
LIPIcs Leibniz International Proceedings in Informatics

Fractional Pebbling and Thrifty
Branching Programs

Mark Braverman1, Stephen Cook2, Pierre McKenzie3, Rahul
Santhanam4, Dustin Wehr2

1 Microsoft Research

Cambridge, Massachussetts

mbraverm@cs.toronto.edu

2 University of Toronto

Toronto

sacook@cs.toronto.edu, wehr@cs.toronto.edu

3 Universite de Montreal

Montreal

mckenzie@iro.umontreal.ca

4 University of Edinburgh

Edinburgh

rsanthan@inf.ed.ac.uk

ABSTRACT.
We study the branching program complexity of the tree evaluation problem, introduced in [BCM+09a]
as a candidate for separating NL from LogCFL. The input to the problem is a rooted, balanced d-
ary tree of height h, whose internal nodes are labelled with d-ary functions on [k] = {1, . . . , k}, and
whose leaves are labelled with elements of [k]. Each node obtains a value in [k] equal to its d-ary
function applied to the values of its d children. The output is the value of the root.
Deterministic k-way branching programs as related to black pebbling algorithms have been stud-
ied in [BCM+09a]. Here we introduce the notion of fractional pebbling of graphs to study non-
deterministic branching program size. We prove that this yields non-deterministic branching pro-
grams with Θ(kh/2+1) states solving the Boolean problem “determine whether the root has value
1” for binary trees - this is asymptotically better than the branching program size corresponding to
black-white pebbling. We prove upper and lower bounds on the fractional pebbling number of d-ary
trees, as well as a general result relating the fractional pebbling number of a graph to the black-white
pebbling number.
We introduce a simple semantic restriction called thrifty on k-way branching programs solving tree
evaluation problems and show that the branching program size bound of Θ(kh) is tight (up to a
constant factor) for all h ≥ 2 for deterministic thrifty programs. We show that the non-deterministic
branching programs that correspond to fractional pebbling are thrifty as well, and that the bound
of Θ(kh/2+1) is tight for non-deterministic thrifty programs for h = 2, 3, 4. We hypothesise that
thrifty branching programs are optimal among k-way branching programs solving the tree evalua-
tion problem - proving this for deterministic programs would separate L from LogCFL and proving
it for non-deterministic programs would separateNL from LogCFL.

c© Braverman, Cook, McKenzie, Santhanam, Wehr; licensed under Creative Commons License-NC-ND

2 FRACTIONAL PEBBLING AND THRIFTY BRANCHING PROGRAMS

Figure 1: A height 3 binary tree T32 with nodes numbered heap style.

1 Introduction

One of the fundamental problems in complexity theory is to separate P from L. In a recent

paper [BCM+09a], we propose the Tree evaluation problem as a candidate to separate these

classes, and indeed to obtain the much tighter separation of LogCFL from NL.

The Tree Evaluation problem FTd(h, k) is defined as follows. The input to FTd(h, k) is a
balanced d-ary tree of height h, denoted Thd .(see Fig. 1). Attached to each internal node i of

the tree is some explicit function fi : [k]
d → [k] specified as kd integers in [k] = {1, . . . , k}.

Attached to each leaf is a number in [k]. Each internal tree node thus takes a value in [k] by
applying its attached function to the values of its children. The function problem FTd(h, k) is
to compute the value of the root, and the Boolean problem BTd(h, k) is to determine whether
this value is 1.

In [BCM+09a], we show that BTd(h, k) ∈ LogCFL. To show that LogCFL 6⊆ L (resp.
LogCFL 6⊆ NL), it’s sufficient to get a super-polynomial lower bound on the deterministic
(resp. non-deterministic) branching program complexity of the Tree evaluation problem.

As we observe in [BCM+09a], a lower bound of Ω(kr(h)) on the number of states in any
deterministic (resp. non-deterministic) branching program solving FTd(h, k) or BTd(h, k)
for any unbounded function r(h) would yield the desired separation between LogCFL and
L (resp. NL).

In this paper, we study the deterministic and non-deterministic branching program

complexity of the tree evaluation problem, both from the perspective of upper bounds and

lower bounds. In the context of branching programs we think of d and h as fixed, and we

are interested in how the number of states required grows with k. To indicate this point of

view we write the function problem FTd(h, k) as FT
h
d (k) and the Boolean problem BTd(h, k)

as BThd (k). For this it turns out that k-way branching programs are a more natural model
than Boolean branching programs, since an input of FThd (k) or BT

h
d (k) is naturally presented

as a tuple of elements in [k]. Each non-final state in a k-way BP queries a specific element of
the tuple, and branches k possible ways according to the k possible answers. Lower bounds

for k-way BPs are at least as strong as lower bounds for Boolean BPs, while upper bounds

can be smaller by at most a factor of k.

Our best upper bounds for k-way deterministic branching programs come from black

pebbling algorithms for trees. There is a well-known generalisation of black pebbling called

black-white pebbling which naturally models non-deterministic procedures. However we

BRAVERMAN, COOK, MCKENZIE, SANTHANAM, WEHR FSTTCS 2009 3

find we can often do better in terms of non-deterministic branching program complexity

than using black-white pebbling. For example, there is a k-way non-deterministic branching

program of size O(k5/2) which solves BT32 (k) while the size of the branching program aris-
ing from the optimal black-white pebbling of T32 is O(k3). These non-trivial upper bounds
lead us to re-examine the notion of pebbling, and we come upwith a more relaxed notion of

pebbling called fractional pebbling, which corresponds to non-deterministic branching pro-

gram complexity in a tighter way. For example, the tree T32 can be fractionally pebbled

with 5/2 pebbles, which leads to non-deterministic branching programs of size O(k5/2) for
BT32 (k) . We show a general correspondence between fractional pebbling number and non-
deterministic branching program complexity.

THEOREM 1. If Thd can be fractionally pebbled with p pebbles, then non-deterministic

branching programs can solve BThd (k) with O(kp) states

We explore this new notion of pebbling, and prove a general result that fractional peb-

bling saves at most a factor of 2 over black-white pebbling. Getting tight bounds on the frac-

tional pebbling number of trees turns out to be much more difficult than proving bounds

for black-white pebbling. We do have some success though - we prove upper and lower

bounds which are within d/2+ 1 of each other for degree d, using a non-trivial reduction to
results of Klawe [Kla85] for pyramid graphs. In addition, we get tight results for height-3

trees and the height-4 binary tree.

THEOREM 2. The fractional pebbling number of Thd is at least (d− 1)h/2− d/2, and at most
(d− 1)h/2+ 1.

We then turn our attention to lower bounds. In our previous paper [BCM+09a], we

proved tight lower bounds for the tree evaluation problem on height-3 trees. Here we try

to obtain lower bounds for trees of arbitrary height, but this comes at a cost to generality in

the model. We introduce a natural semantic restriction on BPs which solve the tree evalu-

ation problem: A k-way BP is thrifty if it only queries the function f (x1, . . . , xd) associated
with a node when (x1, . . . , xd) are the correct values of the children of the node. The deter-
ministic BPs corresponding to black pebbling are thrifty; so are the non-deterministic BPs

corresponding to fractional pebbling.

THEOREM 3. If p is theminimum number of pebbles required to black-pebble Th2 then every
deterministic thrifty BP solving BTh2 (k) (or FT

h
2 (k)) requires Ω(kp) states.

For the decision problem BTh2 (k) there is indeed a non-thrifty deterministic BP improv-
ing on the bound by a factor of log k, and this is tight for h = 3 [BCM+09a]. But we have not

been able to improve on thrifty BPs for solving any function problem FThd (k).

We have been able to prove that thrifty non-deterministic BPs cannot beat fractional

pebbling for binary trees of height h = 4 or less, but for general trees this is open. It is
not hard to see that for black pebbling, fractional pebbles do not help. The difficulty of

analysing fractional pebbling compared to black pebbling might explain why we have been

able to prove tight bounds for deterministic thrifty BPs for all binary trees, but only for trees

of height 4 or less for non-deterministic thrifty BPs.

We pose the following as another interesting open question:

4 FRACTIONAL PEBBLING AND THRIFTY BRANCHING PROGRAMS

Thrifty Hypothesis: Thrifty BPs are optimal among k-way BPs solving FThd (k).

Proving this for deterministic BPswould show L 6= LogDCFL, and for non-deterministic
BPs would show NL 6= LogCFL. Disproving this would provide interesting new space-
efficient algorithms and might point the way to new approaches for proving lower bounds.

1.1 Relation to previous work

Taitslin [Tai05] proposed a problem similar to BTh2 (k) in which the functions attached to
internal nodes are specific quasi groups, in an unsuccessful attempt to prove NL 6= P.

Gal, Koucky and McKenzie [GKM08] proved exponential lower bounds on the size

of restricted n-way branching programs solving versions of the problem GEN. Like our

problems BThd (k) and FT
h
d (k), the best known upper bounds for solving GEN come from

pebbling algorithms.

As a concrete approach to separating NC1 from NC2, Karchmer, Raz and Wigderson

[KRW95] suggested proving that the circuit depth required to compose a Boolean function

with itself h times grows appreciably with h. Edmonds, Impagliazzo, Rudich and Sgall

[EIRS01] noted that the approach would in fact separate NC1 from AC1. They also coined

the name Iterated Multiplexor for the most general computational problem considered in

[KRW95], namely composing in a tree-like fashion a set of explicitly presented Boolean

functions, one per tree node. Our problem FThd (k) can be considered as a generalisation
of the Iterated Multiplexor problem in which the functions map [k]d to [k] instead of {0, 1}d

to {0, 1}. This generalisation allows us to focus on getting lower bounds as a function of k
when the tree is fixed.

1.2 Organization

The paper is organized as follows. Section 2 defines the main notions used in this paper,

including branching programs and pebbling. Section 3 proves various upper and lower

bounds on black, black-white and fractional pebbling. Section 4 relates branching programs

and pebbling, and uses the results of Section 3 to prove upper bounds on the size of branch-

ing programs. Section 5 contains results for thrifty branching programs. Because of space

constraints, proofs are omitted from this version of the paper.

2 Preliminaries

We assume some familiarity with complexity theory, such as can be found in [Gol08]. We

write [k] for {1, 2, . . . , k}. For d, h ≥ 2 we use Thd to denote the balanced d-ary tree of height
h.

Warning: Here the height of a tree is the number of levels in the tree, as opposed to the

distance from root to leaf. Thus T22 has just 3 nodes.

We number the nodes of Thd as suggested by the heap data structure. Thus the root is node

1, and in general the children of node i are (when d = 2) nodes 2i, 2i + 1 (see Figure 1).

BRAVERMAN, COOK, MCKENZIE, SANTHANAM, WEHR FSTTCS 2009 5

DEFINITION 4.[Tree evaluation problems] Given: The tree Thd with each non-leaf node i
independently labelled with a function fi : [k]d → [k] and each leaf node independently
labelled with an element from [k], where d, h, k ≥ 2.
Function evaluation problem FThd (k): Compute the value v1 ∈ [k] of the root 1 of Thd , where
in general vi = a if i is a leaf labelled a and vi = fi(vj1 , . . . , vjd) if the children of i are j1, . . . , jd.
Boolean problem BThd (k): Decide whether v1 = 1.

2.1 Branching programs

We use the following definition of branching programs, inspired by Wegener [Weg00, p.

239] and by the k-way branching program model of Borodin and Cook [BC82].

DEFINITION 5.[Branching programs] A non-deterministic k-way branching program B com-
puting a total function g : [k]m → R, where R is a finite set, is a directed rooted multi-graph
whose nodes are called states. Every edge has a label from [k]. Every state has a label from
[m], except |R| final sink states consecutively labelled with the elements from R. An input
(x1, . . . , xm) ∈ [k]m activates, for each 1 ≤ j ≤ m, every edge labelled xj out of every state
labelled j. A computation on input ~x = (x1, . . . , xm) ∈ [k]m is a directed path consisting
of edges activated by ~x which begins with the unique start state (the root), and either it is
infinite, or it ends in the final state labelled g(x1, . . . , xm), or it ends in a non-final state la-
belled jwith no out-edge labelled xj (in which case we say the computation aborts). At least
one such computation must end in a final state. The size of B is its number of states. B is

deterministic k-way if every non-final state has precisely k out-edges labelled 1, . . . , k. B is
binary if k = 2.

We say that B solves a decision problem (relation) if it computes the characteristic func-
tion of the relation.

A k-way branching program computing the function FThd (k) requires k
d k-ary argu-

ments for each internal node i of Thd in order to specify the function fi, together with one

k-ary argument for each leaf. Thus in the notation of Definition 4, FThd (k): [k]
m → R where

R = [k] and m = dh−1−1
d−1 · kd + dh−1. Also BThd (k): [k]

m → {0, 1}.
For fixed d, hwe are interested in how the number of states required for a k-way branch-

ing program to compute FThd (k) and BT
h
d (k) grows with k. We define #detFstateshd(k) (resp.

#ndetFstateshd(k)) to be the minimum number of states required for a deterministic (resp.
non-deterministic) k-way branching program to solve FThd (k). Similarly we define #detBstateshd(k)

and #ndetBstateshd(k) to be the number of states for solving BT
h
d (k).

The next lemma shows that the function problem is not much harder to solve than the

Boolean problem.

LEMMA 6. [BCM+09a]

#detBstateshd(k) ≤ #detFstateshd(k) ≤ k · #detBstateshd(k)

#ndetBstateshd(k) ≤ #ndetFstateshd(k) ≤ k · #ndetBstateshd(k)

Next we introduce thrifty programs, a restricted form of k-way branching programs

for solving tree evaluation problems. Thrifty programs efficiently simulate pebbling algo-

6 FRACTIONAL PEBBLING AND THRIFTY BRANCHING PROGRAMS

rithms, and implement the best known upper bounds for #ndetBstateshd(k) and #detFstateshd(k),
and are within a factor of log k of the best known for #detBstateshd(k). In Section 4 we prove
tight lower bounds for deterministic thrifty programs which solve BThd (k) and FT

h
d (k).

DEFINITION 7.[Thrifty branching program]A deterministic k-way branching programwhich
solves FThd (k) or BT

h
d (k) is thrifty if during the computation on any input every query fi(~x)

to an internal node i of Thd satisfies the condition that ~x is the tuple of correct values for

the children of node i. A non-deterministic such program is thrifty if for every input every
computation which ends in a final state satisfies the above restriction on queries.

Note that the restriction in the above definition is semantic, rather than syntactic. It

somewhat resembles the semantic restriction used to define incremental branching pro-

grams in [GKM08]. However we are able to prove strong lower bounds using our semantic

restriction, but in [GKM08] a syntactic restriction was needed to prove lower bounds.

2.2 Pebbling

The pebbling game for dags was defined by Paterson and Hewitt [PH70] and was used

as an abstraction for deterministic Turing machine space in [Coo74]. Black-white pebbling

was introduced in [CS76] as an abstraction of non-deterministic Turing machine space (see

[Nor09] for a recent survey).

Here we define and use three versions of the pebbling game. The first is a simple

‘black pebbling’ game: A black pebble can be placed on any leaf node, and in general if all

children of a node i have pebbles, then one of the pebbles on the children can be slid to i

(this is a “black sliding move’)’. Any black pebble can be removed at any time. The goal is

to pebble the root, using as few pebbles as possible. The second version is ‘whole’ black-

white pebbling as defined in [CS76] with the restriction that we do not allow “white sliding

moves”. Thus if node i has a white pebble and each child of i has a pebble (either black or

white) then the white pebble can be removed. (A white sliding move would apply if one of

the children had no pebble, and the white pebble on i was slid to the empty child. We do

not allow this.) A white pebble can be placed on any node at any time. The goal is to start

and end with no pebbles, but to have a black pebble on the root at some time.

The third is a new game called fractional pebbling, which generalises whole black-white

pebbling by allowing the black and white pebble value of a node to be any real number

between 0 and 1. However the total pebble value of each child of a node i must be 1 before

the black value of i is increased or the white value of i is decreased. Figure 2 illustrates two

configurations in an optimal fractional pebbling of the binary tree of height three using 2.5

pebbles.

Our motivation for choosing these definitions is that we want pebbling algorithms for

trees to closely correspond to k-way branching program algorithms for the tree evaluation

problem.

We start by defining fractional pebbling, and then define the other two notions as re-

strictions on fractional pebbling.

BRAVERMAN, COOK, MCKENZIE, SANTHANAM, WEHR FSTTCS 2009 7

DEFINITION 8.[Pebbling] A fractional pebble configuration on a rooted d-ary tree T is an
assignment of a pair of real numbers (b(i),w(i)) to each node i of the tree, where

0 ≤ b(i),w(i) (1)

b(i) +w(i) ≤ 1 (2)

Here b(i) and w(i) are the black pebble value and the white pebble value, respectively, of i,
and b(i) + w(i) is the pebble value of i. The number of pebbles in the configuration is the
sum over all nodes i of the pebble value of i. The legal pebble moves are as follows (always
subject to maintaining the constraints (1), (2)): (i) For any node i, decrease b(i) arbitrarily,
(ii) For any node i, increase w(i) so that b(i) + w(i) = 1, (iii) For every node i, if each child
of i has pebble value 1, then decrease w(i) to 0, increase b(i) arbitrarily, and simultaneously
decrease the black pebble values the children of i arbitrarily.

A fractional pebbling of T using p pebbles is any sequence of (fractional) pebbling
moves on nodes of T which starts and ends with every node having pebble value 0, and
at some point the root has black pebble value 1, and no configuration has more than p peb-
bles.

A whole black-white pebbling of T is a fractional pebbling of T such that b(i) and w(i)
take values in {0, 1} for every node i and every configuration. A black pebbling is a black-
white pebbling in which w(i) is always 0.

Notice that rule (iii) does not quite treat black and white pebbles dually, since the peb-

ble values of the children must each be 1 before any decrease of w(i) is allowed. A true dual
move would allow increasing the white pebble values of the children so they all have peb-

ble value 1 while simultaneously decreasing w(i). In other words, we allow black sliding
moves, but disallow white sliding moves. The reason for this (as mentioned above) is that

non-deterministic branching programs can simulate the former, but not the latter.

We use #pebbles(T), #BWpebbles(T), and #FRpebbles(T) respectively to denote the min-
imum number of pebbles required to black pebble T, black-white pebble T, and fractional

pebble T. Bounds for these values are given in Section 3. For example for d = 2 we have
#pebbles(Th2) = h, #BWpebbles(Th2) = ⌈h/2⌉ + 1, and #FRpebbles(Th2) ≤ h/2+ 1. In particu-
lar #FRpebbles(T32) = 2.5 (see Figure 2).

3 Pebbling Bounds

3.1 Previous results

We start by summarizing what is known about whole black and black-white pebbling num-

bers as defined at the end of Definition 8 (i.e. we allow black sliding moves but not white

sliding moves).

The following are minor adaptations of results and techniques that have been known

since work of Loui, Meyer auf der Heide and Lengauer-Tarjan [Lou79, adH79, LT80] in the

late ’70s. They considered pebbling games where sliding moves were either disallowed or

permitted for both black and white pebble, in contrast to our results below.

We always assume h ≥ 2 and d ≥ 2.

8 FRACTIONAL PEBBLING AND THRIFTY BRANCHING PROGRAMS

Figure 2: Two configurations from the pebbling of the height 3 binary tree with 2.5 pebbles

THEOREM 9. [BCM+09a] #pebbles(Thd) = (d− 1)h− d+ 2.

THEOREM 10. For d = 2 and d odd:

#BWpebbles(Thd) = ⌈(d− 1)h/2⌉ + 1 (3)

For d even:
#BWpebbles(Thd) ≤ ⌈(d− 1)h/2⌉ + 1 (4)

When d is odd, this number is the same as when white sliding moves are allowed.

3.2 Results for fractional pebbling

The concept of fractional pebbling is new. Determining the minimum number p of pebbles

required to fractionally pebble Thd is important since O(kp) is the best known upper bound
on the number of states required by a non-deterministic BP to solve FThd (k) (see Theorem
18). It turns out that proving fractional pebbling lower bounds is much more difficult than

proving whole black-white pebbling lower bounds. We are able to get exact fractional peb-

bling numbers for the binary tree of height 4 and less, but the best general lower bound

comes from a nontrivial reduction to a paper by Klawe [Kla85] which proves bounds for the

pyramid graph. This bound is within d/2+ 1 pebbles of optimal for degree d trees (at most
2 pebbles from optimal for binary trees).

Our proof of the exact value of #FRpebbles(T42) = 3 led us to conjecture that any non-
deterministic BP computing BT42 (k) requires Ω(k3) states. In Section 5 we provide evidence
for that conjecture by proving that any non-deterministic thrifty BP requires Ω(k3) states.

We start by presenting a general result showing that fractional pebbling can save at

most a factor of two over whole black-white pebbling for any DAG (directed acyclic graph).

(Here the pebbling rules for a DAG are the same as for a tree, where we require that every

sink node (i.e. every ‘root’) must have a whole black pebble at some point.) We will not use

this result, but it does provide a simple proof of weaker lower bounds than those given in

Theorem 12 below.

THEOREM 11. If a DAG D has a fractional pebbling using p pebbles, then it has a black-
white pebbling using 2p pebbles.

The next result presents our best-known bounds for fractionally pebbling trees Thd . The-

orem 2 is the first part of this result.

BRAVERMAN, COOK, MCKENZIE, SANTHANAM, WEHR FSTTCS 2009 9

THEOREM 12.

(d− 1)h/2− d/2 ≤ #FRpebbles(Thd) ≤ (d− 1)h/2+ 1

#FRpebbles(T3d) = (3/2)d− 1/2

#FRpebbles(T42) = 3

Theorem 12 is a consequence of the following lemmas.

LEMMA 13.

#FRpebbles(Thd) ≤ (d− 1)h/2+ 1

This lemma gives the upper bound for all degrees and heights.

LEMMA 14.

#FRpebbles(T3d) = (3/2)d− 1/2

This lemma gives the lower bound for height 3 and all degrees. It follows from the

asymptotically tight lower bound on the number of states for non-deterministic BPs com-

puting BT3d (k) in [BCM
+09a] (Theorem 4.3 in that paper).

LEMMA 15.

#FRpebbles(T42) ≥ 3

This lemma gives the tight lower bound for binary height 4 trees.

LEMMA 16. For any d and h, #FRpebbles(Thd ≥ (d− 1)(h− 1)/2− .5

This lemma gives our general lower bound for all degrees and heights. We do not

believe that this lower bound is tight. The proof of Lemma 16 requires the following result

about optimal pebblings.

LEMMA 17. For every finite DAG there is an optimal fractional B/W pebbling in which all
pebble values are rational numbers. (This result is robust independent of various definitions
of pebbling; for example with or without sliding moves, and whether or not we require the

root to end up pebbled.)

4 Pebbling and Branching Program Upper Bounds

In this section, we connect pebbling upper bounds with upper bounds for branching pro-

grams, and use the results of the previous section to derive tight bounds for branching

program size of tree evaluation on trees of small height.

The first result connects pebbling upper bounds with upper bounds for thrifty branch-

ing programs. The second part is Theorem 1. Part (i) of this result without the thriftiness

condition was proved in [BCM+09a].

10 FRACTIONAL PEBBLING AND THRIFTY BRANCHING PROGRAMS

THEOREM 18. (i) If Thd can be black pebbled with p pebbles, then deterministic thrifty
branching programswithO(kp) states can solve FThd (k) and BT

h
d (k). (ii) If T

h
d can be fraction-

ally pebbled with p pebbles then non-deterministic thrifty branching programs can solve

BThd (k) withO(kp) states.

COROLLARY 19. #ndetFstateshd(k) = O(k#FRpebbles(Thd)).

For every height h ≥ 2 we prove upper bounds for deterministic thrifty programswhich
solve FThd (k) (Theorem 20, (5)), and show in Section 5 that these bounds are optimal for
degree d = 2 even for the Boolean problem BThd (k) (Theorem 21). We prove upper bounds
for non-deterministic thrifty programs solving BThd (k) in general, and show in Section 5 that
these are optimal for binary trees of height 4 or less (Theorem 22 together with Theorem 4.3

in [BCM+09a]).

For the non-deterministic case our best BP upper bounds for every h ≥ 2 come from
fractional pebbling algorithms via Theorem 18. For the deterministic case our best bounds

for the function problem FThd (k) come from black pebbling via the same theorem, although
we can improve on them for the Boolean problem BTh2 (k) by a factor of log k (for h ≥ 3)
[BCM+09a].

THEOREM 20.[BP Upper Bounds] For all h, d ≥ 2

#detFstateshd(k) = O(k(d−1)h−d+2) (5)

#ndetBstateshd(k) = O(k(d−1)(h/2)+1) (6)

These bounds are realized by thrifty programs.

5 Thrifty lower bounds

See Definition 7 for thrifty programs.

Theorem 21 below shows that the upper bound given in Theorem 20 (5) is optimal

for deterministic thrifty programs solving the function problem FThd (k) for d = 2 and all
h ≥ 2. Theorem 22 shows that the upper bound given in Theorem 20 (6) is optimal for non-
deterministic thrifty programs solving the Boolean problem BThd (k) for d = 2 and h = 4.
Theorem 21 below is a re-statement of Theorem 3.

THEOREM 21. For all h ≥ 2 every deterministic thrifty program that solves BTh2 (k) has at
least 0.5kh states for sufficiently large k.

Next we prove a lower bound on non-deterministic thrifty branching programs.

THEOREM 22. Every non-deterministic thrifty branching program solving BT42 (k) hasΩ(k3)
states.

6 Conclusion

The Thrifty Hypothesis states that thrifty branching programs are optimal among k-way

BPs solving FThd (k). For the deterministic case, this says that the black pebbling method is
optimal. Proving this would separate L from P .

BRAVERMAN, COOK, MCKENZIE, SANTHANAM, WEHR FSTTCS 2009 11

Even disproving this would be interesting, since it would show that one can improve

upon this obvious application of pebbling. One of the referees pointed out that if the func-

tions at nodes are restricted to be integer polynomials, then for some parameter settings it

is possible to obtain non-trivial branching programs that are not thrifty, by using Chinese

remaindering.

Other accessible open problems are to generalise Theorem 22 to get general lower

bounds for non-deterministic thrifty BPs solving BTh2 , and to improve Theorem 12 to get

tight bounds on the number of pebbles required to fractionally pebble Thd .

For a complete and combined treatment of the notions and results in this paper and in

[BCM+09a], please see [BCM+09b].

Acknowledgement James Cook played a helpful role in the early parts of this research.

References

[adH79] F. Meyer auf der Heide. A comparison between two variations of a pebble

game on graphs. Master’s thesis, Universität Bielefeld, Fakultät für Mathe-

matik, 1979.

[BC82] A. Borodin and S. Cook. A time-space tradeoff for sorting on a general sequen-

tial model of computation. SIAM J. Comput., 11(2):287–297, 1982.

[BCM+09a] M. Braverman, S. Cook, P. McKenzie, R. Santhanam, and D. Wehr. Branching

programs for tree evaluation. In Proceedings of 34th International Symposium on

Mathematical Foundations of Computer Science, 2009.

[BCM+09b] M. Braverman, S. Cook, P. McKenzie, R. Santhanam, and D. Wehr. Pebbles and

branching programs for tree evaluation. On Steve’s webpage, 2009.

[Coo74] S. Cook. An observation on time-storage trade off. J. Comput. Syst. Sci., 9(3):308–

316, 1974.

[CS76] S. Cook and R. Sethi. Storage requirements for deterministic polynomial time

recognizable languages. J. Comput. Syst. Sci., 13(1):25–37, 1976.

[EIRS01] J. Edmonds, R. Impagliazzo, S. Rudich, and J. Sgall. Communication com-

plexity towards lower bounds on circuit depth. Computational Complexity,

10(3):210–246, 2001. An abstract appeared in the 32nd IEEE FOCS (1991).

[GKM08] A. Gál, M. Koucký, and P. McKenzie. Incremental branching programs. Theory

Comput. Syst., 43(2):159–184, 2008.

[Gol08] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge

University Press, 2008.

[Kla85] M. Klawe. A tight bound for black and white pebbles on the pyramid. J. ACM,

32(1):218–228, 1985.

[KRW95] M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower

bounds via direct sum in communication complexity. Computational Complex-

ity, 5:191–204, 1995. An abstract appeared in the 6th Structure in Complexity

Theory Conference (1991).

[Lou79] M.C. Loui. The space complexity of two pebble games on trees. Technical

Report LCS 133, MIT, Cambridge, Massachussetts, 1979.

12 FRACTIONAL PEBBLING AND THRIFTY BRANCHING PROGRAMS

[LT80] T. Lengauer and R. Tarjan. The space complexity of pebble games on trees. Inf.

Process. Lett., 10(4/5):184–188, 1980.

[Nor09] J. Nordström. New wine into old wineskins: A survey of some

pebbling classics with supplemental results. Available on line at

http://people.csail.mit.edu/jakobn/research/, 2009.
[PH70] M. Paterson and C. Hewitt. Comparative schematology. In Record of Project

MACConference on Concurrent Systems and Parallel Computations, pages 119–128,

1970. (June 1970) ACM. New Jersey.

[Tai05] M.A. Taitslin. An example of a problem from PTIME and not in NLogSpace. In

Proceedings of Tver State University, volume 6(12) of Applied Mathematics, issue 2,

Tver State University, Tver, pages 5–22, 2005.

[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM Mono-

graphs on Discrete Mathematics and Applications. Soc. for Industrial and Ap-

plied Mathematics, Philadelphia, 2000.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

