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Büchi’s theorem establishes the equivalence of the satisfiability relation for monadic
second-order logic, and the acceptance relation for Büchi automata. The devel-
opment of the theories of monadic second-order logic and Büchi automata follows
Thomas’s survey[6] closely, in that all of the concepts and results found in this
report are also in [6]. However, because the scope of Thomas’s survey is much
greater, he develops the theories in a more general (and more complicated) way
than is necessary to understand Büchi’s theorem, and he only sketches the proof
of Büchi’s theorem, which is given in detail here.

Two theories concerned with infinite words

For both of the theories considered in this report, the relations of interest depend
on infinite words. We will not consider finite words, although those theories can
be developed in a similar way to what follows1. An alphabet A is a finite set of
symbols a, ai. A word over A is a sequence w such that w(i) ∈ A for all i ∈ N. A
language is just a set of words.

An automata recognizes a language if it accepts all the words of the language
and no others. A sentence (closed formula) in a given logic defines a language
if it is satisfied by all the words of the language and no others. The purpose of
the next two sections is to give precise definitions of relations for accepts and is
satisfied.

1In [6], Thomas develops in parallel the theories for finite and infinite words, trees and graphs
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Monadic Second Order Logic

Monadic second-order logic with successor (MSOL[S]) is a small fragment of second-
order logic, and an extension of first-order logic with successor (FOL[S]). We will
define the first-order part first. Let x, y, xi, yi denote first-order variables that
range over N. The well-formed formulas of FOL[S] are defined by:

FOL[S] formulas φ, ψ := S(x, y) | x = y | Qa(x)
| ¬ψ | ψ ∨ φ | φ ∧ ψ | ψ ⇒ φ
| ∀x.ψ | ∃x.ψ

The satisfiability relation w, p1, . . . , pn |= ψ for FOL[S] is defined by:

w, p1, . . . , pn |= S(xi, xj) if pi = pj + 1
w, p1, . . . , pn |= xi = xj if pi = pj

w, p1, . . . , pn |= Qa(xi) if w(pi) = a
w, p1, . . . , pn |= ∀xn+1. ψ if w, p1, . . . , pn+1 |= ψ for all pn+1 ∈ N
w, p1, . . . , pn |= ∃xn+1. ψ if w, p1, . . . , pn+1 |= ψ for some pn+1 ∈ N
w, p1, . . . , pn |= ψ ∧ φ if w, p1, . . . , pn |= ψ and w, p1, . . . , pn |= φ
w, p1, . . . , pn |= ψ ∨ φ if w, p1, . . . , pn |= ψ or w, p1, . . . , pn |= φ
w, p1, . . . , pn |= ψ ⇒ φ if w, p1, . . . , pn |= φ whenever w, p1, . . . , pn |= ψ
w, p1, . . . , pn |= ¬ψ if it is not the case that w, p1, . . . , pn |= ψ

To get MSOL[S], we add quantification over second-order variables X, Y,Xi, Yi,
and atomic formulas X(x) for testing set membership. Second-order variables are
also called monadic predicates, and they range over infinite subsets of N.

MSOL[S] formulas φ, ψ := S(x, y) | x = y | Qa(x) | X(x)
| ¬ψ | ψ ∨ φ | φ ∧ ψ | ψ ⇒ φ
| ∀x.ψ | ∃x.ψ | ∀X.ψ | ∃X.ψ

Note that if we use < instead of S in FOL then we get a strictly more expressive
logic.23 The same cannot be said about MSOL, since we can simulate < using
second-order quantification and S (see below).

The satisfaction relation w,P1, . . . , Pm, p1, . . . , pn |= ψ for MSOL[S] has all the
cases of the relation for FOL[S], converted in the expected way. We add the new

2A logic is said to be more expressive than another if the languages defined by the sentences
of the first are a subset of the languages defined by the sentences of the second.

3In fact, first-order logic with < defines the same languages as linear temporal logic.
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cases:

w,P1, . . . , Pm, p1, . . . , pn |= Xi(xj) if pj ∈ Pi

w,P1, . . . , Pm, p1, . . . , pn |= ∀Xm+1. ψ if w,P1, . . . , Pm+1, p1, . . . , pn |= ψ
for all Pm+1 ⊆ N

w,P1, . . . , Pm, p1, . . . , pn |= ∃Xm+1. ψ if w,P1, . . . , Pm+1, p1, . . . , pn |= ψ
for some Pm+1 ⊆ N

Büchi Automata

A Büchi automaton is a (nondeterministic) finite automaton that reads infinite
words and uses the Büchi acceptance condition (defined below). A Büchi automa-
ton A is a tuple 〈Q,A, q0,∆, F 〉, where Q is the finite set of states, A is the
alphabet, q0 ∈ Q is the start state, ∆ ⊆ Q× A×Q is the transition relation, and
F ⊆ Q is the set of accept states. A run of A on w is a sequence of states ρ such
that ρ(0) = q0, and (ρ(i), w(i), ρ(i+ 1)) ∈ ∆ for all i ≥ 0.

The Büchi acceptance condition for a run is that at least one accept state occurs in-
finitely often in the run. There are several other simple acceptance conditions that
are known to define automata that recognize exactly the same languages as Büchi
automata. For example, a Muller automata is defined with a set of accepting sets
of states, rather than a single set of accepting states. The acceptance condition
for a run is that one of the accepting sets is exactly the set of states that occur
infinitely often in the run. The definitions are also inequivalent in some interesting
ways; for example, there is an effective procedure that transforms any Büchi au-
tomaton into an equivalent deterministic Muller automaton[4], though not every
Büchi automaton can be translated into a deterministic Büchi automaton.

We will use the following two lemmas in the proof of Büchi’s theorem.

Lemma. The languages recognized by Büchi automata are closed under comple-
ment.

I won’t prove this, but one way to do it is to prove that Büchi automata recognize
the same languages as deterministic Muller automata, and then prove that Muller
automata are closed under complementation. The latter construction is trivial;
change the set S of accepting sets to P(Q)/S, where P(Q) is the powerset of Q.

Lemma. The languages recognized by Büchi automata are closed under intersection[5].

Proof. Let AQ = 〈A,Q,∆Q, q0, FQ〉 and AR = 〈A,R,∆R, r0, FR〉 be two Büchi
automata. We define a third automata A that recognizes the intersection of the
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languages of AQ and AR. The strategy used is to enter an accept state of A only
after entering an accept state of AQ and then entering an accept state of AR. So
a state of A has one of three types:

1. A state in which we are waiting to enter an accept state of AQ

2. A state in which we are waiting to enter an accept state of AR.

3. An accept state

We introduce a flag that takes values {waitQ,waitR, accept} in order to label each
state with its type. A is given by

〈A,Q×R× {waitQ,waitR, accept},∆, 〈q0, r0,waitQ〉, FQ × FR × {accept}〉

Let f, f ′ ∈ {waitQ,waitR, accept}.
(〈q, r, f〉 >, a, 〈q′, r′, f ′〉) ∈ ∆ iff (q, a, q′) ∈ ∆Q and (r, a, r′) ∈ ∆R and one of the
following conditions is satisfied:

• f = waitQ, q′ ∈ FQ, and f ′ = waitR.

• f = waitR, r′ ∈ FR, and f ′ = accept.

• f = accept and f ′ = waitQ.

• f = f ′.

�

Büchi’s Theorem

Theorem (Büchi’s theorem (1962)[1]). A language is recognizable by a Büchi au-
tomaton if and only if it is definable in MSOL[S].

Proof. First we prove that for every Büchi automata A there exists a sentence ψ
such that A accepts w iff w |= ψ. The following formula schema does that by
encoding a run of A on w in ‖Q‖ second-order variables, where Q is the set of
states of A. In particular, if ρ is a run of A on w then x ∈ Xi iff ρ(x) = qi.
For readability, define First(x) = ∀y. (x = y) ∨ (x < y).

w |= ∃X1 . . . ∃X‖Q‖. ∀x.First(x)⇔ X1(x)

∧
(∧

i 6=j ∀x.¬(Xi(x) ∧Xj(x))
)

∧ ∀x.∀y.
(
S(x, y)⇒

∨
(qi,a,qj)∈∆Xi(x) ∧Qa(x) ∧Xj(y)

)
∧ ∀x.∃y. (x < y) ∧

(∨
qj∈F

∨
(qi,a,qj)∈∆ Xi(y) ∧Qa(y)

)
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The first three lines of the conjunction formula establish that X1, . . . , Xk represents
a valid run of A on w. The last line says that the run satisfies the Büchi acceptance
condition.

To simplify the proof for the other direction, we will work with a smaller, equivalent
logic that has only second-order variables. First-order variables are simulated with
singleton sets.

MSOL0[S] formulas φ, ψ := S(X, Y ) | X ⊆ Y | X ⊆ Qa

| ¬ψ | ψ ∧ φ
| ∃X.ψ

I will show how to translate between MSOL0[S] and MSOL[S]. We can then con-
clude that MSOL0[S] defines the same languages as MSOL[S].

First we do the translation from MSOL[S] to MSOL0[S]. The usual conditions on
variable binding must hold, but here we just informally assume that we have an
injective function that assigns to each first-order variable x a second-order variable
Xx. We first need to translate satisfiability statements in MSOL[S]:

w,P1, . . . , Pm, p1, . . . , pn |= ψ

to satisfiability statements in MSOL0[S] :

w,P1, . . . , Pm, {p1}, . . . , {pn} |= [Xm+1/x1] · · · [Xm+n/xn]ψ

So now the remainder of the algorithm only needs to work on formulas with no free
first-order variables. For readability, let Sing be a predicate for testing whether
a set is a singleton, and AboveClosed for whether a set contains all the numbers
greater than an element of the set.

Sing(X) = ∀Y. Y ⊆ X ⇒ X ⊆ Y
AboveClosed(X) = ∀x.∀y.X(x) ∧ S(x, y)⇒ X(y)

(x < y) → ¬(x = y) ∧ (∀X. [X(x) ∧ AboveClosed(X)]⇒ X(y))
S(x, y) → S(Xx, Xy)

(x = y) → Xx ⊆ Xy ∧Xy ⊆ Xx

Qa(y) → Sing(Xy) ∧Xy ⊆ Qa

X(y) → Sing(Xy) ∧Xy ⊆ X
ψ → φ → ¬ψ ∨ φ
ψ ∨ φ → ¬(¬ψ ∧ ¬φ)
∀x.ψ → ¬∃x.¬ψ
∀X.ψ → ¬∃X.¬ψ
∃x.ψ → ∃Xx. Sing(Xx) ∧ ψ
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The other direction is simpler:

S(X, Y ) → Sing(X) ∧ Sing(Y ) ∧ ∃x.∃y.X(x) ∧ Y (y) ∧ S(x, y).
X ⊆ Y → ∀x.X(x)⇒ Y (x)
X ⊆ Qa → ∀x.X(x)⇒ Qa(x)

The second part of the theorem is proved by induction on the structure of formulas,
so we need to take open formulas into account. For that purpose, we define a
function encode that takes n subsets of N and a word over A to a word over
A × {0, 1}n. If w′ = encode(w,P1, . . . , Pn) then w′(i) = (w(i), b1, . . . , bn) where
bj = 1 iff i ∈ Pj and bj = 0 otherwise. Thus, membership of i in the Pj is encoded
in the i-th letter of the word.

We can now state the proposition: For every formula ψ with free variablesX1, . . . , Xn

there exists a Büchi automaton A such that w,P1, . . . , Pn |= ψ iff A accepts
encode(w,P1, . . . , Pn).

There are three base cases, for the three types of atomic formulas.
Suppose ψ = Xi ⊆ Xj. We construct an automaton with this shape:

// q0 //

��

q1

��

At step k, you check whether k is a counterexample to Xi ⊆ Xj, i.e. you stay
in q0 upon reading (a, b1, . . . , bn) iff bi = bj or bi = 0, bj = 1. Otherwise you
transition to q1. Once in q1, you stay there, since a counterexample has been
found. (q0, (a, b1, . . . , bn), q0) ∈ ∆ iff bi = bj or bi = 0, bj = 1.
(q0, (a, b1, . . . , bn), q1) ∈ ∆ otherwise, i.e. iff bi = 1, bj = 0.
(q1, (a, b1, . . . , bn), q1) ∈ ∆ for all a, b1, . . . , bn.

Suppose ψ = Xi ⊆ Qa, i.e. if k ∈ Xi then the k-th letter of the word is a. The
shape of the automaton is the same as that used for Xi ⊆ Xj. You stay in q0 upon
reading (a′, b1, . . . , bn) iff bi = 1 implies a′ = a. Otherwise you transition to q1 and
stay there.
(q0, (a

′, b1, . . . , bn), q0) ∈ ∆ iff bi = 1 implies a′ = a.
(q0, (a

′, b1, . . . , bn), q1) ∈ ∆ otherwise, i.e. iff bi = 1 and a 6= a′.
(q1, (a

′, b1, . . . , bn), q1) ∈ ∆ for all a′, b1, . . . , bn.
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Suppose ψ = S(Xi, Xj). We construct an automaton with this shape:

// q0 //

KK
q1 //

��

q2

}}||
||

||
||

||
||

||
|

ss

q3
33

Recall that if Xi occurs in S(Xi, Xj) then Xi = {k} for some k ∈ N. You stay in
q0 until step k, and then in the next step, from q1, you verify that Xj = {k + 1}.
Then from q2, you forever check that nothing else is in Xi or Xj.
(q0, (a, b1, . . . , bn), q1) ∈ ∆ iff bi = 1 and bj = 0.
(q0, (a, b1, . . . , bn), q0) ∈ ∆ iff bi = bj or bi = 0, bj = 1.
(q1, (a, b1, . . . , bn), q2) ∈ ∆ iff bi = 0 and bj = 1.
(q1, (a, b1, . . . , bn), q3) ∈ ∆ iff bi = bj or bi = 1, bj = 0.
(q2, (a, b1, . . . , bn), q2) ∈ ∆ iff bi = bj = 0.
(q2, (a, b1, . . . , bn), q3) ∈ ∆ iff bi = 1 or bj = 1.
(q2, (a, b1, . . . , bn), q3) ∈ ∆ for all a, b1, . . . , bn.

Suppose ψ = ψ1 ∧ ψ2. By the induction hypothesis there are Büchi automata
that recognize the languages defined by ψ1 and ψ2. Since the language defined by
ψ1 ∧ ψ2 is just the intersection of the languages defined by ψ1 and ψ2, this case
amounts to proving that the set of languages recognizable by Büchi automata is
closed under intersection.

Suppose ψ = ¬ψ′. By the induction hypothesis there is a Büchi automaton hat
recognizes the language defined by ψ′. Since the language defined by ¬ψ′ is just the
complement of the language defined by ψ′, this case amounts to proving that the
set of languages recognizable by Büchi automata is closed under complementation.

Suppose ψ = ∃Xn. ψ
′, and ψ′ may have free variables X1, . . . , Xn. By the induction

hypothesis there is an A′ = 〈Q,A, q0,∆
′, F 〉 that accepts encode(w,P1, . . . , Pn) iff

w,P1, . . . , Pn |= ψ′. We useA′ to construct anA that accepts encode(w,P1, . . . , Pn−1)
iff w,P1, . . . , Pn−1 |= ∃Xn. ψ

′. Equivalently, A accepts encode(w,P1, . . . , Pn−1) iff
w,P1, . . . , Pn |= ψ′ for some Pn. It suffices to use A = 〈Q,A, q0,∆, F 〉, where
(qi, (a, b1, . . . , bn−1), qj) ∈ ∆ iff (qi, (a, b1, . . . , bn−1, 1), qj) ∈ ∆′ or
(qi, (a, b1, . . . , bn−1, 0), qj) ∈ ∆′.

�
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Other definability results

It would be a shame to develop enough of monadic second order logic to understand
Büchi’s theorem, and not even mention some other interesting results. These
results are for logics over finite words, and so are not related to Büchi automata in
any obvious way. They are here because the definitions in this report can be used
to help explain them.

Every instance of the formula schema given in the first part of the proof of Büchi’s
theorem is a formula of existential monadic second order logic with successor (EM-
SOL[S]), which is the fragment of monadic second-order logic with the formulas
∃X1 . . . ∃Xk. ψ, where ψ is a formula of FOL[S]. But we showed that any MSOL[S]
formula has an equivalent Büchi automaton, and thus any MSOL[S] formula has
an equivalent EMSOL[S] formula. There is a result very similar to Büchi’s theo-
rem that establishes an equivalence between monadic second-order logic and finite
automata on finite words, and the proof similarly leads us to the conclusion that
for finite words also, every MSOL[S] formula has an equivalent EMSOL[S] for-
mula.

Now, consider EMSOL[S] but where quantification over second-order predicates
of higher arity is allowed. Fagin proved that the resulting logic, called (general)
existential second-order logic, defines exactly the languages in the complexity class
NP[3] 4.

General existential second-order logic is much more expressive than EMSOL[S].
Consider the following smaller alteration of EMSOL[S]: the successor predicate is
dropped, and quantification over second-order predicates is restricted to binary
relations on {1, . . . , n}2 (where n is the length of the word) that are matchings. R
is a matching on {1, . . . , n}2 if the following conditions hold:

1. Each i ∈ {1, . . . , n} occurs in at most one pair in R

2. If (i, j) ∈ R then i < j.

3. If (i, j) and (k, l) are in R and i < k < j then i < k < l < j.

Lautemann, Schwentick and Thérien proved that the resulting logic defines the
context-free languages [2].

4Thomas suggests Finite Model Theory by Ebbinghaus and Flum for details on this result
and other results of descriptive complexity theory (including logics that characterize P, PSPACE,
NLOGSPACE, etc.)
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