct+1 by saying how to obtain it by modifying Ct:

1. If u is the root, then t+1 = t∗ by the definition of qt∗ , and by the I.H. all the children of u are pebbled.
Put a pebble on the root and remove the pebbles from its children. This completes the definition of
the pebbling sequence for I.

2. If u is not the root or a leaf, then by the I.H. all the children of u are pebbled. For each child v of u:
if there is a state q′ after qt that queries some parent of v, and no state between qt and q′ that queries
v, then leave the pebble on v, and otherwise remove it.

3. If u is not the root, then place a pebble on it iff there is a state q′ after qt that queries some parent of
u and no state between qt and q′ that queries u.

Let pI be the maximum number of pebbled nodes over all the configurations we just defined. So pI ≥ p
since G has pebbling cost p. Let Ct be the earliest configuration with pI pebbled nodes. Later we will need
that qt is not an output state, so we prove that now.

It suffices to show t < t∗, since then there must be at least one state qt+1 (possibly an output state) after
qt. We use the assumption that G is connected and has at least two nodes, so the root has degree d ≥ 1.
In the move from Ct∗−1 to Ct∗ one pebble is added and d pebbles are removed, so either Ct∗ has fewer
than pI pebbled nodes (if d > 1) or else Ct∗−1 is an earlier configuration with pI pebbled nodes. Hence
t < t∗.

Define the critical state rI for I to be qt. We refer to the nodes pebbled in Ct as the bottleneck nodes
of I. The following fact is immediate from the pebbling sequence assignment.

Fact 1. For any input I, if non-root node u has a pebble at a state q (i.e. the configuration associated with
q), then there is a later state q′ that queries some parent of u and no state between (inclusive) q and q′ that
queries u.

Let D be the set of inputs I such that for every non-leaf node u, if v1, . . . , vd are the children of u then
f I

u(~a) = 1 except possibly when ~a =
〈
vI
1 , . . . , v

I
k

〉
. So |D| = kn. Let R be the states that are critical for at

least one input in D, and for each r ∈ R let Dr be the inputs in D with critical state r. The remainder of
the proof of Theorem 1 is devoted to the proof of the next lemma.

Lemma 2. |Dr| ≤ kn−p for every r ∈ R

4

D
RAFT

Let us first see that the theorem follows from the lemma. Since {Dr}r∈R is a partition of D, by the
lemma there must be at least |D|/kn−p = kp sets in the partition, i.e. the set of critical states R has size at
least kp, which is what we wanted to show.

Consider a very simple cooperative two player game where Player 1 chooses r ∈ R and an input I in
Dr and gives r to Player 2. Both players know the branching program B. Player 2’s goal is to determine I
(which is the only thing Player 1 knows that Player 2 does not), which by the definition of D is equivalent
to determining the node values of I. Player 1 gets to send an advice strings to Player 2, and it is her goal
to minimize the length of the advice stirngs. The lemma says that, for any critical state r chosen by Player
1, advice strings in [k]n−p suffice to enable Player 2 to determine the input in Dr chosen by Player 1. We
refer to the individual elements from [k] of an advice string as words.

Fix r in R. Let I ∈ Dr be an input chosen by Player 1, unknown to Player 2. Player 2 will use the
advice, together with r and the thrifty property of B, to follow the computation path taken by I from r till
I’s output state. We will define the advice string so that each word tells Player 2 the value of a different
node; when Player 2 learns (the value of) a node in this way, we say he receives the value of (I on) that
node. There will be at least p nodes –specifically, the bottleneck nodes of I– that Player 2 will not receive
the values of, but by using the thrifty property he will learn them nonetheless; when Player 2 learns a node
in this way, we say he deduces the value of that node.

Let q be the state Player 2 is currently on, initially q = r. Let u be the node queried by q. Suppose u is
an internal node, and let fu(a1, . . . , ad) be the variable queried by q and v1, . . . , vd the children of u. Since
B is thrifty, a1, . . . , ad are the values of I on v1, . . . , vd. Hence, for each vi, if Player 2 does not yet know
I(vi) (meaning, he did not in some earlier state receive or deduce the value of vi) then he deduces I(vi) = ai

now. Next, Player 2 needs to decide what edge out of q to follow (Player 2 does this step for all nodes u,
including leaf nodes). If for some a he learned I(u) = a at an earlier state, then he again takes the edge
labeled a. Otherwise, we define the next unused word in the advice string to be I(u), and Player 2 uses that
word now.

It is clear that for some m ≤ n, the protocol just defined will allow Player 2 to reach the output state
of I and learn at least m node values along the way, using at most m words of advice. We will argue for a
stronger proposition: for some m ≤ n− p, a string of m words suffices to allow Player 2 to reach the output
state and learn at least m+p nodes along the way. That will finish the proof of the lemma, since then we can
use the remaining (n− p)−m words of the advice string for I for the values of the ≤ n− (m+ p) remaining
nodes (ordered by some globally-fixed order on the nodes of G) that Player 2 has not yet learned. Now, by
Fact 1, for every bottleneck node u of I, some parent of u is queried at some state on the path from r to the
output state of I. Furthermore, if u is ever queried on the path from r till the output state, then this must
happen after some parent of u is queried. Hence, for every bottleneck node u, Player 2 will be able to deduce
u before he is forced to use a word of the advice to receive the value of u. Since the nodes whose values are
deduced by Player 2 are disjoint from the nodes whose values are received by Player 2, and Player 2 uses m
words by assumption, in total Player 2 learns at least m+ p node values9.

4.2 Lower bound for Thrifty BPs using easy inputs

For much of the proof of Theorem 1, we only considered the behavior of the thrifty BP on inputs from
the following set:

Definition 7 (hard inputs for thrifty programs). For given dag G and k ≥ 2, let DG,k be the set of DEG(k)
inputs I such that for every non-leaf node u, if v1, . . . , vd are the children of u then f I

u(~a) = 1 except possibly
when ~a =

〈
vI
1 , . . . , v

I
k

〉
.

The sets DG,k are a small fraction of the DEG(k) inputs, and it is not hard to see that separating the YES
and NO instances of DG,k is easy for unrestricted BPs. The next result shows that the bound of Theorem
1 holds even for thrifty BPs that are only required to be correct on inputs from DG,k.

9We do not say exactly m+ p because technically, according to the given protocol, if the bottleneck configuration assigned
to input I has p′ > p pebbles (which can happen), then Player 2 learns more than m+ p node values.

5

D
RAFT

Theorem 2. If G has pebbling cost p then for any k ≥ 2 if B is a thrifty deterministic BP that computes a
set consistent with DEG(k) for the inputs DG,k, then B has at least kp states.

Proof. In the proof of Theorem 1, the only place we used the correctness of B on inputs outside of DG,k is
in the proof of Lemma 1. We now proof it under the weaker assumptions.

Lemma 3. For any input I ∈ DG,k and non-leaf node u, there is at least one state q on the computation
path of I that queries u, and for every such q, for each child v of u there is a state on the computation path
of I before q that queries v.

Fix I ∈ DG,k. Once again we prove the lemma for I starting with the root, and then the children of the
root, and so on. Let v1, . . . , vd be the children of uroot. I must visit at least one state that queries its thrifty
uroot variable, since otherwise B would make a mistake on an input J ∈ DG,k that is identical to I except

fJ
u (vI

1 , . . . , v
I
d) =

{
2 if uI

root = 1
1 otherwise

Now let u be any non-leaf node and suppose there is some state on the computation path of I that queries
u for which the lemma does not hold. Let q be the earliest such state. So for some child v of u there is no
state before q that queries v. For any a 6= vI there is an input Ia ∈ DG,k that is identical to I except vIa = a
and f Ia

u (vI
1 , . . . , v

I
d) = 1. Suppose there is no state q′ before q on the computation path of I that queries u.

Then I and Ia have the same computation path up to q and so Ia visits q also, which violates the thrifty
assumption. Hence there is a state q′ before q on the computation path of I that queries u. By our choice of
q, the lemma must hold for q′. This is a contradiction since the states given by the conclusion of the lemma
for q′ satisfy the conclusion of the lemma for q as well.

4.3 Lower Bound for Semantic-incremental BPs

Theorem 3. If there is a rooted DAG G with n ≥ 2 nodes, indegree 2 and pebbling cost p, then for any
k ≥ 2 and m = 3kn + n + 1 every deterministic semantic incremental BP solving m-GEN has at least kp

states.

Proof. Let G,n, p, k,m be as in the statement of the theorem; these are fixed throughout the proof. The
bulk of this argument is a reduction from DEG(k) to m-GEN; we map each instance I of DEG(k) to an
instance T I of m-GEN such that I is a YES instance iff T I is. Let E be the set of inputs for DEG(k). We
will show that if there is a semantic-incremental m-way BP of size s that computes m-GEN correctly on
the inputs {T I}I∈E , then there is a thrifty k-way BP of size at most s that computes DEG(k). Then from
Theorem 1 we get s ≥ kp.

Fix an order on the nodes of G. We will not differentiate between a node u and its index in [n] given by
this order. Let uroot ∈ [n] be the (index of) the root of G. We divide the elements {n+ 2, . . . ,m} into two
parts, one of size nk and the other of size ≤ 2nk,10 and refer to them by the following mnemonic names:
• 〈u, a〉 for each node u and a ∈ [k]. T I generates this element iff uI = a.
• 〈vu, a〉 for each arc vu and a ∈ [k]. T I generates this element iff vI = a.11

Any way of assigning those ≤ 3nk names to distinct elements of {n+2, . . . ,m} will suffice, except we require
that 〈uroot, 1〉 gets assigned to m, since then we will have that T I is a YES instance of m-GEN iff I is a YES
instance of DEG(k). Elements {1, . . . , n+ 1} will be generated by every T I ; their purpose is technical.

Now we give the reduction. Fix an instance I of DEG(k). First we make T I generate each of the elements
{2, . . . , n+ 1}. For each u ∈ [n]:

T I(1, u) := u+ 1 (1)

102n is a bound on the number of edges since non-leaf nodes have indegree at most 2.
11These elements may seem redundant, given the elements 〈u, a〉. That is correct if G has the property that no two nodes

u1, u2 have the same children.

6

D
RAFT

In a similar way, we make T I generate the elements
〈
w, lIw

〉
for each leaf w. Fix an order w1, . . . , wl on the

leaf nodes. For each t ∈ [l − 1] and a ∈ [k]:

T I(1, n+ 1) :=
〈
w1, l

I
w1

〉
T I(1, 〈wt, a〉) :=

〈
wt+1, l

I
wt+1

〉 (2)

For every non-leaf node u ∈ [n] and a, b1, b2 ∈ [k], if v1 and v2 are the left and right children of u then
we add the following definitions. Equations (3) simply propogate the value of a node to its out-arcs. Let
b

def= f I
u(b1, b2). Equation (4) expresses: If I gives the left in-arc of u value b1 and the right in-arc of u value

b2, then I gives u the value b = f I
u(b1, b2).

T I(u+ 1, 〈v1, a〉) := 〈v1u, a〉
T I(u+ 1, 〈v2, a〉) := 〈v2u, a〉

(3)

T I(〈v1u, b1〉 , 〈v2u, b2〉) := 〈u, b〉 (4)

Let us call a variable (x, y) used if T I(x, y) is defined at this point, and unused otherwise. Examining the
left sides of equations (1)–(4), it is clear that the set of used variables depends only on G and k (not on I).
For every unused variable (x, y) define

T I(x, y) := 1 (5)

That completes the definition of T I . It is straightforward to show that I is a YES instance of DEG(k) iff T I

is a YES instance of m-GEN.
Now we show how to convert, without increasing the size, a semantic-incremental m-way BP B that

computes m-GEN correctly on the inputs {T I}I∈E , into a thrifty k-way BP that computes DEG(k). From
the above definition of the inputs {T I}I∈E , an m-GEN variable (x, y) is a used variable iff it has exactly one
of the following four forms, where i. corresponds to Equation (1), and ii. corresponds to Equation (2), etc:

i. (1, u) for some u ∈ [n]
ii. (1, 〈wt, a〉) for some leaf node wt and a ∈ [k]

iii. (u+ 1, 〈v, b〉) for some b ∈ [k] and some non-leaf node u ∈ [n] with child v

iv. (〈v1u, b1〉 , 〈v2u, b2〉) for some non-leaf node u with children v1, v2 and b1, b2 ∈ [k]

We say (x, y) is a type i. variable iff it has the form of i. above, and type ii., iii., iv. variables are defined
analogously. Only variables of type ii. and iv. will be translated to DEG(k) variables. The remaining used
variables, of types i. and iii., are “dummy” variables, in the sense that the right sides of the corresponding
defining equations (1) and (3) do not depend on I. So for any state q in B that is labeled with a dummy
variable, there is at most one edge out of q that any input T I can take; as a consequence these states will
eventually be deleted. For the same reason, states labeled with unused variables will also be deleted.

Recall the ordering on the leaf nodes w1, . . . , wl that we fixed earlier. Let q be a state of B that queries
a variable (x, y). If (x, y) is an unused variable then delete all edges out of q except the one labeled 1.
Otherwise (x, y) is one of the variable types i.–iv., and should be handled as follows:
i. (x, y) = (1, u) for some u ∈ [n]. Delete every edge out of q except the one labeled u+ 1.
ii. If (x, y) = (1, n+ 1), then delete every edge out of q except for the k edges labeled 〈w1, a〉 for a ∈ [k].

Otherwise (x, y) = (1, 〈wt, a〉) for some t ∈ [l] and a ∈ [k]. Delete every edge out of q except for the k
edges labeled 〈wt+1, b〉 for b ∈ [k].

iii. (x, y) = (u + 1, 〈v, b〉) for some b ∈ [k] and nodes u, v such that v is a child of u. Delete every edge out
of q except the one edge labeled 〈vu, b〉.

iv. (x, y) = (〈v1u, b1〉 , 〈v2u, b2〉) for some non-leaf node u with children v1, v2 and b1, b2 ∈ [k]. Delete every
edge out of q except the k edges labeled 〈u, a〉 for a ∈ [k].

At this point, a non-output state q has outdegree zero or one iff it is labeled with an unused or dummy
variable. For any non-output state q with outdegree zero, change q to a reject state. Now consider q with

7

D
RAFT

outdegree one. Note its out-edge must be labeled with an element of the same form as the right side of one
of Equations (1), (3) or (5). Let q′ be the unique state that q transitions to. For every state q′′ with an
out-edge e to q, move the target node of e from q to q′. After all the edges into q have been moved, delete
q. The last step is to rename the variable labels on the remaining states. Note that only types ii., and iv.
remain. Rename them as follows:

(1, n+ 1) 7→ lw1 (1, 〈wt, a〉) 7→ lwt+1

(〈v1u, b1〉 , 〈v2u, b2〉) 7→ fu(b1, b2)

Let B′ be the resulting branching program. Since we have obtained B′ only by renaming variables and
deleting edges and states, clearly its size is no greater than that of B. We need that B accepts T I iff B′

accepts I for every I ∈ E. It is clear that “bypassing” and then deleting the states labeled by unused and
dummy variables, in the way done above, has no effect on any input T I . Also, one can check that for every
edge e we removed before deleting the dummy states, none of the inputs T I can take edge e. Finally, B′ is
thrifty precisely because B is semantic-incremental.

Corollary 1. There is a constant c > 0 such that for infinitely-many m every deterministic semantic-
incremental BP solving m-GEN has at least 2c m/ log m states.

Proof. We will need a family of rooted DAGs that are much harder to pebble than the complete binary trees.
[PTC76] provides such a family:

There is a family of rooted DAGs {Gt}t≥1 with Θ(t) nodes and indegree two whose black pebbling
cost is Ω(t/ log t).

Let nt be the number of nodes in Gt
12, and let p(nt) be the pebbling cost of Gt as a function of nt. So

p(nt) = Ω(nt/ log nt). We use Theorem 3 on each of the Gt with k = 2. For mt := 3knt +nt + 1 = 7nt + 1 ≤
8nt, for every t we get lower bounds of 2p(nt) ≥ 2p(mt/8) for semantic incremental BPs solving mt-GEN.
This suffices since p(mt/8) ≥ cmt/ logmt for some constant c > 0 and all t.

5 Acknowledgements

Thanks to Steve Cook and Pierre McKenzie for many helpful comments on drafts of this paper.

References

[BCM+09] Mark Braverman, Stephen Cook, Pierre McKenzie, Rahul Santhanam, and Dustin Wehr. Frac-
tional pebbling and thrifty branching programs. In Ravi Kannan and K Narayan Kumar, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2009), volume 4 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 109–120, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[GKM08] Anna Gál, Michal Koucký, and Pierre McKenzie. Incremental branching programs. Theor. Comp.
Sys., 43(2):159–184, 2008.

[PTC76] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on graphs.
In STOC ’76: Proceedings of the eighth annual ACM symposium on Theory of computing, pages
149–160, New York, NY, USA, 1976. ACM.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone nc hierarchy. Combinatorica, 19:403–
435, 1999. 10.1007/s004930050062.

12nt ≥ 2 for all t ≥ 1, but regardless we could always just start at some t0 > 1 to ensure that, without changing the result.

8

D
RAFT

[Weh10] Dustin Wehr. Pebbling and branching programs solving the tree evaluation problem, 2010.
arXiv:1002.4676.

9

	How to read this paper
	Introduction
	Preliminaries / Outline
	Definitions
	Outline of proof
	Remarks on proofs by Gál, Koucký, McKenzie

	Results
	Lower Bound for Thrifty BPs
	Lower bound for Thrifty BPs using easy inputs
	Lower Bound for Semantic-incremental BPs

	Acknowledgements

