
Pebbling and Branching Programs Solving the Tree
Evaluation Problem

Dustin Wehr

February 15, 2010

Abstract

We study restricted computation models related to thetree evaluation problem. The TEP
was introduced in earlier work as a simple candidate for the (very) long term goal of separating
L andLogDCFL. The input to the problem is a rooted, balanced binary tree ofheighth,
whose internal nodes are labeled with binary functions on[k] = {1, . . . , k} (each given simply
as a list ofk2 elements of[k]), and whose leaves are labeled with elements of[k]. Each
node obtains a value in[k] equal to its binary function applied to the values of its children.
The output is the value of the root. The first restricted computation model, calledfractional
pebbling, is a generalization of the black/white pebbling game on graphs, and arises in a natural
way from the search for good upper bounds on the size of nondeterministic branching programs
solving the TEP - for any fixedh, if the binary tree of heighth has fractional pebbling cost at
mostp, then there are nondeterministic branching programs of size O(kp) solving the height
h TEP. We prove a lower bound on the fractional pebbling cost ofd-ary trees that is tight to
within an additive constant for each fixedd. The second restricted computation model we study
is a semantic restriction on (non)deterministic branchingprograms solving the TEP –thrifty
branching programs. Deterministic (resp. nondeterministic) thrifty BPs suffice to implement
the best known algorithms, based on black pebbling (resp. fractional pebbling), for the TEP.
In earlier work, for each fixedh a lower bound on the size of thrifty deterministic branching
programs was proved that is tight for sufficiently largek. We give an alternative proof that
achieves the same bound for allk andh. We also show the bound still holds in a less-restricted
model.

1 Introduction

The motivations for this paper are those of [BCM+09a], and the goals are to extend and improve on
the results given there (with the exception of Theorem 5, which appeared there verbatim). But from
a wider view, what we want is to improve our understanding ofL in the hope that this will help
in eventually separating it from (apparently) larger classes. We study the tree evaluation problem
(TEP), which was defined in [BCM+09b] and shown to be inLogDCFL.

The function version of theTree Evaluation problemFT h(k) is defined as follows. LetT h be
the balanced binary tree of heighth (see Fig. 1). For each internal nodei of T h the input includes

1

a functionfi : [k]×[k] → [k] specified ask2 integers in[k] = {1, . . . , k}. For each leaf the input
includes an integer in[k]. We can then say that each internal tree node takes a value in[k] by
applying its function to the values of its children. The function problemFT h(k) is to compute the
value of the root, and the decision versionBT h(k) is to determine whether this value is1.

SinceBT h(k) ∈ LogDCFL, it is not hard to show that forany unbounded functionr(h),
a lower bound ofΩ(kr(h)) on the number of states for deterministic (resp. non-deterministic)
branching programs solvingFT h(k) or BT h(k) would separateLogDCFL andL (resp.NL) 1.
To see this, note that inputs toBT h(k) can be encoded with(2h−1−1)k2 log k+2h−1 log k+O(1) =
O(2hk2 log k) bits, so it suffices to consider polynomial bounding function that are the product of
a polynomial in2h and a polynomial ink, whichkr(h) is not.

In [BCM+09b], the TEP was defined more-generally on balancedd-ary trees, where the func-
tions attached to internal nodes are of type[k]d → [k]. The motivation was that tight lower bounds
for height 3 and alld can be proved [BCM+09b], and proving the conjectured lower bound of
Ω(k7/ log k) states (withh = 4 andd = 3 fixed, so that the input sizen(k) is O(k3 log k) bits or
O(k3) [k]-valued variables) for unrestricted deterministic BPs would beat the best known lower
bound ofΩ(n2/(log n)2) states for a problem inNP, achieved using Nec̆iporuk’s method [Nec̆66].
Since we are focusing on restricted computation models here, there is little to gain in including the
parameterd. That being said, the fractional pebbling lower bound proved in Section 4.1is given
for arbitraryd.

2 Preliminaries

We write[k] for {1, 2, . . . , k}. Forh ≥ 1 we useT h to denote the balanced binary tree of heighth.

Warning: Here theheightof a tree is the number of levels in the tree, as opposed to the distance
from root to leaf. ThusT 2

2 has just 3 nodes.

We number the nodes ofT h as suggested by the heap data structure. Thus the root is node1, and
in general the children of nodei are nodes2i, 2i + 1 (see Figure 1).

Definition 1 (Tree evaluation problems).

An inputI for either the function or decision version of the problem includes: for each
internal nodei of T h, a functionf I

i : [k]×[k] → [k] represented ask2 integers in[k],
and for each leaf nodei, an integerlIi ∈ [k].

Function evaluation problemFT h(k): On inputI, compute the valuevI
1 ∈ [k] of the

root 1 of T h, where in generalvI
i = lIi if i is a leaf andvI

i = f I
i (vI

2i, v
I
2i+1) if i is an

internal node.

Boolean evaluation problemBT h(k): AcceptI iff vI
1 = 1.

1Of course, doing so would actually yield the stronger result: NonuniformL 6⊆ LogDCFL (resp. Nonuniform
NL 6⊆ LogDCFL).

2

Figure 1: The height 3 binary treeT 3 with nodes numbered heap style.

2.1 Branching programs

We use the same branching program model as in [BCM+09a] and [BCM+09b].

Definition 2 (Branching programs). A nondeterministick-way branching programB computing
a total functiong : [k]m → R, whereR is a finite set, is a directed rooted multi-graph whose nodes
are calledstates. Every edge has a label from[k]. Every state has a label from[m], except|R|
outputsink states consecutively labeled with the elements fromR. An input (x1, . . . , xm) ∈ [k]m

activates, for each1 ≤ j ≤ m, every edge labeledxj out of every state labeledj. A computation
path on input~x = (x1, . . . , xm) ∈ [k]m is a directed path consisting of edges activated by~x
which begins with the unique start state and either ends in the final state labeledg(x1, . . . , xm) or
is infinite. At least one such computation must end. Thesizeof B is its number of states.B is
deterministick-way if every non-output state has preciselyk outedges labeled1, . . . , k.

We say thatB solves a decision problem (relation) if it computes the characteristic function of
the relation.

A k-way branching program computingFT h(k) orBT h(k) requiresk2 k-valued arguments for
each internal nodei of T h in order to specify the functionfi, together with onek-valued argument
for each leaf. Thus in the notation of the above definition,FT h(k) : [k]m → R whereR = [k] and
m = (2h−1 − 1)k2 + 2h−1. Also BT h(k) : [k]m → {0, 1}.

Important: Since we only study the tree evaluation problem (TEP) here, we give the input
variables mnemonic names:fi(a, b) is an input variable (called aninternal node variable) for
every internal nodei anda, b ∈ [k] andli is an input variable (called aleaf variable) for every leaf
i.

For fixed h we are interested in how the number of states required for ak-way branching
program to computeFT h(k) andBT h(k) grows withk. This is why we writeh in the superscript
of FT h(k) andBT h(k). We define#detFstatesh(k) (resp.#ndetFstatesh(k)) to be the mininum
number of states required for a deterministic (resp. nondeterministic)k-way branching program to
solveFT h(k). Similarly we define#detBstatesh(k) and#ndetBstatesh(k) to be the number of
states required toBT h(k).

Thrifty programs are a restricted form ofk-way branching programs for solving tree evaluation
problems, introduced in [BCM+09a]. Thrifty programs efficiently simulate pebbling algorithms,
and implement the best known upper bounds for#ndetBstatesh(k) and#detFstatesh(k), and are
within a factor oflog k of the best known for#detBstatesh(k).

3

Definition 3 (Thrifty branching program). A deterministick-way branching program which solves
FT h(k) or BT h(k) is thrifty if during the computation on any input every queryfi(a, b) to an
internal nodei of T h satisfies the condition that〈a, b〉 is the tuple of correct values for the children
of nodei (i.e. vI

2i = a andvI
2i+1 = b). A non-deterministic such program isthrifty if for every

input every computation which ends in a final state satisfies the above restriction on queries.

This is a strong restriction. For example, a deterministic thrifty BP cannot, for any internal
nodei, iterate over all thek2 variables that definefi, or even just two distinctfi variables.

In [BCM+09a] the following theorem is given, showing how upper bounds for black pebbling
and fractional pebbling yield upper bounds for deterministic and nondeterministic branching pro-
grams solving the TEP. The proof can be found in [BCM+09c].

Theorem ([BCM+09a]):

(i) If T h can be black pebbled withp pebbles, then deterministic thrifty branching programs
with O(kp) states can solveFT h(k) andBT h(k).

(ii) If T h can be fractionally pebbled withp pebbles then non-deterministic thrifty branching
programs can solveBT h(k) with O(kp) states.

Also in [BCM+09a], the following lower bound was given for deterministicthrifty programs.
The proof can be found in [BCM+09c].

Theorem ([BCM+09a]): For allh, for k >
(

2h

h−1

)

every deterministic thrifty branching program
solvingBT h(k) requires at least1/2kh states.

Theorem 4 in Section 3, which is a special case of Theorem 6 in Section 4.2, gives a small
improvement on that result. The main improvement is that it gives a tight bound that holds for all
pairsk andh, rather than requiring thatk be much larger thanh. The constant1/2 also goes away:
Theorem 4 : For all h, k every deterministic thrifty branching program solvingBT h(k) requires

at leastkh states.

2.2 Pebbling

The pebbling game for dags was defined by Paterson and Hewitt [PH70] and was used as an ab-
straction for deterministic Turing machine space in [Coo74]. Black-white pebbling was introduced
in [CS76] as an abstraction of non-deterministic Turing machine space (see [Nor09] for a recent
survey). Fractional pebbling was introduced in [BCM+09a].

Let us first define three versions of the pebbling game. We willnot be proving anything about
black-white pebbling directly, but fractional pebbling isa generalization of black-white pebbling,
so it will be easier to define it first. The first is a simple ‘black pebbling’ game: A black pebble can
be placed on any leaf node, and in general if all children of a nodei have pebbles, then one of the
pebbles on the children can be slid toi (this is a “black sliding move’)’. Any black pebble can be
removed at any time. The goal is to pebble the root, using as few pebbles as possible. The second
version is ‘whole’ black-white pebbling as defined in [CS76]with the restriction that we do not
allow “white sliding moves”. Thus if nodei has a white pebble and each child ofi has a pebble
(either black or white) then the white pebble can be removed.(A white sliding move would apply

4

if one of the children had no pebble, and the white pebble oni was slid to the empty child. We do
not allow this.) A white pebble can be placed on any node at anytime. The goal is to start and end
with no pebbles, but to have a black pebble on the root at some time.

The third isfractional pebbling, which generalises whole black-white pebbling by allowing
each nodei to have ablack valueb(i) and awhite valuew(i) such thatb(i) + w(i) ≤ 1. The total
pebble value (i.e.b(i) + w(i)) of each child of a nodei must be 1 before the black value ofi is
increased or the white value ofi is decreased. Figure 2 shows the sequence of configurations for
an optimal fractional pebbling of the binary tree of height three using 2.5 pebbles.

Our motivation for choosing these definitions is that we wantpebbling algorithms for trees to
closely correspond tok-way branching program algorithms for the tree evaluation problem. If, as
in the survey by Razborov [Raz91], we instead usedswitching and rectifier networksinstead of
nondeterministic branching programs, where input variable labels are on the edges rather than the
nodes, and a node can have any number of out-edges, and the size of the program is defined as the
number of edges, then we would get better upper bounds by using a variant of fractional pebbling
where the following analogue of “white sliding moves” are allowed: Suppose you want to remove
white value from an internal nodei by first increasing the white value of one or both of the children
of i. With white sliding moves, you can combine those two moves. Aprecise definition is given in
[BCM+09c], where it is also shown that the height 4 binary tree can be fractionally pebbled using
white sliding moves with8/3 pebbles, from which it follows that there are switching and rectifier
networks withO(k8/3) edges that solveBT 4(k). In contrast, it is shown in [BCM+09c] that 3
pebbles are necessary and sufficient using our chosen definition of fractional pebbling.

Now we give the formal definition of fractional pebbling, andthen define the other two notions
as restrictions on fractional pebbling.

Definition 4 (Pebbling). A fractional pebble configurationon a rootedd-ary treeT is an assign-
ment of a pair of real numbers(b(i), w(i)) to each nodei of the tree, where

0 ≤ b(i), w(i) (1)

b(i) + w(i) ≤ 1 (2)

Hereb(i) andw(i) are theblack pebble valueand thewhite pebble value, respectively, ofi, and
b(i) + w(i) is thepebble valueof i. The number of pebbles in the configuration is the sum over
all nodesi of the pebble value ofi. The legal pebble moves are as follows (always subject to
maintaining the constraints (1), (2)): (i) For any nodei, decreaseb(i) arbitrarily, (ii) For any node
i, increasew(i) arbitrarily, (iii) For every nodei, if each child ofi has pebble value 1, then decrease
w(i) arbitrarily, increaseb(i) arbitrarily, and simultaneously decrease the black pebblevalues of
the children ofi arbitrarily. 2

A fractional pebblingof T usingp pebbles is any sequence of (fractional) pebbling moves on
nodes ofT which starts and ends with every node having pebble value 0, and at some point the
root has black pebble value 1, and no configuration has more thanp pebbles.

2It is easy to show that we can require, without increasing thepebbling cost, that every type (ii) move to increase
w(i) so thatb(i) + w(i) = 1, and a type (iii) move to decreasew(i) to 0, but we will not need to use that fact here.

5

Figure 2: An optimal fractional pebbling sequence for the height 3 tree using 2.5 pebbles, all
configurations included. The grey half circle means thewhite value of that node is.5, whereas
unshaded area means absence of pebble value. So for example in the seventh configuration, node
2 has black value .5 and white value .5, node 3 has black value 1, and the remaining nodes all have
black and white value 0.

6

A whole black-white pebblingof T is a fractional pebbling ofT such thatb(i) andw(i) take val-
ues in{0, 1} for every nodei and every configuration. Ablack pebblingis a black-white pebbling
in whichw(i) is always 0.

Notice that rule (iii) does not quite treat black and white pebbles dually, since the pebble val-
ues of the children must each be 1 before any decrease ofw(i) is allowed. A true dual move
would allow increasing the white pebble values of the children so they all have pebble value 1
while simultaneously decreasingw(i). In other words, we allow black sliding moves, but disallow
white sliding moves. The reason for this (as mentioned above) is that non-deterministic branching
programs can simulate the former, but not the latter.

We use#Bpebbles(T), #BWpebbles(T), and#FRpebbles(T) respectively to denote the min-
imum number of pebbles required to black pebbleT , black-white pebbleT , and fractional peb-
ble T . Bounds for these values are given in [BCM+09a]3. For example,#Bpebbles(T h) = h,
#BWpebbles(T h) = ⌈h/2⌉+ 1, and#FRpebbles(T h) ≤ h/2+ 1 (see [BCM+09c] for proofs). In
particular#FRpebbles(T 3) = 2.5 (see Figure 2).

3 Thrifty Branching Programs and Pebbling

It is easy to show that the determinstic thrifty BPs we get from pebbling haveO(kh) states, for all
h. The next theorem shows there is a simple expression for the exact number of states. We do not
know how to beat this upper bound for anyk andh, even by an additive constant.

Theorem 1. There are(k + 1)h state deterministic thrifty BPs solvingFT h(k).

Proof. Forh = 1 you have the start state that queries the single input variable l1, with an edge out
to each of thek output states.

Forh ≥ 2, we start withk +1 copiesB0, B1..., Bk of the BP that computesFT h−1(k). Here is
the idea. We will useB0 to compute the value of the left subtree, and for eacha ∈ [k] we useBa

to compute the value of the right subtree while remembering the value of the left subtree. At the
level just before the output states, for each〈a, b〉 ∈ [k]2 there is a state that queriesf1(a, b).

Now for the formal definition. We will combineB0, B1, . . . , Bk in such a way thatB1, ..., Bk

are pairwise disjoint, and for alla ∈ [k], B0 andBa intersect in exactly one state; namely, for all
a ∈ [k], if q0,a is the output state ofB0 labeleda, andqa is the start state ofBa, then we remove
q0,a and for each of the now-danglingB0-edgese, we connect the free end ofe to qa.

Now change the state labels ofB0 so that whenever it queriesfi(b1, b2) (resp. li) for some
i ∈ T h−1, it instead queriesfσ2(i)(b1, b2) (resp.lσ2(i)) whereσ2 maps node labels ofT h−1 to node
labels of the subtree ofT h rooted at node 2, in the obvious way. Similarly, for eacha in [k], change
the state labels ofBa so that whenever it queriesfi(b1, b2) (resp.li) for somei ∈ T h−1, it instead
queries the variablefσ3(i)(b1, b2) (resp. lσ3(i)) whereσ3 is like σ2 except it maps node labels of
T h−1 to node labels of the subtree ofT h rooted at node 3.

Next, for eacha, b in [k], change theb labeled output state ofBa into a state that queriesf1(a, b).
Finally, add in the obvious way (there is only one way)k new output states that receive edges from

3And also for arbitrary degreed

7

thek2 former output states ofB1, ..., Bk. That completes the definition of the BP the computes
FT h(k). Its sizes(h, k) is given by

s(h, k) = (k + 1) s(h− 1, k)− k + k = (k + 1)h

Where the−k is for the statesq1, . . . , qk that get counted twice in the expression(k+1) s(h−1, k)
and the+k is for the new output states.

And indeed, we can show the bound is tight for height 2 (it is obviously tight for height 1). In
Section 5 we conjecture that(k + 1)3 is tight for height 3 as well.

Theorem 2. Every BP solvingFT 2(k) has at least(k + 1)2 states.

Proof. There are at leastk2 states that query the root, since for alla, b there is at least one state
that queriesf1(a, b). There arek output states.

Let E∗ be the inputs such thatf1 is + mod k. Let Q∗ be the statesq such thatq is the last
leaf querying state on the computation path of someI ∈ E∗. We can showQ∗ has size at leastk.
Let g be the function that maps each input inE∗ to its last leaf querying state. Since|E∗| = k2,
it suffices to show that|g−1(q)| ≤ k for everyq in Q∗. Let Ia,b be the unique input inE∗ with
〈

lI2, l
I
3

〉

= 〈a, b〉. Let q ∈ Q∗ be arbitrary. Consider the case thatq queriesl3 – the other case is
similar. Then it suffices to show that for everyb, there is at most onea such thatIa,b is in g−1(q).
Just observe that if two inputs inE∗ reachq then they have the same output state, and the labela′

of the output state determines the uniquea such thata′ = a + b mod k.
Now we want to show there is at least one state that queries a leaf and is not inQ∗. Since all

the inputs inE∗ agree on thefi variables, there is a unique stateq that is the first leaf querying
state visited by any of them. Because+ modk is a quasigroup, every input inE∗ must queryl2
and l3 each at least once. So for everyI ∈ E∗ there is a leaf querying state on the computation
path ofI after q that queries a leaf variable. Henceq 6∈ Q∗. That isk2 + k + k + 1 = (k + 1)2

states total.

Let the depth of a deterministic branching program be the maximum number of states visited
by any input, with the output state included. The thrifty programs we get from pebbling have depth
2h, and it is easy to show that depth2h is required, regardless of size; just note that Lemma 1 holds
without the depth restriction. In fact, we can show thrifty programs are theonly fastest determinstic
BPs solvingBT h(k).

Theorem 3. For all h, k every deterministic branching program of depth at most2h computing
BT h(k) (or FT h(k)) is thrifty.

Proof. Let E0 be the inputs all of whose internal node functions are quasigroups, andE1 the inputs
that query each node exactly once.

Lemma 1. Every input inE0 queries each of its thrifty variables.

8

Proof. SupposeI ∈ E0 does not query its thriftyi variable. LetX be the thriftyi variable ofI. For
eacha 6= vI

i there is an inputIa identical toI exceptXIa = a. Define the functionF I
i : [k] → [k]

by

F I
i :=











identity if i = 1

f I
j (F I

j , vI
2j+1) if i = 2j

f I
j (vI

2j , F
I
j) if i = 2j + 1

SinceF I
i is a permutation, the root values of the inputsIa are all different from each other and from

vI . If vI
1 = 1 then letJ be any of theIa, and otherwise letJ be the uniqueIa such thatvIa

1 = 1.
ThenJ ∈ BT h(k) iff I 6∈ BT h(k). But their computation paths are the same, a contradiction.

Lemma 2. Every input inE0 is thrifty (queries only its thrifty variables).

Proof. Because of the depth restriction, if an input queries each ofits thrifty variables, then it is
thrifty. So this lemma follows from Lemma 1.

Lemma 3. Every input inE1 is thrifty.

Proof. Suppose there is someI in E1 that is not thrifty. For each nodej, let Xj be the unique
j variable thatI queries. SinceI is not thrifty, there is an internal nodei such thatXi is not the
thrifty fi variable ofI. Let i∗ be such a node of minimum height. Since the computation path of I
constrains only one value of each internal node function, wecan choose an inputJ ∈ E0 such that
XI

j = XJ
j for all nodesj. J is thrifty by Lemma 2. In particular,Xi∗ is the thriftyfi∗ variable of

J . SinceXi∗ is not the thriftyfi∗ variable ofI, it must be thatvI
2i∗ 6= vJ

2i∗ or vI
2i∗+1 6= vJ

2i∗+1. Wlog
assume it is the first case. By our choice ofi∗ and the assumption thatI queries every node, we
know I queries all its thriftyT2i variables. Since the computation paths ofI andJ are identical,
andJ is thrifty, we have thatI andJ have the same thriftyT2i variables. But then the only way
to havevI

2i∗ 6= vJ
2i∗ is if there is aT2i variableX that is thrifty forI (and so also forJ) such that

XI 6= XJ . This contradicts the definition ofJ .

Let E2 := E − E1. Fix I in E2. Let P I be the maximum length initial segment of the
computation path ofI such that there is someJ in E0 for which P I is also an initial segment of
the computation path ofJ . Fix such aJ . SinceI is not inE1, there must be somei such thatI
does not query anyi variable. So by Lemma 1, we knowP I cannot be the entire computation path
of I (because then it would be the entire computation path ofJ). So the last stateqt of P I cannot
be its output state. Letqt+1 be the next state thatI visits andet the edgeI takes fromqt to qt+1.
Let Xt be the variable queried byqt andit := var(Xt). There must be at least oneJ in E0 that
follows P I (note the definition allowsP I to be a single state). Letq′t+1 be the next state visited by
J . SinceJ disagrees withI on Xt, it must be thatqt is the first state on the computation path of
I that queriesXt. On the other hand, there must have been a stateqs beforeqt on P I that queries
an it variableXs distinct fromXt; otherwise, there would be aJ ′ in E0 such thatP I , et, qt+1 is
an initial segment of the computation path ofJ ′, contradicting the maximality ofP I . So now we
know thatJ queries two distinctit variables. ButJ is in E1 (sinceE0 ⊆ E1), so this contradicts
Lemma 2.

9

Now we give a tight lower bound for deterministic thrifty BPs. As discussed in section 2.1,
this improves on an earlier result in [BCM+09a], which gives a lower bound of1

2
kh for all h and

all k >
(

2h

h−1

)

.

Theorem 4. For anyh, k, every deterministic thrifty branching program solvingBT h(k) has at
leastkh states.

Fix a deterministic thrifty BPB that solvesBT h(k). Let E be the inputs toB. Let Vars be the
set ofk-valued input variables (so|E| = k|Vars|). Let Q be the states ofB. If i is an internal node
then thei variables arefi(a, b) for a, b ∈ [k], and if i is a leaf node then there is just onei variable
li. We sometimes say “fi variable” just as an in-line reminder thati is an internal node. Letvar(q)
be the input variable thatq queries. Letnode be the function that maps each variableX to the node
i such thatX is ani variable, and each stateq to node(var(q)). When it is clear from the context
thatq is on the computation path ofI, we just say “q queriesi” instead of “q queries the thriftyi
variable ofI”.

Fix an inputI, and letP be its computation path. We will choosen states onP ascritical states
for I, one for each node. Note thatI must visit a state that queries the root (i.e. queries the thrifty
root variable ofI), since otherwise the branching program would make a mistake on an inputJ
that is identical toI exceptfJ

1 (vI
2, v

I
3) := k − f I

1 (vI
2, v

I
3); henceJ ∈ BT h

2 (k) iff I 6∈ BT h
2 (k).

So, we can choose the root critical state forI to be the last state onP that queries the root. The
remainder of the definition relies on the following small lemma:

Lemma 4. For anyJ and internal nodei, if J visits a stateq that queriesi, then for each childj
of i, there is an earlier state on the computation path ofJ that queriesj.

Proof. Suppose otherwise, and wlog assume the previous statement is false forj = 2i. For every
a 6= vJ

2i there is an inputJa that is identical toJ exceptvJa

2i = a. But the computation paths ofJa

andJ are identical up toq, soJa queries a variablefi(a, b) such thatb = vJa

2i+1 anda 6= vJa

2i , which
contradicts the thrifty assumption.

Now we can complete the definition of the critical states ofI. For i an internal node, ifq is the
nodei critical state forI then the node2i (resp. 2i + 1) critical state forI is the last state onP
beforeq that queries2i (resp.2i + 1).

Now we assign a pebbling sequence to each state onP , such that the set of pebbled nodes
in each configuration is a minimal cut of the tree or a subset ofsome minimal cut (and once it
becomes a minimal cut, it remains so), and any two adjacent configurations are either identical,
or else the later one follows from the earlier one by a valid pebbling move. This assignment can
be described inductively by starting with the last state onP and working backwards. Note that
implicitly we will be using the following fact:

Fact 1. For any inputI, if j is a descendant ofi then the nodej critical state forI occurs earlier
on the computation path ofI than the nodei critical state forI.

The pebbling configuration for the output state has just a black pebble on the root. Assume we
have defined the pebbling configurations forq and every state followingq on P , and letq′ be the

10

state beforeq onP . If q′ is not critical, then we make its pebbling configuration be the same as that
of q. If q′ is critical then it must query a nodei that is pebbled inq. The pebbling configuration for
q′ is obtained from the configuration forq by removing the pebble fromi and adding pebbles to2i
and2i + 1 (if i is an internal node - otherwise you only remove the pebble from i).

In the above definition of the pebbling configurations, consider the first critical state we define
that queries a height 2 node (working backwards – so the first critical state we define queries the
root). We userI to denote this state and call it thesupercritical state of I. Since the pebbling
configurations up torI (again, working backwards) are minimal cuts of the tree, andthe children
of node(rI) are included, it is not hard to see that there must be at leasth pebbled nodes. We refer
to these nodes as thebottleneck nodesof I. Define thebottleneck path of r ∈ R to be the path
from node(r) to the root. The bottleneck path ofI ∈ E is the bottleneck path ofrI . This is the
main property of the pebbling sequences that we need:

Fact 2. For any inputI, if non-root nodei with parentj is pebbled at a stateq on P I , then the
nodej critical stateq′ of I occurs later onP I , and there is no state (critical or otherwise) between
q andq′ onP I that queriesi.

Let R be the states that are supercritical for at least one input. Let Er be the inputs with
supercritical stater. Now we can state the main lemma.

Lemma 5. For everyr ∈ R, there is an injective function fromEr to [k]|Vars|−h.

The lemma gives us that|Er| ≤ k|Vars|−h for everyr ∈ R. Since{Er}r∈R is a partition of
E, there must be at least|E|/k|Vars|−h = kh sets in the partition, i.e. there must be at leastkh

supercritical states. So the theorem follows from the lemma.
Fix r ∈ R and letD := Er. Let isc := node(r). Sincer is thrifty for everyI in D, there are

valuesvD
2isc andvD

2isc+1 such thatvI
2isc = vD

2isc andvI
2isc+1 = vD

2isc+1 for everyI in D. We are going
to define a procedure INTERADV that takes as input a[k]-string (the advice), tries to interpret it as
the code of an input inD, and when successful outputs that input. We want to show thatfor every
I ∈ D we can chooseadvI ∈ [k]|Vars|−h such that INTERADV (advI)↓ = I. Of course, choosing
advI for eachI yields the injective function required to prove the lemma.

During the execution of INTERADV we maintain a current stateq, a partial functionv∗ from
nodes to[k], and a set of nodesUL. Once we have added a node toUL, we never remove it, and
once we have addedv∗(i) := a to the definition ofv∗, we never changev∗(i). We have reachedq
by following aconsistent partial computation pathstarting fromr, meaning there is at least one
input in D that visits exactly the states and edges that we visited betweenr andq. So initially
q = r. Intuitively, v∗(i)↓ = a for somea when we have “committed” to interpreting the advice
we have read so-far as being the initial segment ofsomecomplete advice stringadvI for an inputI
with vI

i = a. Initially v∗ is undefined everywhere. As the procedure goes on, we may often have to
use an element of the advice in order to set a value ofv∗; however, by exploiting the properties of
the critical state sequences, for eachI ∈ D, when given the complete adviceadvI for I there will
be at leasth nodesU I

L that we “learn” without directly using the advice. Such an oppurtunity arises
when we visit a state that queries some variablefi(b1, b2) and we have not yet committed to a value
for at least one ofv∗(2i) or v∗(2i + 1) (if both then, we learn two nodes). When this happens, we

11

add that child or children ofi to UL (theL stands for “learned”). So initiallyUL is empty. There is
a loop in the procedure INTERADV that iterates until|UL| = h. Note that the children ofisc will
be learned immediately. Letv∗(D) be the inputs inD consistent withv∗, i.e. I ∈ v∗(D) iff I ∈ D
andvI

i = v∗(i) for everyi ∈ Dom(v∗).
Following is the complete pseudocode for INTERADV . We also state the most-important of the

invariants that are maintained.

Procedure INTERADV (~a ∈ [k]∗):

1: q := r, UL := ∅, v∗ := undefined everywhere.
2: Loop Invariant: If N elements of~a have been used, then|Dom(v∗)| = N + |UL|.
3: while |UL| < h do
4: i := node(q)
5: if i is an internal node and2i 6∈ Dom(v∗) or 2i + 1 6∈ Dom(v∗) then
6: let b1, b2 be such thatvar(q) = fi(b1, b2).
7: if 2i 6∈ Dom(v∗) then
8: v∗(2i) := b1 andUL := UL + 2i.
9: end if

10: if 2i + 1 6∈ Dom(v∗) and|UL| < h then
11: v∗(2i + 1) := b2 andUL := UL + (2i + 1).
12: end if
13: end if
14: if i 6∈ Dom(v∗) then
15: let a be the next unused element of~a.
16: v∗(i) := a.
17: end if
18: q := the state reached by taking the edge out ofq labeledv∗(i).
19: end while
20: let~b be the next|Vars| − |Dom(v∗)| unused elements ofv∗.
21: let I1, . . . , I|v∗(D)| be the inputs inv∗(D) sorted according to some globally fixed order onE.
22: if ~b is thet-largest string in the lexiocgraphical ordering of[k]|Vars|−|Dom(v∗)|, andt ≤ |v∗(D)|,

then returnIt.4

If the loop finishes, then there are at most|E|/|Dom(v∗)| = k|Vars|−|Dom(v∗)| inputs inv∗(D).
So for each of the inputsI enumerated on line 21, there is a way of setting~a so thatI will be
chosen on line 22.

Recall we are trying to show that for everyI in D there is a stringadvI ∈ [k]|Vars|−h such that
INTERADV (~a)↓ = I. This is easy to see under the assumption that there is such a string that makes
the loop finish while maintaining the loop invariant; since the loop invariant ensures we have used
|Dom(v∗)| − h elements of advice when we reach line 20, and since line 20 is the last time when
the advice is used, in all we use at most|Vars| −h elements of advice. To remove that assumption,
first observe that for eachI, we can set the advice to someadvI so thatI ∈ g(D) is maintained

4See after this code for argument that|v∗(D)| ≤ k|Vars|−|Dom(v∗)|.

12

when INTERADV is run on~aI . Moreover, for thatadvI , we will never use an element of advice to
set the value of a bottleneck node ofI, andI has at leasth bottleneck nodes. Note, however, that
this does not necessarily imply thatU I

L (theh nodesUL we obtain when running INTERADV on
advI) is a subset of the bottleneck nodes ofI. Finally, note that we are of course implicitly using
the fact that no advice elements are “wasted”; each is used toset a different node value.

Corollary 1. For anyh, k, every deterministic thrifty branching program solvingBT h
2 (k) has at

least
∑

2≤l≤h kl states.

Proof. The previous theorem only counts states that query height 2 nodes. The same proof is easily
adapted to show there are at leastkh−l+2 states that query heightl nodes, forl = 2, . . . , h. Those
h− 1 state sets are disjoint, so we can sum the bounds.

4 Main Results

4.1 Fractional Pebbling Lower Bound

The proof of Theorem 5 proceeds by reducing the problem of proving lower bounds on the frac-
tional pebbling cost for balanced binary trees, to the problem of proving lower bounds on the
black-white pebbling costs for a family of DAGs. In doing so,we are essentially discretizing the
fractional pebbling problem; the main construction has a parameterc that determines how many
nodes in the dag are used to “simulate” each node in the tree. We will use the next lemma (due to
S. Cook) to conclude that we can always makec large enough that we don’t “lose anything”.

Lemma 6. For every finite DAG there is an optimal fractional B/W pebbling in which all pebble
values are rational numbers. (This result is robust independent of various definitions of pebbling;
for example with or without sliding moves, and whether or notwe require the root to end up
pebbled.)

Proof. Consider an optimal B/W fractional pebbling algorithm. Letthe variablesbv,t andwv,t

stand for the black and white pebble values of nodev at stept of the algorithm.
Claim: We can define a set of linear inequalities with 0 - 1 coefficients which suffice to ensure

that the pebbling is legal.
For example, all variables are non-negative,bv,t + wb,t ≤ 1, initially all variables are 0, and

finally the nodes have the values that we want, node values remain the same on steps in which
nothing is added or subtracted, and if the black value of a node is increased at a step then all its
children must be 1 in the previous step, etc.

Now letp be a new variable representing the maximum pebble value of the algorithm. We add
an inequality for each stept that says the sum of all pebble values at stept is at mostp.

Any solution to the linear programming problem:
Minimize p subject to all of the above inequalities
gives an optimal pebbling algorithm for the graph. But EveryLP program with rational coeffi-

cients has a rational optimal solution (if it has any optimalsolution).

13

Now we are ready to prove the lower bound. We know this bound isnot tight for heights at
most 4. This is easy to see for height 2 (the bound should bed, but the theorem givesd/2−1), and
proofs of the tight bounds for heights 3 and 4 are given in [BCM+09c].

Theorem 5. The fractional pebbling cost for the degreed, heighth tree is at least(d−1)h/2−d/2.

Proof. The high-level strategy for the proof is as follows. Givend andh, we transform the tree
T h

d into a DAG Gd,h such that a lower bound on#BWpebbles(Gd,h) gives a lower bound for
#FRpebbles(T h

d). To analyze#BWpebbles(Gd,h), we use a result of Klawe [Kla85], who shows
that for a DAGG that satisfies a certain “niceness” property,#BWpebbles(G) can be given in
terms of#Bpebbles(G) (and the relationship is tight to within a constant less thanone). The
black pebbling cost is typically easier to analyze. In our case,Gd,h does not satisfy the niceness
property as-is, but just by removing some edges fromGd,h, we get a new DAGG′

d,h which is
nice. We then show how to exactly compute#Bpebbles(G′

d,h) which yields a lower bound on
#BWpebbles(Gd,h), and hence on#FRpebbles(T h

d).
We first motivate the constructionGd,h and show that the whole black-white pebbling number

of Gd,h is related to the fractional pebbling number ofT h
d .

We first use Lemma 6 to “discretize” the fractional pebble game. The following are the rules
for the discretized game, wherec is a parameter:

• For any nodev, decreaseb(v) or increasew(v) by 1/c.
• For any nodev, including leaf nodes, if all the children ofv have value 1, then increaseb(v)

or decreasew(v) by 1/c.

By Lemma 6, we can assume all pebble values are rational, and if we choosec large enough
it is not a restriction that pebble values can only be changedby 1/c. Since sliding moves are not
allowed, the pebbling cost for this game is at most one more than the cost of fractional pebbling
with black sliding moves.

Now we show how to constructGd,h (for an example, see figure 3). We will split up each node
of T h

d into c nodes, so that the discretized game corresponds to the wholeblack-white pebble game
on the new graph. Specifically, the cost of the whole black-white pebble game on the new graph
will be exactlyc times the cost of the discretized game onT h

d .
In place of each nodev of T h

d , Gd,h hasc nodesv[1], . . . , v[c]; havingc′ of the v[i] pebbled
simulatesv having valuec′/c. In place of each edge(u, v) of T h

d is a copy of the complete bipartite
graph(U, V), whereU contains nodesu[1] . . . u[c] andV contains nodesv[1] . . . v[c]. If u was a
parent ofv in the tree, then all the edges go fromV to U in the corresponding complete bipartite
graph. Finally, a new “root” is added at heighth + 1 with edges from each of thec nodes at height
h5. So every node at heighth − 1 and lower hasc parents, and every internal node except for the
root hasdc children.

5The reason for this is quite technical: Klawe’s definition ofpebbling is slightly different from ours in that it
requires that the root remain pebbled. Adding a new root forces there to be a time when allc of the heighth nodes,
which represent the root ofT h

d , are pebbled. Adding one more pebble toGd,h changes the relationship between the
cost of pebblingT h

d and the cost of pebblingGd,h by a negligible amount.

14

Figure 3: Illustration to accompany the definition ofGd,h. This isG2,3 with parameterc = 3

To lower bound#BWpebbles(Gd,h), we will use Klawe’s result [Kla85]. Klawe showed that
for “nice” graphsG, the black-white pebbling cost ofG (with black and white sliding moves) is
at least⌊#Bpebbles/2⌋+ 1. Of course, the black-white pebbling cost without sliding moves is at
least the cost with them. We define what it means for a graph to be nice in Klawe’s sense.

Definition 5. A DAG G is nice if the following conditions hold:

1. If u1, u2 andu are nodes ofG such thatu1 andu2 are children ofu (i.e., there are edges from
u1 andu2 to u), then the cost of black pebblingu1 is equal to the cost of black pebblingu2

2. If u1 andu2 are children ofu, then there is no path fromu1 to u2 or fromu2 to u1.

3. If u, u1, . . . , um are nodes none of which has a path to another, then there are node-disjoint
pathsP1, . . . , Pm such thatPi is a path from a leaf (a node with in-degree 0) toui and there
is no path betweenu and any node inPi.

Gd,h is not nice in Klawe’s sense. We will delete some edges fromGd,h to produce a nice graph
G′

d,h and we will analyze#Bpebbles(G′
d,h). Note that a lower bound on#BWpebbles(G′

d,h) is
also a lower bound on#BWpebbles(Gd,h).

The following definition will help in explaining the construction ofG′
d,h as well as for specify-

ing and proving properties of certain paths.

Definition 6. Foru ∈ Gd,h, letT h
d (u) be the node inT h

d such thatT h
d (u)[i] = u for somei ≤ c. For

v, v′ ∈ T h
d , we sayv < v′ if v is visited beforev′ in an inorder traversal ofT h

d . Foru, u′ ∈ Gd,h,
we sayu < u′ if T h

d (u) < T h
d (u′) or if for somev ∈ T h

d , u = v[i], u′ = v[j], andi < j.

G′
d,h is obtained fromGd,h by removingc−1 edges from each internal node except the root, as

follows (for an example, see figure 4). For each internal nodev of T , consider the corresponding
nodesv[1], v[2], . . . , v[c] of Gd,h. Remove the edges fromv[i] to its i− 1 smallest andc− i largest
children. So in the end each internal node except the root hasc(d− 1) + 1 children.

We first analyze#Bpebbles(G′
d,h) and then show that it is nice. We show that#Bpebbles(G′

d,h) =
c[(d− 1)(h− 1) + 1]. Note that an upper bound ofc[(d− 1)(h− 1) + 1] is attained using a simple
recursive algorithm similar to that used for the binary tree.

15

Figure 4: Illustration to accompany the definition ofG′
d,h. This isG′

2,3 with parameterc = 3

For the lower bound, consider the earliest timet when all paths from a leaf to the root are
blocked. Figure 5 is an example of the type of pebbling configuration that we are about to analyze.
The last pebble placed must have been placed at a leaf, since otherwiset − 1 would be an earlier
time when all paths from a leaf to the root are blocked. LetP be the newly-blocked path from a
leaf to the root. Consider the setS = {u ∈ G′

d,h | u 6∈ P andu is a child of a node inP} of size
c(d− 1)(h− 1) + (c− 1) = c[(d− 1)(h− 1) + 1]− 1 (thec− 1 is contributed by nodes at height
h). We will give a set of mutually node-disjoint paths{Pu}u∈S such thatPu is a path from a leaf
to u andPu does not intersectP . At time t− 1, there must be at least one pebble on eachPu, since
otherwise there would still be an open path from a leaf to the root at timet. Also counting the leaf
node that is pebbled att gives c[(d-1)(h-1) + 1] pebbles.

Definition 7. The left-most (right-most) path tou is the unique path ending atu determined by
choosing the smallest (largest) child at every level.

Definition 8. P (l) is the node of pathP at heightl, if it exists.

For eachu ∈ S at heightl, if u is less than (greater than)P (l) then makePu the left-most
(right-most) path tou. Now we need to show that the paths{Pu}u∈S ∪ {P} are disjoint. The
following fact is clear from the definition ofG′

d,h.

Lemma 7. For anyu, u′ ∈ G′
d,h, if u < u′ then the smallest child ofu is not a child ofu′, and the

largest child ofu′ is not a child ofu.

First we show thatPu andP are disjoint. The following lemma will help now and in the proof
thatG′

d,h is nice.

Lemma 8. For u, v ∈ G′
d,h with u < v, if there is no path fromu to v or from v to u then the

left-most path tou does not intersect any path tov from a leaf, and the right-most path tov does
not intersect any path tou from a leaf.

Proof. Suppose otherwise and letP ′
u be the left-most path tou, andP ′

v a path tov that intersects
P ′

u. Since there is no path betweenu andv, there is a heightl, one greater than the height where
the two paths first intersect, such thatP ′

u(l), P
′
v(l) are defined andP ′

u(l) < P ′
v(l). But then from

16

Figure 5: A possible black pebbling bottleneck ofG′
2,3, with c = 3

Lemma 7P ′
u(l − 1) 6= P ′

v(l − 1), a contradiction. The proof for the second part of the lemma is
similar.

ThatPu andP are disjoint follows from using Lemma 8 onu and the sibling ofu in P .
Next we show that for distinctu, u′ ∈ S, Pu does not containu′. Suppose it does. AssumePu

is the left-most path tou (the other case is similar). Sinceu 6= u′, there must be a heightl such
thatPu(l) is defined andPu(l − 1) = u′. From the definition ofS, we knowP (l) is also a parent
of u′. From the construction ofPu, since we assumedPu is the left-most path tou, it must be that
Pu(l) < P (l). But then Lemma 7 tells us thatu′ cannot be a child ofP (l), a contradiction.

The proof thatPu andPu′ do not intersect is by contradiction. Assuming that there areu, u′ ∈ S
such thatPu andPu′ intersect, there is a heightl, one greater than the height where they first
intersect, such thatPu(l) 6= Pu′(l). Note thatPu andPu′ are both left-most paths or both right-
most paths, since otherwise in order for them to intersect they would need to crossP . But then
from Lemma 7Pu(l − 1) 6= Pu′(l − 1), a contradiction.

See Figure 5 for an example of a bottleneck of the specified structure forG′
d,h corresponding

to the height 3 binary tree, withc = 3:
The last step is to prove thatG′

d,h is nice. There are three properties specified in Definition
5. Property 2 is obviously satisfied. For property 1, the argument used to give the black pebbling
lower bound ofc[(d − 1)(h− 1) + 1] can be used to give a black pebbling lower bound ofc(d −
1)(l − 1) + 1 for any node at heightl ≤ h (the 1 is for the last node pebbled, and recall the root
is at heighth + 1), and that bound is tight. For property 3, choosePi to be the left-most (right-
most) path fromui if ui is less than (greater than)u. Then use Lemma 8 on each pair of nodes in
{u, u1, . . . , um}.

Since#Bpebbles(G′
d,h) = c[(d− 1)(h− 1) + 1], we have

#BWpebbles(Gd,h) ≥ #BWpebbles(G′
d,h) ≥ c[(d− 1)(h− 1) + 1]/2

and thus that the pebbling cost for the discretized game onT h
d is at least(d − 1)(h − 1)/2 + .5,

which implies#FRpebbles(T h
d) ≥ (d− 1)(h− 1)/2− .5.

17

4.2 Less-Thrifty Branching Programs

4.2.1 Thrifty BPs with Wrong-Wrong Queries

A variablefi(a, b) is wrong-wrong for input I iff a 6= vI
2i andb 6= vI

2i+1. The next theorem shows
that querying wrong-wrong variables does not help.

Theorem 6. For anyh, k ≥ 2, if B is a deterministic BP that solvesBT h(k) such that each input
only queries variables that are thrifty or wrong-wrong for it, thenB has at leastkh states.

Proof. We use the definitions and conventions introduced in the firstparagraph of the proof of
Theorem 4. The proof of the following lemma is similar to thatof Lemma 4 (page 10)6:

Lemma 9. For anyJ and internal nodei, there is at least one stateq on the computation path of
J that queries the thriftyi variable ofJ , and for every suchq, for each childj of i, there is a state
on the computation path ofJ beforeq that queries the thriftyj variable ofJ .

Recall that for the thrifty lower bound, to each input we assigned one “critical state” for each
node, and a pebbling configuration to each critical state, such that then pebbling configurations
made a valid pebbling sequence. This was so even if the thrifty branching program was constructed
based on a pebbling sequence of length greater thann. Now we will not be selecting critical states,
and we will assign pebbling sequences with length possibly greater thann. It may be helpful to
note that this way of assigning pebbling sequences will havethe following property:

Remark Let S be a complete pebbling sequence forT h such that the root is pebbled only once,
and a pebble is removed from a non-root nodei only during a move that places a pebble on the
parent ofi. For anyk, if BS,k is the thrifty deterministic BP for solvingFT h(k) that implements
S in the natural way7, then for every inputI to BS,k, we will assign pebbling sequenceS to I.

In the end, this will result in a cleaner proof; in particular, we will be able to say that when we
interpret the advice forI, every node that gets “learned” is a bottleneck node ofI (see Fact 3).

We define the pebbling sequence forI ∈ E by following the computation path ofI from be-
ginning to end, associating thet-th thrifty stateqt visited byI with thet-th pebbling configuration
Ct, such thatCt+1 is either identical toCt or follows fromCt by applying a valid pebbling move.
Let q1, . . . , qt∗ be the thrifty states on the computation path ofI, up to the first stateqt∗ that queries
the thrifty root variable ofI. Note thatq1 must query a leaf by Lemma 9. We associateq1 with the
empty configurationC1.

Assume we have defined the configurationsC1, . . . , Ct for the first t ≥ 1 thrifty states, and
assumeC1, . . . , Ct is a valid sequence of configurations (where adjacent identical configurations
are allowed), but neither it nor any prefix of it is a complete pebbling sequence. We also maintain
that for all t′ ≤ t, if node(qt′) is internal, then its children are pebbled inCt′ and it is not. Let

6Also this lemma is proved in a more-general context on page 25
7We are talking about a particular family of thrifty BPs{BS,k}, without taking the time to give a precise definition.

BS,k has|S| non-output layers (where|S| is the number of moves inS), and if a pebble is placed oni in the l-th
move ofS when there arep pebbles on the tree, then there arekp states in layerl of BS,k, all of which query a nodei
variable.

18

i := node(qt). By the I.H. i is not pebbled inCt. We defineCt+1 by saying how to obtain it by
modifyingCt:

1. If i is the root, then clearlyt + 1 = t∗, and by the I.H. nodes 2 and 3 are pebbled. Put a
pebble on the root and remove the pebbles from nodes 2 and 3. This completes the definition
of the pebbling sequence forI.

2. If i is a non-root internal node, then by the I.H. both children ofi are pebbled. For each child
j of i: if there is a stateq′ afterqt that queries the thriftyi variable ofI, and no state between
qt andq′ that queries the thriftyj variable ofI, then leave the pebble onj, and otherwise
remove it.

3. If i is not the root. then place a pebble oni iff there is a stateq′ afterqt that queries the thrifty
par(i) variable ofI and there is no state betweenqt andq′ that queries the thriftyi variable
of I.

As before, we define the supercritical staterI of I to be the first thrifty state on the computation
of I whose associated pebbling configuration (thebottleneck nodesof I) has at least one node
blocking every path from the root to a leaf. LetR be the states that are supercritical for at least
one input, and for eachr ∈ R let Er be the inputs with supercritical stater. As before, using the
argument for the black pebbling lower bound ofh pebbles forT h, we get that eachr ∈ R queries
a height two node – call itirsc. ForI ∈ Er we sayirsc is thesupercritical node forI. The definition
of thebottleneck path BnPathr for r ∈ R has not changed: it is the path fromr to the root. We
mentioned earlier that every node we “learn” for an inputI is a bottleneck node ofI. This is due
to the next fact. For anyI andq on the computation path ofI, let PathI(q) be the part of the
computation path ofI starting withq.

Fact 3. i is a bottleneck node ofI ∈ Er iff it is not in BnPathr and there is a stateq ∈ PathI(r)
that queries the thriftypar(i) variable ofi and no state beforeq in PathI(r) that queries the thrifty
i variable ofI.

It will be convenient to have named the following four sets ofnodes:

Definition 9 (SiblBnPathr, RightPathi, Learnabler, Learnable∗r).
• SiblBnPathr is the set of nodes that are the sibling of a node inBnPathr.
• For i ∈ SiblBnPathr, RightPathi is the path fromi to the right-most leaf underi (when the

tree is drawn in the canonical way).
• Learnabler is the set of nodes{2irsc, 2i

r
sc + 1} +

⋃

i∈SiblBnPathr
RightPathi, i.e. the nodes not

on the bottleneck path that are the descendent of a node on thebottleneck path.
• Learnable∗r := Learnabler − {2i

r
sc, 2i

r
sc + 1}.

It is not hard to see that everyI ∈ Er has at least one bottleneck node inRightPathj for each of the
h−2 nodesj ∈ SiblBnPathr (this observation is used in the black pebbling lower bound argument
mentioned above).

Let G be the set of partial functions fromVars to [k]. At least whenk = 2 these are commonly
calledrestrictions(of BT h(k)), so we will refer to them as restrictions. Forg ∈ G andD ⊆ E we
write g(D) for the inputs inD consistent withg – i.e. g(D) := {I ∈ D | ∀X ∈ Dom(g). XI =

19

g(X)}. It will be convenient to further partition the setsEr by fixing some of the variables initially.
This finer partitioning appears in the statement of the main lemma:

Lemma 10(Main Lemma). For some integerM , for every supercritical stater ∈ R, there is a set
of restrictionsGr

init of size at mostk|Vars|−M such that{ginit(Er)}ginit∈Gr

init
is a partition ofEr and

for everyginit in Gr
init, there is an injective function fromginit(Er) to [k]M−h.

Let us see why the theorem follows from the lemma. Since{ginit(Er)}ginit∈Gr

init
is a partition of

Er, andGr
init has size at mostk|Vars|−M , there must be someg∗

init ∈ Gr
init such thatg∗

init(Er) has size
at least|Er|/k

|Vars|−M . On the other hand, from the lemma we get thateverysetginit(Er) in the
partition has size at mostkM−h. Hence

|Er|/k
|Vars|−M ≤ |g∗

init(Er)| ≤ kM−h

Rearranging gives|Er| ≤ k|Vars|/kh = |E|/kh, and this holds for allr ∈ R. Since{Er}r∈R is a
partition ofE, we get thatR must have size at leastkh.

Proof of Main Lemma

We useT to refer to the heighth balanced binary tree, or to the set of its nodes. We useTi to refer
to the subtree ofT rooted at nodei, or to its nodes. ForU a set of nodes,Vars(U) is the set of
input variables corresponding to the nodes inU – i.e Vars(U) := {X ∈ Vars | X = li or X =
fi(a, b) for somei ∈ U anda, b ∈ [k]}. ForD ⊆ E there is a partial functioni 7→ vD

i from T to
[k] such thatvD

i ↓ = a iff vI
i = a for everyI in D. Similarly there is a partial functionX 7→ vD

i

from Vars to [k] such thatXD↓ = a iff XI = a for everyI in D.
The constantM mentioned in the theorem isk(h − 1)(h − 2)/2 + k2(h − 1) + h, but we are

just writing that expression here for clarity; we will not bereasoning about it. For eachr ∈ R, we
are going to define a setGr

init of at mostk|Vars|−M restrictions where eachginit ∈ Gr
init is defined on

some set of|Vars| −M variables. Before giving the precise definition of the partition, let us see
where the expression forM comes from. For(h − 1)(h − 2)/2 = (h − 2) + (h − 3) + ... + 1
internal nodesi we will fix all but k of thek2 variables that define the corresponding functionfi.
For each of theh− 1 nodes on the bottleneck pathBnPathr, we will not fix any of thek2 variables
that define the corresponding function. Lastly, there will beh unfixed leaf variables.

Let U r
fixed be all the nodes exceptLearnabler + BnPathr. In the following drawing, which

depicts the construction for the height 5 tree whenirsc = 15 is the right-most height 2 node, the
pruned nodes (the nodes in the subtrees that would be at the ends of the dashed lines) areU r

fixed and
the unmarked nodes plus the△-marked nodes areLearnabler. The�-marked nodes areBnPathr

and will have no fixed variables. The△-marked nodes areSiblBnPathr and will havek2 − k fixed
variables.

20

Supercritical node

= BnPath

= SiblBnPath

Let Ĝr be all the restrictionsg with domainVars(U r
fixed). For everyg ∈ Ĝr, for every internal

nodei in Learnabler, we have thatvg(Er)
2i is defined sinceg is defined for everyT2i variable. For

eachg ∈ Ĝr let Gr,g be the set of extensionsg′ of g such that for all internal nodesi in Learnabler,
for all a 6= v

g(Er)
2i and allb, g′ is defined onfi(a, b), andg′(Er) is not empty. Finally, we takeGr

init

to be
⋃

g∈Ĝr
Gr,g. The size ofGr

init is at mostk|Vars|−M .
Now fix r ∈ R andginit ∈ Gr

init and letD := ginit(Er). From this point on, we drop “r”
from Learnabler, Learnable∗r, SiblBnPathr, BnPathr, andirsc. Sincer is thrifty for everyI in D, we
havevD

2isc↓ andvD
2isc+1↓ (noter queries the variablefisc(v

D
2isc , v

D
2isc+1)). Since we have now fixed

D = ginit(Er), wheng is an extension ofginit we just writevg
i andXg instead ofvg(D)

i andXg(D).
As in the proof of Theorem 4, we will define a procedure called INTERADV (short for “Interpret

Advice”) that takes advice in the form of a[k]-string and interprets it as the code of an input inD.
Ultimately we want to show:

Proposition 1. For everyI ∈ D, there is some restrictiong that extendsginit and some advice
advI of length at mostM − h, such thatINTERADV (advI)↓ = g andI ∈ g(D) and |Dom(g) −
Dom(ginit)| ≥ |advI |+ h.

The procedure INTERADV is given precisely in pseudocode on page 23 and relies on the sub-
procedures given on page 23 and the following simple definition, which depends on the fixed input
setD:

Definition 10 (g constrainsvi). We sayg constrainsvi if for someI ∈ g(D), the thrifty i variable
of I is in Dom(g)

Recall how in the proof of Theorem 4, while reading the adviceadvI for I ∈ D, we maintain
a current stateq ∈ PathI(r) and build up a set of “learned nodes” which we calledUL. We are
still building up a set of learned nodes, though in the pseudocode we have opted not to introduce
a variable for that set explicitly. The learned nodes are just those nodesj such that at some point
during the execution of INTERADV (advI), the subprocedure LEARNNODE is called with second
argumentj. In the thrifty proof, to characterize how we are interpreting the prefix of the advice
that we have read so-far, we only need to record at most one value per node because every input
is limited to querying itsn thrifty variables (in the pseudocode we used the variablev∗, a partial
mapping fromT to [k]). More precisely, we had that ifv∗(i)↓ = a after reading some advice

21

elements~b, thenvI
i = a for everyinput I in Er whose complete adviceadvI has~b as a prefix, i.e.

for every input inv∗(Er). Now that inputs can query non-thrifty variables, instead of v∗ we will be
building up a restrictiong, where initiallyg = ginit. However, the meaning ofg(X)↓ = a is what
one would expect by analogy withv∗: if g(X)↓ = a after reading some advice elements~b, then
XI = a for every inputI in D whose complete adviceadvI has~b as a prefix, i.e. for every input in
g(D). As with v∗ before, once we define the valueg takes on a given variable, we never change it.

We first learn the children ofisc at r; we treat this as a special case now because it is the only
time when we learn two nodes while examining one state. Afterthat we learn a node in essentially
the same situation as before: we reach a stateq after reading some of the advice such that:

1. q queries a variablefi(a2i, a2i+1) that is thrifty for everyI ∈ g(D), and8

2. Forj = 2i or j = 2i + 1 (not both),g does not constrainvj (j is the learned node).

We needh − 2 such states afterr for each input inD. Let us sayq is a learning state for I ∈ D
if both those conditions hold or ifq = r. In fact, by the properties ofginit, and since afterr we
will only ever learn nodes inLearnable∗ =

⋃

j∈SiblBnPath RightPathj , we can write the previous
conditions in a more informative way:

1. For some internali ∈ Learnable∗ + (BnPath− isc), q queries a variablefi(a2i, a2i+1) that is
thrifty for everyI ∈ g(D), and

2. If i is in Learnable∗ theng does not constrainv2i+1.
If i is in BnPath− isc andj is the child ofi in BnPath, theng does not constrainvsibl(j).

We can be more specific still; later we will show that for each of theh− 2 nodesj ∈ SiblBnPath,
we will learn at least one node inRightPathj .

Let us now explain what “learning a node” entails. Temporarily fix I ∈ D. Suppose that while
interpreting the advice forI we reach a stateq ∈ PathI(r)I that is a learning state forI. So q
queries the variablefi(a2i, a2i+1) for somei in Learnable∗ + (BnPath − isc) anda2i, a2i+1 in [k].
If i is in BnPath − isc then letj be the child ofi in BnPath, and otherwise letj be 2i + 1. We
are learning nodej. If j is an internal node, then first we use the advice, if necessary, to makeg
total onVars(T2j +T2j+1). After that, there is one variableX that is the thriftyj variable for every
I ∈ g(D). So then we “learn”j by addingX 7→ aj to g. The key point is that we have made
progress since we used onlym = |Dom(g) / Vars(T2j + T2j+1)| new elements of advice to define
g onm + 1 new variables.

The main thing we still need to show is that we can defineadvI so that INTERADV (advI) will
visit at leasth− 2 learning states forI afterr. As mentioned earlier,I has at least one bottleneck
node inRightPathi for each of theh − 2 nodesi ∈ SiblBnPath. By Fact 3, for each of those
bottleneck nodesj there is a stateqI

j in PathI(r) that queries the thriftypar(j) variable ofI, and
no state betweenr andqI

j that queries the thriftyj variable ofI.
For eachi ∈ SiblBnPathr, let q̂I

i be the earliest state inPathI(r) among the states

{qI
j | j ∈ RightPathi andj is a bottleneck node ofI}

8Hereg is the current restriction.

22

and letji be such that̂qI
i = qI

ji
. Then at least the nodes{ji}i∈SiblBnPath will be learned, and

specificallyji will be learned upon reachingqI
ji

. To prove this, forpar(ji) ∈ Learnable∗ use Fact 3
together with the comments given in footnote 10 on page 24. For par(ji) ∈ BnPath− isc, use the
following fact (with j = sibl(ji) andj′ = par(ji)):

Fact 4. For all I ∈ D, if j is a non-root node inBnPath and j′ is its ancestor inBnPath, then
there are states inPathI(r) that query the thriftyj and j′ variables ofI, and the first such state
for j occurs before the first such state forj′.

Pseudocode forINTERADV and subprocedures

The procedure FILL implements a very simple function: given inputsg, V (the advice string~a and
the current index into it are implicit arguments), it just uses the advice to defineg on any variable in
V on which it is not yet defined. We call FILL in two qualitatively distinct situations. One is when
for somei, V is a singlei variableX such that for everyI ∈ g(D), we have determined that either
i is not a bottleneck node ofI or X is not thrifty for I. That is the situation when we call FILL

from INTERADV . The other situation occurs when LEARNNODE calls FILL onVars(T2j ∪ T2j+1)
for somej that we have decided to learn. We do this because in order to learnj, we needg to be
defined on enough input variables that the inputs ing(D) agree on the “name” of their thriftyj
variable, i.e. we needvg

2j↓ andvg
2j+1↓.

SubprocedureFILL (g ∈ G, V ⊆ Vars):

1: let a1, . . . , am be the nextm = |V/Dom(g)| elements of the advice string
2: let X1, . . . , Xm beV/Dom(g) sorted according to some globally fixed order onVars

3: addX1 7→ a1, . . . , Xm 7→ am to g

SubprocedureLEARNNODE(g ∈ G, j ∈ Learnable∗, b ∈ [k]):

1: if j is not a leafthen
2: FILL (g, Vars(T2j + T2j+1))
3: let X := fj(v

g
2j , v

g
2j+1)

4: else
5: let X = lj
6: end if
7: addX 7→ b to g

Procedure INTERADV (~a ∈ [k]∗):
1: // Note the advice string~a and the current index into it are implicit arguments in everycall to

FILL andLEARNNODE.
2: q ← r, g ← ginit

3: while q is not an output statedo
4: i← node(q), X ← var(q)
5: if X 6∈ Dom(g) then
6: if i = isc then

23

7: addl2isc 7→ vginit

2isc andl2isc+1 7→ vginit

2isc+1 to g
8: else ifi ∈ BnPath− isc then
9: let j be the child ofi in BnPath 9

10: let a2i, a2i+1 be such thatX = fi(a2i, a2i+1)
11: if vg

j ↓ = aj andg does not constrainvsibl(j) then
12: // Uses|Vars(descendants(sibl(j))) / Dom(g)| elements of advice:
13: LEARNNODE(g, sibl(j), asibl(j))
14: else
15: FILL (g, {X}) // Uses one element of advice.
16: end if
17: else// i ∈ Learnable∗

18: if i is an internal node andg does not constraintv2i+1 then
19: let b be such thatX = fi(v

ginit

2i , b) 10

20: // Uses|Vars(descendants(2i + 1)) / Dom(g)| elements of advice:
21: LEARNNODE(g, 2i + 1, b)
22: else
23: FILL (g, {X}) // Uses one element of advice.
24: end if
25: end if
26: end if
27: q ← the state reached by taking the edge out ofq labeledg(X)
28: end while
29: returng

4.2.2 Less-Thrifty BPs with Additional Queried Variables

The previous result can be generalized to give gradually weaker lower bounds for gradually weaker
restrictions on the model. ForB a deterministic BP that solvesBT h(k), for every stateq of B that
queries a variablefi(a, b), let RightThrifty(q) be the set of integersa′ (includinga) such that there
is some input toB that visitsq and has valuesa′ andb for nodes2i and2i + 1. Likewise, let
LeftThrifty(q) be the set of integersb′ such that there is some input that visitsq and has valuesa
andb′ for nodes2i and2i + 1. Theorem 6 is the special case of the following result whenπ = 1.

Theorem 7. For anyh, k ≥ 2 andπ < k, if B is a deterministic BP that solvesBT h(k) such that
|LeftThrifty(q)| ≤ π and |RightThrifty(q)| ≤ π for every stateq that queries an internal node,
thenB has at leastkh/πh−2 states.

Proof. We modify the proof of Theorem 6. We first need to verify that the analogue of Lemma 9
for this context holds:

9 This makes sense because every node inBnPath other thanisc has a child inBnPath.
10 v

g
2i↓ by definition ofginit since2i is the left child of a node inLearnable. Also X = fi(v

g
2i, b) for someb since

ginit is not defined onX . Also v
g
2i+1↓ = b – sinceX is not wrong-wrong for anyI ∈ g(D), it must be thrifty for every

I ∈ g(D).

24

Lemma 11. For anyI and internal nodei, there is at least one stateq on the computation path of
I that queries the thriftyi variable ofJ , and for every suchq, for each childj of i, there is a state
on the computation path ofI beforeq that queries the thriftyj variable ofI.

Proof. We use the strategy from the proof of Lemma 4 on page 10.I must visit at least one state
that queries its thrifty root variable, since otherwiseB would make a mistake on an inputJ that
is identical toI exceptfJ

1 (vI
2 , v

I
3) = k − f I

1 (vI
2 , v

I
3). Now letq be a state on the computation path

of I that queries the thriftyi variable ofI, for some internal nodei. Suppose the lemma does
not hold for thisq, and wlog assume there is no earlier state that queries the thrifty 2i variable
of I. For everya 6= vI

2i there is an inputJa that is identical toJ exceptvJa

2i = a. This implies
|RightThrifty(q)| = k, contradicting the assumption that|RightThrifty(q)| ≤ π < k.

The assignment of pebbling sequences to inputs and the definition of supercritical states is the
same. In fact nothing more needs to be changed until the statement of the Main Lemma, which is
now:

Lemma 12(Main Lemma). For some integerM , for every supercritical stater ∈ R, there is a set
of restrictionsGr

init of size at mostk|Vars|−M such that{ginit(Er)}ginit∈Gr

init
is a partition ofEr and

for everyginit in Gr
init, there is an injective function fromginit(Er) to [π]h−2 × [k]M−h.

So in order to cope with the relaxed restrictions on the model, in addition to the[k]-valued
advice string of lengthM − h we now have a[π]-valued advice string of lengthh − 2. One can
show the theorem follows from the lemma in the same way as in the proof of Theorem 6. Really at
this point there is just one additional observation needed to adapt the proof of Theorem 6: Suppose
we have a set of inputsF all of which have valuea for v2i (i.e. vF

2i↓ = a), and all the inputs inF
visit a stateq that queries a variablefi(a, b). Then we can use the elements of[π] to code the values
of v2i+1 for inputs inF . More concretely, leta1, . . . , am be them ≤ π integersLeftThrifty(q) in
increasing order. Then to eachI ∈ F we assign the index ofvI

2i+1 in a1, . . . , am. Of course a
similar property holds for the case whenF is a set of inputs that agree onv2i+1. We use this
observation later to show that if we “know” the value of node2i upon reachingq, then we can
learn node2i + 1 with the help of just an element ofπ-valued advice, and similarly for learning
node2i.

The definition ofGr
init is the same, and as before we fixr ∈ R andginit ∈ Gr

init and then define a
procedure that interprets some given advice as the code of aninput inD := ginit(Er). The analogue
of Proposition 1 (page 21) is:

Proposition 2. For everyI ∈ D, there is some restrictiong that extendsginit, a [π]-valued advice
stringadvI

π of lengthh− 2 and a[k]-valued advice stringadvI
k of length at mostM − h, such that

INTERADV (advI
k, advI

π)↓ = g andI ∈ g(D) and |Dom(g)− Dom(ginit)| ≥ |advI |+ h.

However, it will be convenient to instead give a procedure INTERADV ′ for which the following
superficially different proposition holds:

Proposition 3. For everyI ∈ D, there is some restrictiong that extendsginit, a [π]-valued advice
string advI

π of length at leasth − 2 and a [k]-valued advice stringadvI
k of length at mostM −

25

|advI
π| − 2, such thatINTERADV ′(advI

k, advI
π)↓ = g andI ∈ g(D) and |Dom(g)− Dom(ginit)| ≥

|advI |+ |advI
π|+ 2.

To get the procedure INTERADV of Proposition 2 from the procedure INTERADV ′ of Propo-
sition 3, just run INTERADV ′ until h − 2 elements of the[π]-valued advice have been used, and
then, if necessary, use elements of the[k]-valued advice whenever an additional element of the
[π]-valued advice is required. This works sinceπ ≤ k and|advI

k| ≤M − |advI
π| − 2.

Let us sayq is right-thrifty for I if q queries a variablefi(a, b) such thatb = vI
2i+1 anda 6= vI

2i.
Similarly defineleft-thrifty for I. Previously, while interpreting the advice forI we only learned
node values at states that are thrifty forI. Now we may learn node values at states that are thrifty,
right-thrifty, or left-thrifty for I. As before, we always learn the children ofisc, and the remaining
h− 2 nodes we learn are inLearnable∗.

First we consider the case of learning a node inSiblBnPath. We consider the case of learning
a left child2i – the case of learning a right child is similar. Letq be the first state inPathI(r) that
queries the thrifty2i + 1 variable ofI. If we learn2i, then we do so at the first stateq′ after q
that queries ani variable that is thrifty or right-thrifty forI. Now we consider the case of learning
a node inLearnable∗ − SiblBnPath. Every node inLearnable∗ − SiblBnPath is a right child, so
suppose we are learning2i+1. Then we do so at the first state inPathI(r) that queries ani variable
that is thrifty or left-thrifty forI.

As before, for eachI in D and each of theh − 2 nodesi in SiblBnPath, we will learn at least
one node inRightPathi (and of course we still learn the children of the supercritical nodeisc). This
is again proved using Facts 3 (page 19) and 4 (page 23); both still hold since we did not change the
assignment of pebbling sequences to inputs.

We provide pseudocode for INTERADV ′, just in case the reader has questions not explic-
itly addressed in the preceding prose. On the other hand, there is little to read since itdiffers
from the previous definition of INTERADV (4.2.1 on page 23) only in a few linesnear the two
calls to LEARNNODE (specifically lines 12 - 15 and 21 - 24). The two subproceduresFILL and
LEARNNODE do not use the[π]-valued advice and do not need to be modified.

Procedure INTERADV ′(~ak ∈ [k]∗,~aπ ∈ [π]∗):
1: // Note the advice string~ak and the current index into it are both implicit arguments in every

call to FILL andLEARNNODE.
2: q ← r, g ← ginit

3: while q is not an output statedo
4: i← node(q), X ← var(q)
5: if X 6∈ Dom(g) then
6: if i = isc then
7: addl2isc 7→ vginit

2isc andl2isc+1 7→ vginit

2isc+1 to g
8: else ifi ∈ BnPath− isc then
9: let j be the child ofi in BnPath

10: let a2i, a2i+1 be such thatX = fi(a2i, a2i+1)
11: if vg

j ↓ = aj andg does not constrainvsibl(j) then
12: let z be the next element of the[π]-valued advice.

26

13: if j = 2i + 1 then letb be thez-th greatest integer inRightThrifty(q) and otherwise
let b be thez-th greatest integer inLeftThrifty(q)

14: // Uses|Vars(descendants(sibl(j))) / Dom(g)| elements of[k]-valued advice:
15: LEARNNODE(g, sibl(j), b)
16: else
17: FILL (g, {X}) // Uses one element of[k]-valued advice.
18: end if
19: else// i ∈ Learnable∗

20: if i is an internal node andg does not constraintv2i+1 then
21: let z be the next element of the[π]-valued advice.
22: let b be thez-th greatest integer inLeftThrifty(q).
23: // Uses|Vars(descendants(2i + 1)) / Dom(g)| elements of[k]-valued advice:
24: LEARNNODE(g, 2i + 1, b)
25: else
26: FILL (g, {X}) // Uses one element of[k]-valued advice.
27: end if
28: end if
29: end if
30: q ← the state reached by taking the edge out ofq labeledg(X)
31: end while
32: returng

We give one more extension of the thrifty lower bound. We introduce another parameter
w: for each inputI, we require that there are at mostw nodesi such thatI visits a stateq
with |RightThrifty(q)| > 1 or |LeftThrifty(q)| > 1. The motivation for this is that forw = 1
andπ = log k − log log k, the model includes BPs that achieve the best known upper bounds
for BT h(k), namelyO(kh/ log k). For those parameters the theorem gives a lower bound of
kh/(log k − log log k) = Ω(kh/ log k). In [BCM+09b] it was shown that the minimum number of
states forunrestricteddeterministic BPs solvingBT 3(k) is Θ(k3/ log k).

Theorem 8. For anyh, k ≥ 2 andπ < k andw < h − 2, if B is a deterministic BP that solves
BT h(k) such that|LeftThrifty(q)| ≤ π and|RightThrifty(q)| ≤ π for every stateq that queries an
internal node, and such that for every inputI there are at mostw nodesi such thatI visits a state
q that queries ani-variable and has|RightThrifty(q)| > 1 or |LeftThrifty(q)| > 1, thenB has at
leastkh/πw states.

Proof. This is an easy modification of the proof of the previous result. For all butw of theh − 2
learning statesq afterr, we do not need to use an element of the[π]-valued advice to learn a child
of node(q). Hence we only need a[π]-valued advice string of lengthw.

5 Open Problems

The first is a problem that can, in principle, be resolved using a computer.

27

1. Show that for somek, h there is a deterministic branching program with fewer than(k +1)h

states that solvesFT h(k).

Theorem 4 suggests the following conjecture: for allh, nondeterministic thrifty branching pro-
grams solvingFT h(k) requireΩ(k#FRpebbles(T h)) states.

2. Refute it, with or without the thrifty restriction.

References

[BCM+09a] Mark Braverman, Stephen Cook, Pierre McKenzie, Rahul Santhanam, and Dustin
Wehr. Fractional pebbling and thrifty branching programs.In Ravi Kannan and
K Narayan Kumar, editors,IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2009), volume 4 ofLeibniz
International Proceedings in Informatics (LIPIcs), pages 109–120, Dagstuhl, Ger-
many, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BCM+09b] Mark Braverman, Stephen A. Cook, Pierre McKenzie, Rahul Santhanam, and Dustin
Wehr. Branching programs for tree evaluation. In RastislavKrÃ¡lovic and Damian
Niwinski, editors,MFCS, volume 5734 ofLecture Notes in Computer Science, pages
175–186. Springer, 2009.

[BCM+09c] Mark Braverman, Stephen A. Cook, Pierre McKenzie, Rahul San-
thanam, and Dustin Wehr. Pebbles and branching programs
for tree evaluation. A draft manuscript, available on line at
http://www.cs.toronto.edu/˜sacook/homepage/pebbles. pdf ,
2009.

[Coo74] S. Cook. An observation on time-storage trade off.J. Comput. Syst. Sci., 9(3):308–
316, 1974.

[CS76] S. Cook and R. Sethi. Storage requirements for deterministic polynomial time rec-
ognizable languages.J. Comput. Syst. Sci., 13(1):25–37, 1976.

[Kla85] M. Klawe. A tight bound for black and white pebbles onthe pyramid. J. ACM,
32(1):218–228, 1985.

[Nec̆66] È. Nec̆iporuk. On a boolean function.Doklady of the Academy of the USSR,
169(4):765–766, 1966. English translation inSoviet Mathematics Doklady7:4, pp.
999-1000.

[Nor09] J. Nordström. New wine into old wineskins: A surveyof some
pebbling classics with supplemental results. Available online at
http://people.csail.mit.edu/jakobn/research/ , 2009.

28

[PH70] M. Paterson and C. Hewitt. Comparative schematology. In Record of Project
MAC Conference on Concurrent Systems and Parallel Computations, pages 119–
128, 1970. (June 1970) ACM. New Jersey.

[Raz91] A. Razborov. Lower bounds for deterministic and nondeterministic branching pro-
grams. In8th Internat. Symp. on Fundamentals of Computation Theory, pages 47–60,
1991.

29

	Introduction
	Preliminaries
	Branching programs
	Pebbling

	Thrifty Branching Programs and Pebbling
	Main Results
	Fractional Pebbling Lower Bound
	Less-Thrifty Branching Programs
	Thrifty BPs with Wrong-Wrong Queries
	Less-Thrifty BPs with Additional Queried Variables

	Open Problems

