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Abstract

We study restricted computation models related totithe evaluation problemThe TEP
was introduced in earlier work as a simple candidate forike)long term goal of separating
L andLogDCFL. The input to the problem is a rooted, balanced binary treleeaiht i,
whose internal nodes are labeled with binary function§or- {1, ..., k} (each given simply
as a list ofk? elements of[k]), and whose leaves are labeled with element$kpf Each
node obtains a value ifk] equal to its binary function applied to the values of its dteh.
The output is the value of the root. The first restricted cotatien model, calledractional
pebbling is a generalization of the black/white pebbling game oplgsaand arises in a natural
way from the search for good upper bounds on the size of nemdgtistic branching programs
solving the TEP - for any fixed, if the binary tree of height has fractional pebbling cost at
mostp, then there are nondeterministic branching programs ef@{Z?) solving the height
h TEP. We prove a lower bound on the fractional pebbling cost-afy trees that is tight to
within an additive constant for each fixédThe second restricted computation model we study
is a semantic restriction on (non)deterministic branchpnggrams solving the TEP thrifty
branching programs. Deterministic (resp. nondeterma)istrifty BPs suffice to implement
the best known algorithms, based on black pebbling (regmtitmal pebbling), for the TEP.
In earlier work, for each fixed a lower bound on the size of thrifty deterministic branching
programs was proved that is tight for sufficiently large We give an alternative proof that
achieves the same bound for alandh. We also show the bound still holds in a less-restricted
model.

1 Introduction

The motivations for this paper are thoselof [BEBRA], and the goals are to extend and improve on
the results given there (with the exception of Thedrém 5¢tvappeared there verbatim). But from
a wider view, what we want is to improve our understandind.af the hope that this will help
in eventually separating it from (apparently) larger csssWe study the tree evaluation problem
(TEP), which was defined in [BCMD9K] and shown to be ihogDCFL.

The function version of th&ree Evaluation problent'T" (k) is defined as follows. L&f™ be
the balanced binary tree of heigh(see Fig[L). For each internal nodef 7" the input includes
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a functionf; : [k]x[k] — [k] specified ag? integers injk] = {1,...,k}. For each leaf the input
includes an integer ifk]. We can then say that each internal tree node takes a valug liry
applying its function to the values of its children. The ftian problem£T" (k) is to compute the
value of the root, and the decision versiBi™ (k) is to determine whether this valuelis

Since BT"(k) € LogDCFL, it is not hard to show that forny unbounded functiom (),

a lower bound of2(k"™) on the number of states for deterministic (resp. non-detestic)
branching programs solvingT" (k) or BT"(k) would separatd&.ogDCFL andL (resp.NL)H.
To see this, note that inputs 857" (k) can be encoded witf2" 1 —1)k? log k+2"~!log k+O(1) =
O(2"k?1og k) bits, so it suffices to consider polynomial bounding functibat are the product of
a polynomial in2" and a polynomial irk:, which k") is not.

In [BCM*090b], the TEP was defined more-generally on balankady trees, where the func-
tions attached to internal nodes are of typ€ — [k]. The motivation was that tight lower bounds
for height 3 and alll can be proved [BCMOQ9b], and proving the conjectured lower bound of
Q(k"/log k) states (withh = 4 andd = 3 fixed, so that the input size(k) is O(k?log k) bits or
O(k?) [k]-valued variables) for unrestricted deterministic BPs lddaeat the best known lower
bound ofQ2(n?/(log n)?) states for a problem iNP, achieved using Netiporuk’s methdd [Ne£66].
Since we are focusing on restricted computation models begee is little to gain in including the
parameterl. That being said, the fractional pebbling lower bound pcowveSectior 4 1lis given
for arbitraryd.

2 Preliminaries

We write[k] for {1,2,...,k}. Forh > 1 we usel” to denote the balanced binary tree of height

Warning: Here theheightof a tree is the number of levels in the tree, as opposed toistende
from root to leaf. Thug'? has just 3 nodes.

We number the nodes @Gf* as suggested by the heap data structure. Thus the root islnade
in general the children of nodeare nodegi, 2: + 1 (see Figuréll).
Definition 1 (Tree evaluation problems)

An input [ for either the function or decision version of the probleriudes: for each
internal node of T", a functionf/ : [k]x[k] — [k] represented a&* integers ink],
and for each leaf node an integei! € [k].

Function evaluation problem 7" (k): On inputl, compute the value! € [k] of the
root1 of 7", where in general/ = I! if i is a leaf andy} = f/(vi;,v3,.,) if i is an
internal node.

Boolean evaluation problel®7" (k): AcceptI iff v! = 1.

10f course, doing so would actually yield the stronger resMtinuniformL. ¢ LogDCFL (resp. Nonuniform
NL ¢ LogDCFL).
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Figure 1: The height 3 binary tré€® with nodes numbered heap style.

2.1 Branching programs
We use the same branching program model ds in [B084&] and[[BCM 090].

Definition 2 (Branching programs)A nondeterministid:-way branching progranB computing
atotal functiory : [k]™ — R, whereR is a finite set, is a directed rooted multi-graph whose nodes
are calledstates Every edge has a label frofh|. Every state has a label frofm|, except|R|
outputsink states consecutively labeled with the elements ffordn input (z4, ..., z,,) € [k]™
activates, for each < j < m, every edge labeled; out of every state labeled A computation
pathon input? = (z1,...,x,) € [k]™ is a directed path consisting of edges activatedrby
which begins with the unique start state and either endsdffitial state labeled(z, . .., z,,) or
is infinite. At least one such computation must end. $kxeof B is its number of statesB is
deterministick-wayif every non-output state has precisélputedges labeled . . . , .

We say thatB solves a decision problem (relation) if it computes the abtaristic function of
the relation.

A k-way branching program computidgl™ (k) or BT" (k) requiresk? k-valued arguments for
each internal nodeof 7" in order to specify the functioffi,, together with oné-valued argument
for each leaf. Thus in the notation of the above definitis@! (k) : [k|™ — R whereR = [k] and
m = (2"t — 1)k? 4+ 21, Also BT"(k) : [k]™ — {0, 1}.

Important: Since we only study the tree evaluation problem (TEP) heregiwe the input
variables mnemonic nameg;(a, b) is an input variable (called aimternal node variablg for
every internal nodéanda, b € [k] andl; is an input variable (calledlaaf variablg for every leaf
1.

For fixed h we are interested in how the number of states required fomeay branching
program to computé' 7" (k) and BT"(k) grows withk. This is why we writeh in the superscript
of FT"(k) and BT" (k). We define#detFstates™ (k) (resp.#ndetFstates” (k)) to be the mininum
number of states required for a deterministic (resp. nardehistic)k-way branching program to
solve FT" (k). Similarly we defineftdetBstates” (k) and#tndetBstates” (k) to be the number of
states required t87" (k).

Thrifty programs are a restricted form kfway branching programs for solving tree evaluation
problems, introduced in [BCM09a]. Thrifty programs efficiently simulate pebbling algoms,
and implement the best known upper bounds#atletBstates” (k) and#detFstates”(k), and are
within a factor oflog k of the best known fo#detBstates” (k).
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Definition 3 (Thrifty branching program)A deterministick-way branching program which solves
FT"(k) or BT"(k) is thrifty if during the computation on any input every quefiya, b) to an
internal node of T satisfies the condition thét, b) is the tuple of correct values for the children
of nodes (i.e. v5, = a andvi_, = b). A non-deterministic such program tisrifty if for every
input every computation which ends in a final state satisfie@bove restriction on queries.

This is a strong restriction. For example, a determinigtiifty BP cannot, for any internal
nodei, iterate over all thé? variables that defing;, or even just two distincf; variables.

In [BCM*094] the following theorem is given, showing how upper baufwd black pebbling
and fractional pebbling yield upper bounds for determiaiahd nondeterministic branching pro-
grams solving the TEP. The proof can be found in [B€d].

Theorem ([BCM™094]):

(i) If T" can be black pebbled with pebbles, then deterministic thrifty branching programs
with O(kP) states can solve'T" (k) and BT" (k).

(i) If T" can be fractionally pebbled with pebbles then non-deterministic thrifty branching
programs can solvBT" (k) with O(k?) states.

Also in [BCM™09a], the following lower bound was given for determinighdfty programs.
The proof can be found in [BCMD9¢].

Theorem (IBCM™09z]): For allh, for k& > ( 2" ) every deterministic thrifty branching program

h—1
solving BT" (k) requires at leasf2k" states.

Theoren{# in Sectionl 3, which is a special case of Thediem @atich[4.2, gives a small
improvement on that result. The main improvement is thaiega tight bound that holds for all
pairsk andh, rather than requiring th&tbe much larger thah. The constant /2 also goes away:
Theorem[4 : For all h, k every deterministic thrifty branching program solviBg™ (k) requires

at leastt” states.

2.2 Pebbling

The pebbling game for dags was defined by Paterson and HEBM#(] and was used as an ab-
straction for deterministic Turing machine space in [CdoBdack-white pebbling was introduced
in [CS76] as an abstraction of non-deterministic Turing hiae space (seé [NorD9] for a recent
survey). Fractional pebbling was introduced(in [BEO®a].

Let us first define three versions of the pebbling game. Wenwillbe proving anything about
black-white pebbling directly, but fractional pebblingageneralization of black-white pebbling,
so it will be easier to define it first. The first is a simple ‘tkgebbling’ game: A black pebble can
be placed on any leaf node, and in general if all children ad@er have pebbles, then one of the
pebbles on the children can be sliditihis is a “black sliding move’)’. Any black pebble can be
removed at any time. The goal is to pebble the root, usingapébbles as possible. The second
version is ‘whole’ black-white pebbling as defined in [CSWéih the restriction that we do not
allow “white sliding moves”. Thus if nodé has a white pebble and each childidias a pebble
(either black or white) then the white pebble can be remo@&advhite sliding move would apply
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if one of the children had no pebble, and the white pebbléwas slid to the empty child. We do
not allow this.) A white pebble can be placed on any node atiamg. The goal is to start and end
with no pebbles, but to have a black pebble on the root at sonee t

The third isfractional pebbling which generalises whole black-white pebbling by allowing
each nodé to have ablack valueh(i) and awhite valuew(:) such thab(i) + w(i) < 1. The total
pebble value (i.eb(i) + w(i)) of each child of a nodé must be 1 before the black value ois
increased or the white value ofs decreased. Figufé 2 shows the sequence of configurations f
an optimal fractional pebbling of the binary tree of heidiree using 2.5 pebbles.

Our motivation for choosing these definitions is that we waatibling algorithms for trees to
closely correspond tb-way branching program algorithms for the tree evaluatiarbfem. If, as
in the survey by Razborov [Raz91], we instead usefttching and rectifier networkisistead of
nondeterministic branching programs, where input vaeiddibels are on the edges rather than the
nodes, and a node can have any number of out-edges, andeloé gie program is defined as the
number of edges, then we would get better upper bounds by asmriant of fractional pebbling
where the following analogue of “white sliding moves” arbaled: Suppose you want to remove
white value from an internal nodéy first increasing the white value of one or both of the cleitdr
of 7. With white sliding moves, you can combine those two movepretise definition is given in
[BCM*09d], where it is also shown that the height 4 binary tree @frdctionally pebbled using
white sliding moves witt8 /3 pebbles, from which it follows that there are switching aedtifier
networks withO(k®/?) edges that solvésT*(k). In contrast, it is shown i [BCMO09d] that 3
pebbles are necessary and sufficient using our chosen aefiaftfractional pebbling.

Now we give the formal definition of fractional pebbling, athen define the other two notions
as restrictions on fractional pebbling.

Definition 4 (Pebbling) A fractional pebble configurationn a rootedi-ary treeT" is an assign-
ment of a pair of real numbefs(i), w(i)) to each node of the tree, where

0 < b(i), w() 1)
b(i) +w(i) < 1 (2)

Hereb(i) andw(i) are theblack pebble valuand thewhite pebble valuerespectively, of, and
b(i) + w(i) is thepebble valueof i. The number of pebbles in the configuration is the sum over
all nodes: of the pebble value of. The legal pebble moves are as follows (always subject to
maintaining the constraints|(1).1(2)): (i) For any naddecreasé(i) arbitrarily, (ii) For any node
i, increasev(7) arbitrarily, (iii) For every node, if each child ofi has pebble value 1, then decrease
w(7) arbitrarily, increasé»(a arbitrarily, and simultaneously decrease the black pebhliges of
the children ofi arbitrarily.

A fractional pebblingof T usingp pebbles is any sequence of (fractional) pebbling moves on
nodes ofl" which starts and ends with every node having pebble valuadaasome point the
root has black pebble value 1, and no configuration has maresithebbles.

2|t is easy to show that we can require, without increasingptiebling cost, that every type (ii) move to increase
w(7) so thath(i) + w(i) = 1, and a type (iii) move to decreaad:) to O, but we will not need to use that fact here.
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Figure 2: An optimal fractional pebbling sequence for theghe3 tree using 2.5 pebbles, all
configurations included. The grey half circle means hgte value of that node is5, whereas
unshaded area means absence of pebble value. So for exantipdeseventh configuration, node
2 has black value .5 and white value .5, node 3 has black valaredithe remaining nodes all have
black and white value O.
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A whole black-white pebblingf 7" is a fractional pebbling of such that(i) andw(:) take val-
ues in{0, 1} for every node and every configuration. Alack pebblings a black-white pebbling
in whichw(i) is always 0.

Notice that rule (iii) does not quite treat black and whitélples dually, since the pebble val-
ues of the children must each be 1 before any decreasdpfis allowed. A true dual move
would allow increasing the white pebble values of the clitdso they all have pebble value 1
while simultaneously decreasingi). In other words, we allow black sliding moves, but disallow
white sliding moves. The reason for this (as mentioned akisuat non-deterministic branching
programs can simulate the former, but not the latter.

We use#Bpebbles(T"), #BWpebbles(T"), and#FRpebbles(T") respectively to denote the min-
imum number of pebbles required to black pebbleblack-white pebbld’, and fractional peb-
ble 7. Bounds for these values are given in [BEDPAR. For example#Bpebbles(T") = h,
#BWopebbles(T") = [h/2] + 1, and#FRpebbles(7") < h/2 + 1 (see [BCM"09d] for proofs). In
particular#FRpebbles(T?) = 2.5 (see Figurél2).

3 Thrifty Branching Programs and Pebbling

It is easy to show that the determinstic thrifty BPs we getnfigebbling have) (k") states, for all
h. The next theorem shows there is a simple expression forxée aumber of states. We do not
know how to beat this upper bound for ahynd#h, even by an additive constant.

Theorem 1. There are(k + 1)" state deterministic thrifty BPs solvingl™ (k).

Proof. Forh = 1 you have the start state that queries the single input arigbwith an edge out
to each of thé: output states.

Forh > 2, we start withk + 1 copiesBy, B, ..., B;, of the BP that computeBT"~ (k). Here is
the idea. We will use3, to compute the value of the left subtree, and for eaeh k] we useB,
to compute the value of the right subtree while remembeiiegvalue of the left subtree. At the
level just before the output states, for edatb) € [k]* there is a state that querigga, b).

Now for the formal definition. We will combiné,, B, ..., By in such a way thaB, ..., B,
are pairwise disjoint, and for all € [k]|, B, and B, intersect in exactly one state; namely, for all
a € [k], if g0, is the output state aB, labeleda, andg, is the start state aB,, then we remove
0., and for each of the now-dangling,-edges:, we connect the free end ofto ¢,.

Now change the state labels 8f so that whenever it querie§(b,, b,) (resp. [;) for some
i € TM1, it instead querieg,, ;) (b1, b2) (resp.ls,;)) whereo, maps node labels a~! to node
labels of the subtree @f" rooted at node 2, in the obvious way. Similarly, for each [k], change
the state labels aB, so that whenever it querigs(by, b,) (resp./;) for somei € T"~1, it instead
queries the variablé,,; (b1, b2) (resp. l,,;)) whereos is like o, except it maps node labels of
T"=1 to node labels of the subtree Bf rooted at node 3.

Next, for eachu, b in [k], change thé labeled output state @, into a state that queries(a, b).
Finally, add in the obvious way (there is only one wayj)ew output states that receive edges from

3And also for arbitrary degreé



the k2 former output states aB;, ..., B,. That completes the definition of the BP the computes
FTh(k). Its sizes(h, k) is given by

sthyk)=(k+1)s(h—1,k) —k+k=(k+ 1)

Where the-£ is for the stategy, . . ., g, that get counted twice in the expressi@n+ 1) s(h—1, k)
and the+k is for the new output states. O

And indeed, we can show the bound is tight for height 2 (it igiobsly tight for height 1). In
Sectiorib we conjecture that + 1)3 is tight for height 3 as well.

Theorem 2. Every BP solving"T?(k) has at leastk + 1)? states.

Proof. There are at leadi’ states that query the root, since for @lb there is at least one state
that queriesf;(a, b). There aré: output states.

Let £* be the inputs such thgt is + mod k. Let Q* be the stateg such thaty is the last
leaf querying state on the computation path of sdnee £*. We can show)* has size at leagt.
Let g be the function that maps each inputfh to its last leaf querying state. Singg*| = &2,
it suffices to show thalty~'(q)| < k for everyq in Q*. Let I,;, be the unique input ir2* with
<l§,l§> = (a,b). Letq € Q* be arbitrary. Consider the case thagueries/; — the other case is
similar. Then it suffices to show that for evérythere is at most one such that/,, , is in g*(g).
Just observe that if two inputs ii* reachq then they have the same output state, and the ldbel
of the output state determines the uniguguch thatt’ = a + b mod k.

Now we want to show there is at least one state that queriesf ahel is not inQ*. Since all
the inputs InE* agree on the; variables, there is a unique statehat is the first leaf querying
state visited by any of them. Becausemod £ is a quasigroup, every input if* must queryl,
and/; each at least once. So for evarye E* there is a leaf querying state on the computation
path of I afterq that queries a leaf variable. Hengez Q*. Thatisk* + k +k + 1 = (k + 1)
states total. O

Let the depth of a deterministic branching program be theimam number of states visited
by any input, with the output state included. The thriftygmams we get from pebbling have depth
2" and it is easy to show that depthis required, regardless of size; just note that Lerima 1 holds
without the depth restriction. In fact, we can show thriftpgrams are thenlyfastest determinstic
BPs solvingBT" (k).

Theorem 3. For all i, k every deterministic branching program of depth at m#stomputing
BT"(k) (or FT"(k)) is thrifty.

Proof. Let E,, be the inputs all of whose internal node functions are quasfs, andv; the inputs
that query each node exactly once.

Lemma 1. Every input inEj, queries each of its thrifty variables.



Proof. Supposd € E, does not query its thriftyvariable. LetX be the thrifty; variable of/. For
eacha # v/ there is an inpuf,, identical to/ exceptX’» = a. Define the functionr! : [k] — [k]
by
identity ifi=1
Ff = I vg) ifi=2j
fllug, Ff)  ifi=2j+1

SinceF is a permutation, the root values of the inpLtare all different from each other and from
vl. If ] = 1then letJ be any of thel,, and otherwise leff be the uniqud, such thaw!* = 1.
ThenJ € BT"(k)iff I ¢ BT"(k). But their computation paths are the same, a contradictian.

Lemma 2. Every input inEj is thrifty (queries only its thrifty variables).

Proof. Because of the depth restriction, if an input queries eadtsdhrifty variables, then it is
thrifty. So this lemma follows from Lemnia 1. O

Lemma 3. Every input inE is thrifty.

Proof. Suppose there is sonfein £, that is not thrifty. For each nodg let X; be the unique
j variable that/ queries. Sincd is not thrifty, there is an internal nodesuch thatX; is not the
thrifty f; variable of/. Let:* be such a node of minimum height. Since the computation gath o
constrains only one value of each internal node functioncavechoose an input € E, such that
Xf = X]J for all nodes;. J is thrifty by Lemmd2. In particularX;- is the thrifty f;- variable of
J. SinceX;- is not the thriftyf;- variable of7, it must be thats,. # vy, orvi.., # vy, ;. Wlog
assume it is the first case. By our choiceiofind the assumption thatqueries every node, we
know I queries all its thriftyT,; variables. Since the computation paths/aind ./ are identical,
andJ is thrifty, we have thaf and.J have the same thrifty5; variables. But then the only way
to havevl,. # vJ. is if there is aly; variable X that is thrifty for I (and so also for/) such that
X1 # X7, This contradicts the definition of. O

Let B, .= E — E,. Fix I in E,. Let P! be the maximum length initial segment of the
computation path of such that there is som&in £, for which P is also an initial segment of
the computation path of. Fix such aJ. Since! is not in £, there must be somiesuch that/
does not query anyvariable. So by Lemmnid 1, we knoi! cannot be the entire computation path
of I (because then it would be the entire computation path)ofo the last statg of P! cannot
be its output state. Let.; be the next state thdtvisits ande, the edgel takes fromg, t0 ¢, 1.
Let X, be the variable queried hy andi, := var(X;). There must be at least onfin £, that
follows P! (note the definition allow$’ to be a single state). Lef,, be the next state visited by
J. SinceJ disagrees with on X, it must be tha; is the first state on the computation path of
I that queriesX,. On the other hand, there must have been a stdteforeq, on P’ that queries
ani, variable X, distinct from X,; otherwise, there would be & in E, such thatP!, e, ¢, is
an initial segment of the computation path.Bf contradicting the maximality oP’. So now we
know that.J queries two distinct; variables. But/ is in E; (sinceE, C FE,), so this contradicts
Lemmd2. O



Now we give a tight lower bound for deterministic thrifty BPAs discussed in sectidn 2.1,
this improves on an earlier result in [BCN94], which gives a lower bound é#" for all  and

all k> (7).

Theorem 4. For any h, k, every deterministic thrifty branching program solvi@y™ (k) has at
leastk” states.

Fix a deterministic thrifty BPB that solvesBT" (k). Let E be the inputs td3. Let Vars be the
set ofk-valued input variables (sa@| = £V2"/). Let ) be the states aB. If i is an internal node
then thei variables aref;(a, b) for a, b € [k], and ifi is a leaf node then there is just oheariable
l;. We sometimes sayf; variable” just as an in-line reminder thiais an internal node. Letar(q)
be the input variable thgtqueries. Lehode be the function that maps each varialdldo the node
i such thatX is ani variable, and each stageto node(var(q)). When it is clear from the context
thatq is on the computation path df we just say § queries:” instead of ‘¢ queries the thriftyi
variable of/”.

Fix aninput/, and letP be its computation path. We will choosestates orP ascritical states
for I, one for each node. Note thammust visit a state that queries the root (i.e. queries thythr
root variable ofl), since otherwise the branching program would make a nmasteikkan input/
that is identical tol exceptf{ (v, vl) := k — fl(vi, vl); henceJ € BTh(k) iff I ¢ BTh(k).
So, we can choose the root critical state fao be the last state oR that queries the root. The
remainder of the definition relies on the following small leax

Lemma 4. For any J and internal node, if .J visits a state; that queries;, then for each chilg
of i, there is an earlier state on the computation patlydhat queries;.

Proof. Suppose otherwise, and wlog assume the previous statesrfaide for; = 2i. For every

a # vJ; there is an input, that is identical toJ exceptv;* = a. But the computation paths of,
andJ are identical up t@, so.J, queries a variabl¢; (a, b) such that = vy?,, anda # vy¢, which
contradicts the thrifty assumption. O

Now we can complete the definition of the critical stateg.dfor: an internal node, if is the
node: critical state for/ then the node: (resp. 2i + 1) critical state for/ is the last state o
beforeq that querie®i (resp.2i + 1).

Now we assign a pebbling sequence to each stat€,osuch that the set of pebbled nodes
in each configuration is a minimal cut of the tree or a subsefoofie minimal cut (and once it
becomes a minimal cut, it remains so), and any two adjacetftgroations are either identical,
or else the later one follows from the earlier one by a validigp@g move. This assignment can
be described inductively by starting with the last statefoand working backwards. Note that
implicitly we will be using the following fact:

Fact 1. For any inputl/, if j is a descendant afthen the nodg critical state for/ occurs earlier
on the computation path dfthan the node critical state for/.

The pebbling configuration for the output state has just ekybeebble on the root. Assume we
have defined the pebbling configurations §aand every state following on P, and letq’ be the
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state beforg on P. If ¢’ is not critical, then we make its pebbling configuration beghme as that
of ¢. If ¢’ is critical then it must query a nodehat is pebbled ig. The pebbling configuration for
¢’ is obtained from the configuration fgrby removing the pebble fromand adding pebbles
and2; + 1 (if 7 is an internal node - otherwise you only remove the pebbia fio

In the above definition of the pebbling configurations, cdasthe first critical state we define
that queries a height 2 node (working backwards — so the fitstat state we define queries the
root). We use! to denote this state and call it tisepercritical state of /. Since the pebbling
configurations up te’ (again, working backwards) are minimal cuts of the tree, thedchildren
of node(r’) are included, it is not hard to see that there must be at lepsbbled nodes. We refer
to these nodes as thwttleneck nodesof 1. Define thebottleneck path of » € R to be the path
from node(r) to the root. The bottleneck path éfe F is the bottleneck path of’. This is the
main property of the pebbling sequences that we need:

Fact 2. For any input!, if non-root nodei with parent; is pebbled at a state on P!, then the
nodej critical stateq’ of I occurs later onP?, and there is no state (critical or otherwise) between
g andq’ on P! that queries.

Let R be the states that are supercritical for at least one inpet. £l be the inputs with
supercritical state. Now we can state the main lemma.

Lemma 5. For everyr € R, there is an injective function frod, to [k]/Varsl=",

The lemma gives us that?,| < klVesl=h for everyr € R. Since{E.,},cr is a partition of
E, there must be at leasl)|/kVorsl=" = k" sets in the partition, i.e. there must be at lefst
supercritical states. So the theorem follows from the lemma

Fix r € Rand letD := E,. Letis := node(r). Sincer is thrifty for everyl in D, there are
valuesvj) andvj ., such thawl, = vf andvl, ., =i ., foreverylin D. We are going
to define a proceduraNrERADV that takes as input &]-string (the advice), tries to interpret it as
the code of an input i, and when successful outputs that input. We want to showdhatery
I € D we can choosedv’ € [k]V2=" such that NTERADV (adv’)| = I. Of course, choosing
adv’ for each! yields the injective function required to prove the lemma.

During the execution ofNTERADV we maintain a current statg a partial functiorv* from
nodes tgk|, and a set of nodes, . Once we have added a nodelfp, we never remove it, and
once we have added (i) := a to the definition ofv*, we never change*(i). We have reacheg
by following a consistent partial computation pasiarting fromr, meaning there is at least one
input in D that visits exactly the states and edges that we visiteddsstwandg. So initially
g = r. Intuitively, v*(i)| = a for somea when we have “committed” to interpreting the advice
we have read so-far as being the initial segmersoohiecomplete advice stringdv’ for an input/
with v/ = a. Initially v* is undefined everywhere. As the procedure goes on, we mayludiee to
use an element of the advice in order to set a valug ghowever, by exploiting the properties of
the critical state sequences, for edch D, when given the complete adviadv’ for I there will
be at least nodes/{ that we “learn” without directly using the advice. Such apogunity arises
when we visit a state that queries some varighlg , b2) and we have not yet committed to a value
for at least one of*(2i) or v*(2i + 1) (if both then, we learn two nodes). When this happens, we

11



add that child or children afto U, (theL stands for “learned”). So initially/, is empty. There is
a loop in the procedureNirERADYV that iterates untilU, | = h. Note that the children of. will
be learned immediately. Let (D) be the inputs inD consistent with*, i.e. I € v*(D)iff I € D
andv! = v*(i) for everyi € Dom(v*).

Following is the complete pseudocode famrERADV . We also state the most-important of the
invariants that are maintained.

Procedure INTERADV (d € [k]*):
1: ¢ :=r, U, := 0, v* := undefined everywhere.
2: Loop Invariant: If N elements ofi have been used, théBom(v*)| = N + |Uy|.
3: while |U| < h do

4: i :=node(q)

5. if iisaninternal node ar®i ¢ Dom(v*) or2i + 1 ¢ Dom(v*) then
6: let bl, b be such thaﬁar(q) = fi(bb bg)

7: if 2i ¢ Dom(v*) then

8: v*(21) := by andUy := U, + 2i.

9 end if

10: if 20 + 1 ¢ Dom(v*) and|U.| < h then

11: v*(2i + 1) :==byandU_ := U+ (2i + 1).
12: end if

13:  endif

14: if i € Dom(v*) then

15: let « be the next unused elementaf

16: v*(i) := a.

17:  end if

18: ¢ := the state reached by taking the edge out labeledv* (7).

19: end while

20: let b be the nextVars| — |Dom(v*)| unused elements of .

21: let Iy, ..., I;,~(p) be the inputs in*(D) sorted according to some globally fixed orderfon

22: if b is thet-largest string in the lexiocgraphical ordering[bfVarsl~IPom()l ‘andt < |v*(D)],
then returnltﬁq

If the loop finishes, then there are at m&t/|Dom(v*)| = klVarsl=IPem)l inputs inv* (D).

So for each of the inputé enumerated on line 21, there is a way of settihgo that/ will be
chosen on ling22.

Recall we are trying to show that for evelyin D there is a stringdv’ € [k]Vasl=" such that
INTERADV (@)] = I. Thisis easy to see under the assumption that there is stichgatbat makes
the loop finish while maintaining the loop invariant; sinbe toop invariant ensures we have used
|Dom(v*)| — h elements of advice when we reach liné 20, and since lihe 2@eitast time when
the advice is used, in all we use at mpéirs| — h elements of advice. To remove that assumption,
first observe that for each we can set the advice to somév’ so thatl € g(D) is maintained

“See after this code for argument thait(D)| < k/Varsl—[Pom(v™)]

12



when INTERADV is run ona’. Moreover, for thatdv’, we will never use an element of advice to
set the value of a bottleneck nodelgfand/ has at least bottleneck nodes. Note, however, that
this does not necessarily imply théf (the » nodesU, we obtain when runningNTERADV on
adv’) is a subset of the bottleneck nodes/ofFinally, note that we are of course implicitly using
the fact that no advice elements are “wasted”; each is useetta different node value.

Corollary 1. For anyh, k, every deterministic thrifty branching program solviiy (k) has at
least) ", ., k' states.

Proof. The previous theorem only counts states that query heigbti@sy The same proof is easily
adapted to show there are at lekst! ™2 states that query heighnhodes, fori = 2,..., h. Those
h — 1 state sets are disjoint, so we can sum the bounds. O

4 Main Results

4.1 Fractional Pebbling Lower Bound

The proof of Theorerh]5 proceeds by reducing the problem ofipgdower bounds on the frac-
tional pebbling cost for balanced binary trees, to the mabbf proving lower bounds on the
black-white pebbling costs for a family of DAGs. In doing sz are essentially discretizing the
fractional pebbling problem; the main construction has r@aipeterc that determines how many
nodes in the dag are used to “simulate” each node in the treaviiMise the next lemma (due to
S. Cook) to conclude that we can always makarge enough that we don'’t “lose anything”.

Lemma 6. For every finite DAG there is an optimal fractional B/W pehbglin which all pebble
values are rational numbers. (This result is robust indejme of various definitions of pebbling;
for example with or without sliding moves, and whether or wet require the root to end up
pebbled.)

Proof. Consider an optimal B/W fractional pebbling algorithm. ltke variables, ; andw,,
stand for the black and white pebble values of no@¢ stept of the algorithm.

Claim: We can define a set of linear inequalities with O - 1 coeffigemiich suffice to ensure
that the pebbling is legal.

For example, all variables are non-negatig, + w,; < 1, initially all variables are 0, and
finally the nodes have the values that we want, node valueainetine same on steps in which
nothing is added or subtracted, and if the black value of @&nsdncreased at a step then all its
children must be 1 in the previous step, etc.

Now letp be a new variable representing the maximum pebble valuesddltforithm. We add
an inequality for each stefthat says the sum of all pebble values at stespat mostp.

Any solution to the linear programming problem:

Minimize p subject to all of the above inequalities

gives an optimal pebbling algorithm for the graph. But EMelPyprogram with rational coeffi-
cients has a rational optimal solution (if it has any optisw@ution). O
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Now we are ready to prove the lower bound. We know this boumbigight for heights at
most 4. This is easy to see for height 2 (the bound shout] bat the theorem give$/2 — 1), and
proofs of the tight bounds for heights 3 and 4 are given in [BOBK].

Theorem 5. The fractional pebbling cost for the degréeheighth tree is atleastd—1)h/2—d /2.

Proof. The high-level strategy for the proof is as follows. Giweandh, we transform the tree
T? into a DAG Gy, such that a lower bound o##BWpebbles(G, ) gives a lower bound for
#FRpebbles(77). To analyze#BWpebbles(G,;), we use a result of Klawé [Kla85], who shows
that for a DAGG that satisfies a certain “niceness” propeeyBWpebbles(G) can be given in
terms of #Bpebbles(G) (and the relationship is tight to within a constant less tbas). The
black pebbling cost is typically easier to analyze. In owse;&/;;, does not satisfy the niceness
property as-is, but just by removing some edges fiGm,, we get a new DAGG ;, which is
nice. We then show how to exactly compytdBpebbles(G7, ;) which yields a lower bound on
#BWpebbles(G, 1), and hence ostFRpebbles(T7).

We first motivate the constructia#,; , and show that the whole black-white pebbling number
of Gy, is related to the fractional pebbling numberZf.

We first use Lemmal6 to “discretize” the fractional pebble gafhe following are the rules
for the discretized game, whetrés a parameter:

e For any node), decreasé(v) or increasev(v) by 1/c.
e For any node, including leaf nodes, if all the children ofhave value 1, then increaé@)
or decrease(v) by 1/c.

By Lemmal®, we can assume all pebble values are rational,favel ¢hoose: large enough
it is not a restriction that pebble values can only be charyet)/c. Since sliding moves are not
allowed, the pebbling cost for this game is at most one mag the cost of fractional pebbling
with black sliding moves.

Now we show how to construét, ;, (for an example, see figulré 3). We will split up each node
of T into c nodes, so that the discretized game corresponds to the Wlacle white pebble game
on the new graph. Specifically, the cost of the whole blackevbebble game on the new graph
will be exactlyc times the cost of the discretized gameidh

In place of each node of 77, G, hasc nodesvl[1],...,v[c]; havingc of the v[i] pebbled
simulatesy having value’/c. In place of each edge:, v) of T is a copy of the complete bipartite
graph(U, V'), whereU contains nodes[1]...u[c] andV contains nodes[1]...v[c]|. If u was a
parent ofv in the tree, then all the edges go framto U in the corresponding complete bipartite
graph. Finally, a new “root” is added at height- 1 with edges from each of thenodes at height

. So every node at height— 1 and lower hag parents, and every internal node except for the
root hasde children.

5The reason for this is quite technical: Klawe’s definitionpabbling is slightly different from ours in that it
requires that the root remain pebbled. Adding a new rootef®tbere to be a time when albf the heighth nodes,
which represent the root &/, are pebbled. Adding one more pebble®g,, changes the relationship between the
cost of pebbling’» and the cost of pebbling,;, by a negligible amount.
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Figure 3: lllustration to accompany the definition@jf ;. This isG, 3 with parameter = 3

To lower bound#BWpebbles(G, 1), we will use Klawe'’s result [Kla85]. Klawe showed that
for “nice” graphsG, the black-white pebbling cost @f (with black and white sliding moves) is
at least| #Bpebbles/2| + 1. Of course, the black-white pebbling cost without slidingves is at
least the cost with them. We define what it means for a grapke tade in Klawe’s sense.

Definition 5. A DAG G is nice if the following conditions hold:

1. If uy, us andu are nodes ofs such that:; andu, are children of: (i.e., there are edges from
uy, andus to u), then the cost of black pebbling is equal to the cost of black pebbling

2. If u; anduy are children ofy, then there is no path fromy to us or fromwusy to u,.

3. Ifu,uq,...,u,, are nodes none of which has a path to another, then there deedigjoint
pathsP;, ..., P, such thatp; is a path from a leaf (a node with in-degree O)it@nd there
is no path between and any node i;.

Gan is not nice in Klawe’s sense. We will delete some edges fthmto produce a nice graph
G, and we will analyze#Bpebbles(G7, ;). Note that a lower bound ofBWpebbles(G7, ) is
also a lower bound o#:BWpebbles(G, ).

The following definition will help in explaining the consttion of &7, ;, as well as for specify-
ing and proving properties of certain paths.

Definition 6. Foru € Gy, letT?(u) be the node i’} such thafl’}(u)[i] = u for somei < c. For
v,v' € Th, we sayv < ¢’ if v is visited befores’ in an inorder traversal of?. Foru,u’ € Ggp,
we sayu < ' if TH(u) < Th(u') orif for somev € TF, u = v|i], v’ = v[j], andi < j.

., IS obtained front, , by removinge — 1 edges from each internal node except the root, as
follows (for an example, see figuré 4). For each internal nodeT’, consider the corresponding
nodesu[1],v[2],...,v[c] of G4,. Remove the edges fronji] to itsi — 1 smallest an@ — 7 largest
children. So in the end each internal node except the roat(das 1) + 1 children.

We first analyze#Bpebbles(G, ;) and then show that it is nice. We show theBpebbles(G7 ;) =
¢[(d—1)(h—1) + 1]. Note that an upper bound dff(d — 1)(h — 1) + 1] is attained using a simple
recursive algorithm similar to that used for the binary tree

15



//%\/\/m

QQQ QQQ QQQ QQQ

Figure 4: lllustration to accompany the definition®f , . This isG? ; with parameter = 3

For the lower bound, consider the earliest tiln@hen all paths from a leaf to the root are
blocked. Figuréls is an example of the type of pebbling conéigon that we are about to analyze.
The last pebble placed must have been placed at a leaf, dimeeviset — 1 would be an earlier
time when all paths from a leaf to the root are blocked. Pdie the newly-blocked path from a
leaf to the root. Consider the sét= {u € G, | v ¢ P andu is a child of a node i} of size
c(d=1)(h—1)+(c—1)=¢[(d—1)(h—1)+1] — 1 (thec — 1 is contributed by nodes at height
h). We will give a set of mutually node-disjoint path#, }..cs such thatP, is a path from a leaf
tou andP, does not intersed®?. Attimet — 1, there must be at least one pebble on egglsince
otherwise there would still be an open path from a leaf to tlo¢ at timet. Also counting the leaf
node that is pebbled agives c[(d-1)(h-1) + 1] pebbles.

Definition 7. The left-most (right-most) path to is the unique path ending atdetermined by
choosing the smallest (largest) child at every level.

Definition 8. P(l) is the node of patl® at height,, if it exists.

For eachu € S at heightl, if u is less than (greater tha®)(/) then makeP, the left-most
(right-most) path ta:.. Now we need to show that the pathg,}.cs U {P} are disjoint. The
following fact is clear from the definition o, ,

Lemma 7. For anyu, v’ € G, if u < v’ then the smallest child of is not a child ofu’, and the
largest child ofu’ is not a child ofw.

First we show thaf’, and P are disjoint. The following lemma will help now and in the pfo
thatG?, , is nice.

Lemma 8. For u,v € Gy, with u < v, if there is no path from: to v or from v to u then the
left-most path ta: does not intersect any path tofrom a leaf, and the right-most path todoes
not intersect any path to from a leaf.

Proof. Suppose otherwise and I8} be the left-most path ta, and P, a path tov that intersects
P!. Since there is no path betweerandv, there is a height, one greater than the height where
the two paths first intersect, such th3f(l), P/(l) are defined and/,(l) < P!(l). But then from
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Figure 5: A possible black pebbling bottleneck(f ;, with ¢ = 3

Lemma¥P,(l — 1) # P)(l — 1), a contradiction. The proof for the second part of the lemsna i
similar. O

That P, and P are disjoint follows from using Lemnid 8 anand the sibling of: in P.

Next we show that for distinat, v’ € S, P, does not contain’. Suppose it does. Assunig
is the left-most path ta (the other case is similar). Sinee# «/, there must be a heiglhtsuch
that P, (1) is defined and®,(l — 1) = «/. From the definition of5, we knowP(!) is also a parent
of «’. From the construction aP,, since we assumed, is the left-most path ta, it must be that
P,(l) < P(l). Butthen Lemmal7 tells us that cannot be a child oP(/), a contradiction.

The proof thatP, andP,, do not intersect is by contradiction. Assuming that theeaiar’ € S
such thatP, and P, intersect, there is a heiglt one greater than the height where they first
intersect, such tha®,(l) # P, (l). Note thatP, and P, are both left-most paths or both right-
most paths, since otherwise in order for them to intersest tiould need to cros®. But then
from Lemmd¥P,(l — 1) # P, (I — 1), a contradiction.

See Figur¢ls for an example of a bottleneck of the specifiedttstre forG; , corresponding
to the height 3 binary tree, with= 3:

The last step is to prove thét; , is nice. There are three properties specified in Definition
B. Property 2 is obviously satisfied. For property 1, the argot used to give the black pebbling
lower bound ofc[(d — 1)(h — 1) + 1] can be used to give a black pebbling lower bound(df—

1)(I — 1) + 1 for any node at heighit < A (the 1 is for the last node pebbled, and recall the root
is at heighth + 1), and that bound is tight. For property 3, chod3do be the left-most (right-
most) path fromu; if u, is less than (greater than) Then use Lemmia 8 on each pair of nodes in
{u,ug, .oy}

Since#Bpebbles(G); ;) = c[(d — 1)(h — 1) + 1], we have
#BWopebbles(G ) > #BWpebbles(G7y ;) > ¢[(d —1)(h — 1) +1]/2
and thus that the pebbling cost for the discretized gam€/ois at least(d — 1)(h — 1)/2 + .5,
which implies#FRpebbles(T%) > (d — 1)(h — 1)/2 — .5. O
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4.2 Less-Thrifty Branching Programs
4.2.1 Thrifty BPs with Wrong-Wrong Queries

A variable f;(a, b) is wrong-wrong for input I iff a # vi; andb # vj, ;. The next theorem shows
that querying wrong-wrong variables does not help.

Theorem 6. For anyh, k > 2, if B is a deterministic BP that solve3T" (k) such that each input
only queries variables that are thrifty or wrong-wrong forthenB has at least” states.

Proof. We use the definitions and conventions introduced in the gimsagraph of the proof of
Theoreni#. The proof of the following lemma is similar to tbht. emma4 (pagE‘lB)

Lemma 9. For any J and internal node, there is at least one stateon the computation path of
J that queries the thrifty variable of.J, and for every such, for each childj of 7, there is a state
on the computation path of beforeq that queries the thrifty variable ofJ.

Recall that for the thrifty lower bound, to each input we gasid one “critical state” for each
node, and a pebbling configuration to each critical stateh slhiat then pebbling configurations
made a valid pebbling sequence. This was so even if theythrifinching program was constructed
based on a pebbling sequence of length greaterthilow we will not be selecting critical states,
and we will assign pebbling sequences with length possit#gtgr tham. It may be helpful to
note that this way of assigning pebbling sequences will hiagdollowing property:

Remark Let S be a complete pebbling sequence Tdr such that the root is pebbled only once,
and a pebble is removed from a non-root nedmly during a move that places a pebble on the
parent ofi. For anyk, if Bg, is the thrifty deterministic BP for solving'T" (k) that implements

S in the natural Wa@/, then for every inpuf to Bg , we will assign pebbling sequengéeto 1.

In the end, this will result in a cleaner proof; in particylete will be able to say that when we
interpret the advice fof, every node that gets “learned” is a bottleneck nodé (e Fadtl3).

We define the pebbling sequence foe E by following the computation path df from be-
ginning to end, associating theh thrifty stateg; visited by with thet-th pebbling configuration
Cy, such that’; is either identical ta”; or follows from C; by applying a valid pebbling move.
Letqy, ..., q~ be the thrifty states on the computation pati ofip to the first state,- that queries
the thrifty root variable of . Note thaty; must query a leaf by Lemnia 9. We associgtaith the
empty configuratiort;.

Assume we have defined the configuratidns. . ., C; for the firstt > 1 thrifty states, and
assume’’, ..., C; is a valid sequence of configurations (where adjacent idaintonfigurations
are allowed), but neither it nor any prefix of it is a comple¢blpling sequence. We also maintain
that for allt’ < ¢, if node(qy) is internal, then its children are pebbleddhy and it is not. Let

6Also this lemma is proved in a more-general context on pate 25

"We are talking about a particular family of thrifty BR® ; }, without taking the time to give a precise definition.
Bg i has|S| non-output layers (whergs| is the number of moves i), and if a pebble is placed anin the [-th
move ofS when there are pebbles on the tree, then there &festates in layet of Bg , all of which query a node
variable.
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i := node(q,). By the I.H.i is not pebbled irC;. We defineC,,; by saying how to obtain it by
modifying C;:

1. If 7 is the root, then clearly + 1 = t*, and by the I.H. nodes 2 and 3 are pebbled. Put a
pebble on the root and remove the pebbles from nodes 2 ands3cdinpletes the definition
of the pebbling sequence fér

2. If i is a non-root internal node, then by the I.H. both childreharie pebbled. For each child
j ofi: ifthere is a state’ afterg; that queries the thrifty variable of/, and no state between
q: and ¢’ that queries the thrifty variable of I, then leave the pebble gh and otherwise
remove it.

3. If iis not the root. then place a pebbleidff there is a statg’ afterq, that queries the thrifty
par(i) variable of/ and there is no state betwegrandq’ that queries the thrifty variable
of I.

As before, we define the supercritical stat®f I to be the first thrifty state on the computation
of I whose associated pebbling configuration (tla¢tleneck nodesof 7) has at least one node
blocking every path from the root to a leaf. LBtbe the states that are supercritical for at least
one input, and for each € R let E,. be the inputs with supercritical state As before, using the
argument for the black pebbling lower boundiopebbles fofI”, we get that each € R queries
a height two node — call if_. ForI € E, we sayi._is thesupecritical node for/. The definition
of the bottleneck path BnPath, for » € R has not changed: it is the path franto the root. We
mentioned earlier that every node we “learn” for an inpig a bottleneck node af. This is due
to the next fact. For any andq on the computation path df, let Path’(¢) be the part of the
computation path of starting withg.

Fact 3. 7 is a bottleneck node df € E, iff itis not in BnPath, and there is a state ¢ Pathl(r)
that queries the thriftyar(i) variable ofi and no state beforgin Path’(r) that queries the thrifty
i variable ofI.

It will be convenient to have named the following four setsotles:

Definition 9 (SibIBnPath,, RightPath;, Learnable,, Learnable’).
e SibIBnPath, is the set of nodes that are the sibling of a nodBriRath,..
e Fori € SibIBnPath,, RightPath, is the path from to the right-most leaf under(when the
tree is drawn in the canonical way).
e Learnable, is the set of node$2ir , 2if. + 1} + |, csipisnpatn, RightPath;, i.e. the nodes not
on the bottleneck path that are the descendent of a node dotiheneck path.
e Learnable’ := Learnable, — {2i[_, 2i[_ + 1}.

Itis not hard to see that evefye E, has at least one bottleneck nodeightPath; for each of the
h —2 nodesj € SibIBnPath, (this observation is used in the black pebbling lower bougdment
mentioned above).

Let G be the set of partial functions frolars to [£]. At least wherk = 2 these are commonly
calledrestrictions(of BT"(k)), so we will refer to them as restrictions. Fpe G andD C E we
write g(D) for the inputs inD consistent withy —i.e. g(D) := {I € D | VX € Dom(g). X! =
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g(X)}. It will be convenient to further partition the sefs by fixing some of the variables initially.
This finer partitioning appears in the statement of the manamha:

Lemma 10(Main Lemma) For some integen/, for every supercritical state € R, there is a set
of restrictionsG”... of size at mosk!Va"s—™ such that{ginit(Er)}ginitegait is a partition of £, and

init
for everyg.i in GI..., there is an injective function from,;;(E,) to [k]M~".

init?
Let us see why the theorem follows from the lemma. Sifig6:(E;) },.ccr. is @ partition of
E,, andG?.. has size at mogtVasl=% there must be somg,, € G, such thay; . (F,) has size

at least| £, | /kVasl=M On the other hand, from the lemma we get tearysetg;,.(E,) in the
partition has size at most”—". Hence

B /RN M < g (B)] < KMN

Rearranging givegt,| < kVel/kh = |E|/k", and this holds for all € R. Since{E,},cp is a
partition of £, we get thatk? must have size at leakt.

Proof of Main Lemma

We us€l to refer to the height balanced binary tree, or to the set of its nodes. Weluse refer
to the subtree of  rooted at node, or to its nodes. Fol/ a set of nodesyars(U) is the set of
input variables corresponding to the noded/in-i.e Vars(U) := {X € Vars | X = [;or X =
fi(a,b) for somei € U anda, b € [k]}. For D C E there is a partial function — v from T to
[k] such that?| = a iff v/ = a for everyI in D. Similarly there is a partial functioX — v?
from Vars to [k] such thatX? | = a iff X = q for every[l in D.

The constanfi/ mentioned in the theorem igh — 1)(h — 2)/2 + k?*(h — 1) + h, but we are
just writing that expression here for clarity; we will not lEasoning about it. For eache R, we
are going to define a sét;,, of at mostk!Varsl=M restrictions where eagh,; € G7,, is defined on
some set ofVars| — M variables. Before giving the precise definition of the e, let us see
where the expression fav/ comes from. Fokh — 1)(h —2)/2 = (h—2)+ (h —3) + ... + 1
internal nodes we will fix all but % of the k? variables that define the corresponding functfan
For each of thé, — 1 nodes on the bottleneck paBnPath,, we will not fix any of thek? variables
that define the corresponding function. Lastly, there walklunfixed leaf variables.

Let U, 4 be all the nodes excefhkarnable, + BnPath,. In the following drawing, which
depicts the construction for the height 5 tree whign= 15 is the right-most height 2 node, the
pruned nodes (the nodes in the subtrees that would be atdiseoéthe dashed lines) atg _, and
the unmarked nodes plus the-marked nodes areearnable,. The[d-marked nodes arBnPath,.
and will have no fixed variables. Th&-marked nodes argiblBnPath, and will havek? — k fixed
variables.
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Let G, be all the restrictiong with domaanars (Up ). For everyg € G,, for every internal

nodes in Learnable,, we have tha’vgi is defined since is defined for everyl,; variable. For
eachg € G, let Gr,g be the set of extensionsof g such that for all internal nodesn Learnable,.,
forall a # vg(E and allb, ¢’ is defined onf;(a,b), andg’(E,) is not empty. Finally, we také&’
to belJ,c, Grg- The size ofGy, is at mostk/Versi—,

Now fix r e R and g, € G, and letD := gy(E,). From this point on, we dropr”
from Learnable,., Learnable’, SibIBnPath,., BnPath,., andi... Sincer is thrifty for everyl in D, we
havevi) | andvs) .| (noter queries the variablg; (v3 ,vi .,)). Since we have now fixed
D = gint(E,), wheng is an extension ofi;: we just writev?! and X¢ instead ofo?”) and x¢(?)

As in the proof of Theoreinl 4, we will define a procedure calletdRADV (short for “Interpret
Advice”) that takes advice in the form of{&]-string and interprets it as the code of an inpubin
Ultimately we want to show:

Supercntlcal node

init

Proposition 1. For everyl € D, there is some restriction that extendsy;,;; and some advice
adv’ of length at most/ — h, such thatt NTERADV (adv’)| = g andI € g(D) and|Dom(g) —
Dom(ginie)| > |adv’| + h.

The procedureNTERADYV is given precisely in pseudocode on page 23 and relies oruthe s
procedures given on pafgel 23 and the following simple defimjtivhich depends on the fixed input
setD:

Definition 10 (¢ constrains);). We sayg constrains); if for somel € g(D), the thriftyi variable
of I isin Dom(g)

Recall how in the proof of Theorel 4, while reading the adwi¢€ for 7 € D, we maintain
a current statg € Path’(r) and build up a set of “learned nodes” which we caliéd We are
still building up a set of learned nodes, though in the pseade we have opted not to introduce
a variable for that set explicitly. The learned nodes arethusse nodeg such that at some point
during the execution ofNTERADV (adv’), the subprocedureARNNODE is called with second
argument;. In the thrifty proof, to characterize how we are intergigtthe prefix of the advice
that we have read so-far, we only need to record at most one yer node because every input
is limited to querying its: thrifty variables (in the pseudocode we used the variablex partial
mapping fromT to [k]). More precisely, we had that if*(i)| = « after reading some advice
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elements, thenv! = a for everyinput I in E, whose complete advicalv’ hasb as a prefix, i.e.

for every input inv*(£,). Now that inputs can query non-thrifty variables, instebd*ove will be

building up a restrictiory, where initiallyg = ¢;,i;- However, the meaning af( X)| = a is what

one would expect by analogy withi: if g(X )] = a after reading some advice elemehfshen

X' = afor every input/ in D whose complete advicelv’ hasb as a prefix, i.e. for every inputin

g(D). As with v* before, once we define the valyé¢akes on a given variable, we never change it.
We first learn the children aof. atr; we treat this as a special case now because it is the only

time when we learn two nodes while examining one state. Alfigrwe learn a node in essentially

the same situation as before: we reach a staffter reading some of the advice such that:

1. ¢ queries a variablé;(as;, as;1 1) that is thrifty for everyl € g(D), andd
2. Forj = 2iorj = 2i + 1 (not both),g does not constrain; (j is the learned node).

We needh — 2 such states afterfor each input inD. Let us sayy is alearning statefor I € D

if both those conditions hold or if = r. In fact, by the properties aof,.;;, and since after we
will only ever learn nodes iftearnable” = [, spnpacn RightPath;, we can write the previous
conditions in a more informative way:

1. For some internal € Learnable™ + (BnPath — is.), ¢ queries a variablg;(as;, as;11) that is
thrifty for every! € ¢(D), and

2. If iisin Learnable™ theng does not constraim; ;.
If i is in BnPath — isc andj is the child ofi in BnPath, theng does not constrainy, ;.

We can be more specific still; later we will show that for eatthe » — 2 nodes; € SibIBnPath,
we will learn at least one node RightPath;.

Let us now explain what “learning a node” entails. Tempdydix 7 € D. Suppose that while
interpreting the advice fof we reach a state € Path’(r)’ that is a learning state far. Sogq
queries the variablg;(as;, as;+1) for somei in Learnable® + (BnPath — i) anday;, ag; 41 in [k].

If 7 is in BnPath — i, then letj be the child of; in BnPath, and otherwise lej be2i + 1. We
are learning nodg. If j is an internal node, then first we use the advice, if necessarmakeg
total onVars(15; + 15;.+1). After that, there is one variabl€ that is the thrifty; variable for every

I € g(D). So then we “learn’ by addingX — «; to g. The key point is that we have made
progress since we used only = |Dom(g) / Vars(T3; + T5;+1)| new elements of advice to define
gonm + 1 new variables.

The main thing we still need to show is that we can defide so that NTERADV (adv’) will
visit at leasth — 2 learning states fof afterr. As mentioned earlier; has at least one bottleneck
node inRightPath, for each of theh — 2 nodesi € SibIBnPath. By Fact[3, for each of those
bottleneck nodeg there is a statqf in Pathl(r) that queries the thriftpar(j) variable of/, and
no state between andqf that queries the thrifty variable of/.

For eachi € SibIBnPath,, letj! be the earliest state Path’ () among the states

{q} | j € RightPath, and; is a bottleneck node of}

8Hereg is the current restriction.
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and letj; be such thatj) = ¢/.. Then at least the nod€g;}icsiignpacn Will be learned, and
specificallyj; will be learned upon reachingz_. To prove this, fopar(j;) € Learnable® use FactBB
together with the comments given in footnbté 10 on gage 24p&dj;) € BnPath — i., use the
following fact (with j = sibl(j;) andj’ = par(3;)):

Fact 4. For all I € D, if j is a non-root node irBnPath and j' is its ancestor irBnPath, then
there are states ifPath’ (1) that query the thriftyj and j’ variables off, and the first such state
for j occurs before the first such state for

Pseudocode fol NTERADV and subprocedures

The procedure EL implements a very simple function: given inpytd/ (the advice string; and
the current index into it are implicit arguments), it juseashe advice to defingon any variable in
V" on which it is not yet defined. We calliEL in two qualitatively distinct situations. One is when
for somei, V is a single variableX such that for every € ¢(D), we have determined that either
1 is not a bottleneck node dfor X is not thrifty for /. That is the situation when we calllt
from INTERADV. The other situation occurs whereARNNODE calls ALL onVars(T5; U T5;41)
for somej that we have decided to learn. We do this because in ordeato jewe need; to be
defined on enough input variables that the inputg(if?) agree on the “name” of their thrifty
variable, i.e. we need); | andvs;, , |.

SubprocedureFiLL (g € G,V C Vars):

1: letay,. .., a, be the nexin = |VV//Dom(g)| elements of the advice string
2: let X, ..., X, beV/Dom(g) sorted according to some globally fixed orderns
3 addX;—aq,...,X,,—a,t0g

Subprocedure LEARNNODE(g € G, j € Learnable®, b € [k]):
1: if j is not a leathen

2:  FiLL (g, Vars(Ty; + Toj41))
3 letX = fi(vy;,v3;,,)

4: else

5 letX =1,

6: end if

7: addX — btog

Procedure INTERADV (d € [k]*):
1: // Note the advice string and the current index into it are implicit arguments in eveajl to
FiLL andLEARNNODE.
L q =T, g Ginit
. while ¢ is not an output statelo
i < node(q), X « var(q)
if X & Dom(g) then
if 7 = i, then

o akrwn
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7: addly;, — vg™ andly; 41 — v3",  tog

8: else ifi € BnPath — i, then
o let j be the child ofi in BnPathfd
10: let A2;, B24+1 be such thal’ = fi(agi, a2i+1)
11: if vj?l = a; andg does not constrainy,;, then
12: /I Uses|Vars(descendants(sibl(j))) / Dom(g)| elements of advice:
13: LEARNNODE(g, sibl(7), asibi(;))
14: else
15: FiLL (g, {X}) // Uses one element of advice.
16: end if
17: elsel/l i € Learnable®
18: if 4is an internal node angldoes not constraint,;,; then
19: letb be such thal’ = f;(vd"", b)
20: Il Uses|Vars(descendants(2i + 1)) / Dom(g)| elements of advice:
21: LEARNNODE(g,2¢ + 1,b)
22: else
23: FiLL (g,{X}) // Uses one element of advice.
24: end if
25: end if
26: endif
27: g < the state reached by taking the edge out l@beledg(X)
28: end while
29: returng

4.2.2 Less-Thrifty BPs with Additional Queried Variables

The previous result can be generalized to give graduallkerdawer bounds for gradually weaker
restrictions on the model. Fd# a deterministic BP that solvesT" (k), for every state of B that
queries a variablé;(a, b), let RightThrifty(¢) be the set of integers (includinga) such that there
is some input taB that visitsq and has values’ andb for nodes2: and2: + 1. Likewise, let
LeftThrifty(q) be the set of integers such that there is some input that visjtand has values
andd’ for nodes2: and2: + 1. Theoreni b is the special case of the following result when 1.

Theorem 7. For anyh, k > 2 andr < k, if B is a deterministic BP that solve37™ (k) such that
|LeftThrifty(¢)| < m and |RightThrifty(q)| < = for every statey that queries an internal node,
thenB has at leask” /7"~ states.

Proof. We modify the proof of Theorei 6. We first need to verify that &émalogue of Lemnid 9
for this context holds:

9 This makes sense because every nod@niPath other thanis. has a child irBnPath.

10 v3;| by definition of gini: Since2i is the left child of a node ifearnable. Also X = f;(v§,,b) for someb since
ginit IS Not defined orX'. Alsovj, ;| = b—sinceX is not wrong-wrong for any € g(D), it must be thrifty for every
I e€g(D).
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Lemma 11. For any [ and internal nodé€, there is at least one stateon the computation path of
I that queries the thrifty variable of.J, and for every such, for each child; of 7, there is a state
on the computation path dfbeforeq that queries the thrifty variable of/.

Proof. We use the strategy from the proof of Lemila 4 on gage/Iiust visit at least one state
that queries its thrifty root variable, since otherwiBevould make a mistake on an inputthat
is identical tol exceptfy (v, vl) =k — fl (v, vl). Now letq be a state on the computation path
of I that queries the thrifty variable of/, for some internal nodé Suppose the lemma does
not hold for thisq, and wlog assume there is no earlier state that queries tifigy ti variable
of I. For everya # vi. there is an input/, that is identical ta/ exceptvy? = a. This implies
|RightThrifty(¢)| = k, contradicting the assumption th&ight Thrifty(¢)| < 7 < k. O

The assignment of pebbling sequences to inputs and theta®finf supercritical states is the
same. In fact nothing more needs to be changed until thenstateof the Main Lemma, which is
now:

Lemma 12(Main Lemma) For some integen/, for every supercritical state € R, there is a set
of restrictionsG?... of size at most:!Vasl=M such that{ginit(Er)}ginitegrnit is a partition of £, and

init

for everygi.i: in G7..., there is an injective function from,;.(E,) to [x]"=2 x [k]M~".

So in order to cope with the relaxed restrictions on the madehddition to the[k]-valued
advice string of lengthl/ — ~ we now have gr|-valued advice string of length — 2. One can
show the theorem follows from the lemma in the same way asipthof of Theorerhl6. Really at
this point there is just one additional observation neededlapt the proof of Theorelmh 6: Suppose
we have a set of inputg all of which have value: for vy; (i.e. v;| = a), and all the inputs irF’
visit a state; that queries a variablg(a, b). Then we can use the elementsdfto code the values
of vy, for inputs inF'. More concretely, let,, . .., a,, be them < x integersLeftThrifty(q) in
increasing order. Then to ea¢he F we assign the index of!,_, in a;,...,a,. Of course a
similar property holds for the case whénis a set of inputs that agree on,,;. We use this
observation later to show that if we “know” the value of nadeupon reaching;, then we can
learn node2; + 1 with the help of just an element afvalued advice, and similarly for learning
node2i.

The definition ofG}, is the same, and as before weifie R andgi,: € G},;; and then define a

procedure that interprets some given advice as the codeigpanin D := g,,:(F,). The analogue
of Propositior L (page 21) is:

Proposition 2. For everyl € D, there is some restrictiog that extendg;;:, a [r]-valued advice
stringadv’ of lengthi — 2 and a[k]-valued advice stringdv:, of length at mosi/ — h, such that
INTERADV (advy, adv!)| = gand! € g(D) and|Dom(g) — Dom(ginit)| > |adv’| + h.

However, it will be convenient to instead give a proceduwedRADV’ for which the following
superficially different proposition holds:

Proposition 3. For every!l € D, there is some restrictiop that extendg;;:, a [7]-valued advice
string adv’ of length at least — 2 and a[k]-valued advice stringdv;, of length at most\/ —

25



ladvZ| — 2, such thatiNTERADV'(adv}, adv.)| = g andI € g(D) and|Dom(g) — Dom(gini)| >
ladv’| + |adv. | + 2.

To get the procedurenirERADV of Propositiof 2 from the proceduretERADV’ of Propo-
sition[3, just run NTERADV' until h — 2 elements of thér]-valued advice have been used, and
then, if necessary, use elements of thevalued advice whenever an additional element of the
[7]-valued advice is required. This works since< k and|advi| < M — |adv’| — 2.

Let us say; is right-thrifty for 1 if ¢ queries a variablg;(a, b) such thab = v}, ., anda # vi;.
Similarly defineleft-thrifty for 1. Previously, while interpreting the advice fébwe only learned
node values at states that are thrifty fodlNow we may learn node values at states that are thrifty,
right-thrifty, or left-thrifty for 7. As before, we always learn the childrenigf and the remaining
h — 2 nodes we learn are irearnable®.

First we consider the case of learning a nod8iiBnPath. We consider the case of learning
a left child2i — the case of learning a right child is similar. Lgbe the first state iPathI(r) that
queries the thrifty2i + 1 variable of/. If we learn2i, then we do so at the first stajeafter g
that queries amvariable that is thrifty or right-thrifty for. Now we consider the case of learning
a node inLearnable® — SibIBnPath. Every node inLearnable” — SibIBnPath is a right child, so
suppose we are learnig+ 1. Then we do so at the first statePath’ (r) that queries anvariable
that is thrifty or left-thrifty for /.

As before, for eacli in D and each of thé — 2 nodes: in SibIBnPath, we will learn at least
one node irRightPath, (and of course we still learn the children of the superaltiodei.). This
is again proved using Facts 3 (pagé 19)[@nd 4 (pabe 23); bibtrosd since we did not change the
assignment of pebbling sequences to inputs.

We provide pseudocode foNntERADV’, just in case the reader has questions not explic-
itly addressed in the preceding prose. On the other handg tkdittle to read since idiffers
from the previous definition of INTERADV (4.2.1 on pagé¢ 23) only in a few linesear the two
calls to LEARNNODE (specifically lines~IR 15 and P1-14). The two subprocedé&res and
LEARNNODE do not use thér|-valued advice and do not need to be modified.

Procedure INTERADV'(ay, € [k]*, @, € [7]*):
1: // Note the advice string,. and the current index into it are both implicit arguments iregy
call to FiLL andLEARNNODE.
2. q T, g < Ginit
3: while ¢ is not an output statelo

4: i+« node(q), X < var(q)

5. if X ¢ Dom(g) then

6 if 7 = i, then

7: addly;, — v3™ andly;, 41 — v3",  tog

8 else ifi € BnPath — i, then

9 let j be the child ofi in BnPath

10: let A2;, B2;4+1 be such thall’ = fi(G/QZ” a2i+1)

11: if vj?l = a; andg does not constrain,;, then

12: let = be the next element of tHe|-valued advice.
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13: if 7 = 2i + 1 then leth be thez-th greatest integer iRightThrifty(¢) and otherwise
let b be thez-th greatest integer ibeft Thrifty(q)

14: Il Uses|Vars(descendants(sibl(j))) / Dom(g)| elements ofk|-valued advice:
15: LEARNNODE(g, sibl(j), b)

16: else

17: FILL (g,{X}) // Uses one element f]-valued advice.

18: end if

19: elsel/ i € Learnable”

20: if 4is an internal node angdoes not constraint,;,; then

21: let = be the next element of tHe|-valued advice.

22: let b be thez-th greatest integer ibeft Thrifty(q).

23: Il Uses|Vars(descendants(2i 4+ 1)) / Dom(g)| elements ofk]-valued advice:
24: LEARNNODE(g, 2i + 1,b)

25: else

26: FILL (g, {X}) // Uses one element @f]-valued advice.

27: end if

28: end if

29:  endif

30: ¢ < the state reached by taking the edge out lafbeledg(X)

31: end while

32: returng

0

We give one more extension of the thrifty lower bound. Weddtrce another parameter
w: for each input/, we require that there are at mastnodes: such that/ visits a statey
with |RightThrifty(¢)| > 1 or |LeftThrifty(¢)| > 1. The motivation for this is that fow = 1
andm = logk — loglogk, the model includes BPs that achieve the best known upperdsou
for BT"(k), namelyO(k"/logk). For those parameters the theorem gives a lower bound of
k" /(log k — loglog k) = Q(k"/log k). In [BCM*09H] it was shown that the minimum number of
states founrestricteddeterministic BPs solvingT3(k) is ©(k*/ log k).

Theorem 8. For anyh,k > 2 andn < k andw < h — 2, if B is a deterministic BP that solves
BT"(k) such thatLeft Thrifty(q)| < 7 and|RightThrifty(q)| < = for every statey that queries an
internal node, and such that for every inputhere are at mosty nodesi such that/ visits a state
q that queries an-variable and hasRightThrifty(¢)| > 1 or |LeftThrifty(¢)| > 1, thenB has at
leastk" /7 states.

Proof. This is an easy modification of the proof of the previous redebr all butw of the h — 2
learning statesg afterr, we do not need to use an element of fthevalued advice to learn a child
of node(q). Hence we only need [&]-valued advice string of length. O

5 Open Problems

The first is a problem that can, in principle, be resolvedgisicomputer.
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1. Show that for somé, & there is a deterministic branching program with fewer ttiam 1)"
states that solveBT" (k).

Theoren{# suggests the following conjecture: forfalhondeterministic thrifty branching pro-
grams solvingF'T" (k) requireQ(k#FReebbles(T")) states,
2. Refute it, with or without the thrifty restriction.
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