
Reducing storage requirements for biological sequence comparison

Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, James A. Yorke ∗

Institute for Physical Science and Technology

University of Maryland

College Park, MD 20742-2431

DRAFT of July 5, 2004

Abstract

Motivation: Comparison of nucleic acid and protein sequences is a fundamental tool of
modern bioinformatics. A dominant method of such string matching is the “seed-and-extend”
approach, in which occurrences of short subsequences called “seeds” are used to search for
potentially longer matches in a large database of sequences. Each such potential match is then
checked to see if it extends beyond the seed. To be effective, the seed-and-extend approach needs
to catalogue seeds from virtually every substring in the database of search strings. Projects such
as mammalian genome assemblies and large-scale protein matching, however, have such large
sequence databases that the resulting list of seeds cannot be stored in RAM on a single computer.
This significantly slows the matching process.

Results: We present a simple and elegant method in which only a small fraction of seeds,
called “minimizers”, needs to be stored. Using minimizers can speed up string-matching com-
putations by a large factor while missing only a small fraction of the matches found using all
seeds.

Contact: {yorke,bhunt}@ipst.umd.edu

Running head: Reducing Storage for String Comparison

∗For questions or comments, please write to bhunt@ipst.umd.edu and yorke@ipst.umd.edu.

Bioinfor matics © Oxford University Press 2004; all rights reserved.

 Bioinformatics Advance Access published July 15, 2004

1 Introduction

Sequence comparison is a fundamental tool of computational biology, used in applications such
as overlap determination in genome sequence assembly (Myers, Sutton, et al. 2000; Batzoglou
et al. 2002; Ewing and Green 1994), as well as gene finding and comparison, and protein sequence
comparison. The dominant method of sequence comparison, used for example by BLAST (Altschul
et al. 1990) is the “seed and extend” approach (Altschul et al. 1990; Altschul et al. 1997; Lipman
and Pearson 1985; Pearson and Lipman 1988; Zhang et al. 2000), although some methods use seeds
without an explicit extend step (Ning, Cox, and Mullikin 2001). Assume we wish to find similar
subsequences of two strings T1 and T2. In this approach, we first choose a set of short subsequences
called “seeds” from each of T1 and T2; then, for each seed common to both, we align T1 and T2 so
that the seeds align, and check to see if the match “extends” beyond the seeds.

Given a set of N strings {Ti}
N
i=1

to compare with each other pairwise, the first step in the
seed-and-extend approach is to choose the set of seeds Si = {si1, si2, ...} that are to represent each
string Ti. We use seeds that are contiguous k-letter substrings called k-mers. A common approach
to finding k-mers that are contained in more than one string is to store every k-mer that appears
in each string Ti for all i. For example, the string 2310343 depicted in Figure 1 contains, in order
of position, the 3-mers 231, 310, 103, 034, and 343. Given a database of all k-mers contained in a
set of strings, we can sort the list by k-mer. This conveniently puts identical k-mers side-by-side,
giving us all the required k-mer seeds at which to apply the extend algorithm in an effort to find
longer matches. We call this ability to recognize matches as soon as the database is sorted the
collection criterion.

The number of k-mer entries and the space required to store the entire list of k-mers can be
staggering, however. If |Ti| represents the length of the string Ti, then the number of k-mers in Ti

is |Ti| − k + 1, or roughly |Ti| assuming k � |Ti|. Furthermore, each k-mer entry in the database
requires k letters of storage for the k-mer string s, plus the pair of integers (i, p) identifying the
string Ti and the position p within Ti at which s appears. We call (s, i, p) a k-mer triple. If
the total number of letters in all the sequences in the database is L, then the database size scales
roughly as kL. As an example of the size of such a database, the genome sequence assembly of
Rattus norvegicus uses about 33× 106 sequences called reads, with an average of about 600 letters
each, giving a total of 2 × 1010 k-mer entries in the database, each of size k. A typical k in this
application is 20, giving a total database size of 4× 1011 letters! Even utilizing compressed storage
(we can store 4 letters per byte since genomic sequences require only 2 bits per letter), we require
5 bytes to store each k-mer, and 5 bytes to store (i, p). This gives a total of 200 gigabytes for the
entire k-mer database.

2 Minimizers

To reduce the storage space simply requires storing fewer k-mers, but which ones? One could store,
for example, every kth k-mer, so that each letter is covered exactly once. However, in that case two
strings Ti and Tj with long identical subsequences that start at positions pi and pj need not have
a stored k-mer in common unless pi − pj is a multiple of k. Thus, the database would not satisfy
the collection criterion, in the sense that sorting it by k-mer would yield seeds for only a small
fraction of matching pairs (Ti, Tj). To find most of the matches, one would have to make a second
pass through the strings and compare every k-mer to the database. In a BLAST-like scenario, a
second pass is not necessary, because the goal is to find matches of other strings T to the strings
that formed the database. However, the procedure would still be more efficient if we could compare

1

only a fraction of the k-mers in T to the database.
Our method uniquely chooses a representative k-mer from a group of adjacent k-mers in such

a way that different strings Ti and Tj choose the same representative if they share a long enough
subsequence. The method allows us to select from each Ti a set of special k-mers (to be used as
seeds) that we call minimizers. We choose them so that only a small fraction of the possible
k-mers in a given Ti are minimizers, and so that they have the following property:

Property 1: If two strings have a significant exact match, then at least one of the
minimizers chosen from one will also be chosen from the other.

2.1 Interior minimizers

As a first step in choosing minimizers, we select an ordering for the set of all k-mers. For strings of
letters, one convenient ordering is simply lexicographic, so that, for example, AAAA is the “smallest”
possible 4-mer. We defer discussion of orderings to Section 2.4. For now, our examples will use
strings of digits with numerical ordering for illustrative purposes. Note that, despite all the examples
in this paper, the mapping need not map letters to digits; it simply needs to apply an ordering to
all the possible k-mers, and this ordering must be the same for all sequences being processed for
minimizers.

Position 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12

Sequence 2 3 1 0 3 4 3 4 2 6 4 7 2 8 1 4 7 5 1

k-mers 2 3 1 4 2 6 4 7 2 8

with 3 1 0 2 6 4 7 2 8 1

minimizer 1 0 3 6 4 7 2 8 1 4

in 0 3 4 4 7 2 8 1 4 7

bold 3 4 3 7 2 8 1 4 7 5

(a) (b) 2 8 1 4 7 5 1

Figure 1: Illustration of all k-mers in two windows of sequence as well as their minimizers. The
sequence in the window and the position within the window are listed in the first two rows. The
adjacent k-mers are listed in the rows below. The minimizer is highlighted in bold. Note that w
adjacent k-mers correspond to a window of l = w +k− 1 letters. (a) Choosing the (5,3)-minimizer
from 5 adjacent 3-mers (w = 5, k = 3, l = 7). (b) Choosing the (6,7)-minimizer from 6 adjacent
7-mers (w = 6, k = 7, l = 12).

Referring to Figure 1, a set of w consecutive k-mers covers a string of exactly w + k − 1 letters,
where “consecutive” means that each k-mer is shifted by one letter from the previous one. To find
a minimizer, we examine w consecutive k-mers and select the smallest, in the sense of our chosen
ordering. In the case of a tie, each of the smallest k-mers is a minimizer. We call w the window

size.
We say that a k-mer triple (s, i, p) is a (w, k)-minimizer for the string Ti if it is a minimizer

for some window of w consecutive k-mers containing it. For simplicity we often refer to a (w, k)-
minimizer simply as a minimizer. Refer to the example in Figure 2, where we have w = 4 and
k = 3. There are five (4,3)-minimizers for the string 231032101233101, namely 103, 032, 012,
123, and 101. Since there are a total of thirteen 3-mers in the string, having only five minimizers
as seeds gives substantial space savings over using all thirteen 3-mers. In practice we have found
space savings of a factor of 10 using w = k = 20, and in general the space savings is about a factor
of 2/(w + 1); see Section 3 for a heuristic explanation of this factor.

2

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sequence 2 3 1 0 3 2 1 0 1 2 3 3 1 0 1

2 3 1 0 3 2

3 1 0 3 2 1

window 1 0 3 2 1 0

with 0 3 2 1 0 1

minimizer 3 2 1 0 1 2

in 2 1 0 1 2 3

BOLD 1 0 1 2 3 3

0 1 2 3 3 1

1 2 3 3 1 0

2 3 3 1 0 1

Figure 2: Example of choosing the set of all (4,3)-minimizers in a string, i.e., choosing the smallest
3-mer from every 4 adjacent 3-mers. Note that in contrast to Figure 1, in this figure each row
represents an entire window, with the window’s minimizer highlighted in bold. Successive rows
depict adjacent windows. As we see, adjacent windows often share the same minimizer. This is
the fundamental reason why using minimizers (rather than all k-mers) as seeds reduces storage
requirements.

We immediately have the following formalization of Property 1:

Property 1’: If two strings have a substring of length w + k − 1 in common, then they
have a (w, k)-minimizer in common.

The common substring implies a common window of w consecutive k-mers, which generate the
same minimizer for each string.

Not all letters (digits) in Figure 2 are contained in minimizers: positions 1–3, 7, and 12 are
not covered. Although it may not be required for every letter to be covered by a minimizer, it
may be desirable for some applications. Gaps between minimizers are caused when the minimizers
of two adjacent windows are more than k positions apart, as in the case of the windows starting
in positions 4 and 5 in Figure 2: the minimizer of the window in position 4 covers positions 4–6,
while the minimizer for the next window covers positions 8–10, leaving position 7 covered by no
minimizer. However, note that the minimizers of two adjacent windows of size w can differ in their
starting positions by at most w. Thus, gaps can be at most w − k in size, so setting w ≤ k ensures
no gaps occur between minimizers. Then, all letters are covered except at most w − 1 at each end
of the string (see Figure 3). On the other hand, if w � k then minimizers are sparse in the string.

For example, suppose we are using 20-mers and the window size is 20. If X is a string of length
400, then it has at least 19 minimizers: the first minimizer has position at most 20, the second at
most 40, etc. Similarly, if two strings have an exact match of 400 letters, then they must have at
least 19 minimizers in common.

2.2 End-minimizers

Having w ≤ k guarantees that no gaps appear between adjacent minimizers, but it still allows some
(at most w − 1) letters at each end of the string to be outside any minimizers. This brings up a
related question. Suppose two strings match each other on their ends such that they can be aligned
together to form a longer string; in this case we say that the strings overlap. (Strictly speaking
only one of the strings needs to match on its end, if for example it is a substring with both ends

3

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sequence 2 3 1 0 3 2 1 0 1 2 3 3 1 0 1

2 3 1 0 3

3 1 0 3 2

1 0 3 2 1

0 3 2 1 0

3 2 1 0 1

2 1 0 1 2

1 0 1 2 3

0 1 2 3 3

1 2 3 3 1

2 3 3 1 0

3 3 1 0 1

Figure 3: (w, k)-minimizers with w = k = 3 for the same string as Figure 2; w ≤ k guarantees that
every letter is covered by a minimizer except at most w − 1 letters at the ends.

matching the interior of a larger string.) If the match is less than w + k − 1 letters, then it is
possible for the strings to have no (w, k)-minimizer in common even if there are no gaps between
minimizers. This problem is easily fixed (see Figure 4) by the introduction of end-minimizers. A
(u, k)-end-minimizer is a (u, k)-minimizer chosen from a window of size u which is anchored to one
end of the string, and the set of k-end-minimizers are comprised of all such (u, k)-end-minimizers
for u from 1 up to some maximum window size v.

End-minimizers are ideal for matching the ends of strings, and satisfy the following property:

Property 2: If the ends of two strings have an exact overlap of at least k letters and at
most k + v − 1 letters, then they share at least one k-end-minimizer.

However, since end-minimizers become sparse towards the interior of a string, two strings with a
long but not quite exact overlap may not have an end-minimizer in common.

2.3 A mixed strategy

If we combine (w, k)-minimizers of a string with (u, k)-end-minimizers for u = 1, . . . , w − 1 at both
ends of the string, then if w ≤ k, every base in a string will be covered with some minimizer,
and furthermore the ends of strings will be well covered by minimizers, increasing the likelihood of
finding low-fidelity matches on the ends of strings. Also, Properties 1’ and 2 imply that two strings
with an exact overlap of at least k bases have a minimizer in common. The end-minimizers for
u = 1, . . . , w − 1 for the same string as Figure 2 are shown in Figure 5.

2.4 Orderings

We now briefly discuss the effect of different orderings in determining the minimizers for DNA
sequence data. Similar considerations may apply to other types of strings.

Although for illustrative purposes we use lexicographic ordering in our examples, this has the
following undesirable effect. If a string contains many consecutive zeros (or A’s in the case of
genomic data), then several consecutive k-mers may be minimizers. While this is not a major
problem, it counteracts our goal of sampling a fraction of the k-mers. One can mitigate this effect

4

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sequence 2 3 1 0 3 2 1 0 1 2 3 3 1 0 1 1

2 3 1

2 3 1 0

2 3 1 0 3

2 3 1 0 3 2

2 3 1 0 3 2 1

2 3 1 0 3 2 1 0

2 3 1 0 3 2 1 0 1

2 3 1 0 3 2 1 0 1 2

2 3 1 0 3 2 1 0 1 2 3

2 3 1 0 3 2 1 0 1 2 3 3

2 3 1 0 3 2 1 0 1 2 3 3 1

2 3 1 0 3 2 1 0 1 2 3 3 1 0

2 3 1 0 3 2 1 0 1 2 3 3 1 0 1

2 3 1 0 3 2 1 0 1 2 3 3 1 0 1 1

Figure 4: k-end-minimizers (for k = 3) for the left end of a string. We choose the (u, k)-minimizer
for every window of length u that is anchored to the left end of the string, for u = 1, 2, . . . , l−k+1,
where l is at most the length of the string.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sequence 2 3 1 0 3 2 1 0 1 2 3 3 1 0 1

2 3 1

2 3 1 0

3 1 0 1

1 0 1

Figure 5: End-minimizers for the same string as in Figure 3. Including both these minimizers and
the ones from Figure 3, we are guaranteed to cover every base with at least one minimizer.

5

by choosing an ordering in which the letters that occur least frequently are deemed minimal, and/or
by changing the ordering from one letter to the next. In DNA sequences, the letters C and G often
occur less frequently than A and T. We assign the values 0, 1, 2, 3 to C, A, T, G, respectively, for the
odd numbered bases of k-mers, and reverse the ordering for even numbered bases. This tends to
start minimizers with the valuable (in the sense of the significance of a match) letters C and G, and
makes the minimum k-mer CGCGCG· · ·. There are many other possibilities. For example, we could
first order k-mers by the number of Cs and Gs and then choose a minimizer from a restricted set
containing more of these letters; or, we could demand that a minimizer has as many distinct bases
as possible in its first 4 bases (preferably all four bases different). In general, we want to devise
our ordering to increase the chance of rare k-mers being minimizers, thus increasing the statistical
significance of matching minimizers.

These considerations are perhaps most important in the case that w � k; when minimizers do
not cover all the letters in a string, it is especially important that they cover “valuable” substrings.
We remark that by avoiding strings such as AAAA· · ·, we avoid regions in DNA that are particularly
prone to sequencing errors.

Finally, for DNA sequences we are also interested in matches between one string and the reverse
complement of another string. Thus in choosing seeds, we identify each k-mer with its reverse
complement. Then we choose the minimizer of each window W to be the smaller of the two
minimizers from W and its reverse complement.

3 Results and discussion

As the window from which a minimizer is chosen slides along a random string, a new minimizer
occurs about once every half-window width. This can be seen heuristically as follows. There are
only two cases in which a minimizer changes as we shift a window to the right: either the minimizer
was at the left end of the old window and is “lost” (as when shifting from position 4 to position
5 in Figure 3), or the new k-mer that appears on the right is smaller than the existing minimizer
(as when shifting from position 5 to position 6 in Figure 3). Now, consider two adjacent windows,
covering w + 1 adjacent k-mers, and assume that every k-mer has an equal probability of being a
minimizer. Then the k-mers at position 1 and w + 1 each have equal probability of 1/(w + 1) of
being minimizers. Thus, the probability that the minimizers of the two adjacent windows differ is
2/(w + 1), and hence on average, about a fraction 2/(w + 1) of all k-mers are (w, k)-minimizers,
independent of k. (Due to correlations between adjacent k-mers, our assumption that a k-mer at
the end of a window is just as likely as any other to be a minimizer is not quite right. In our tests
on random sequences and DNA sequences, the actual proportion of k-mers that are minimizers can
be a few percent above 2/(w + 1). The effect decreases substantially as the size of the alphabet
increases. For proteins, which have an alphabet of size 20, the the proportion is 2/(w + 1) to at
least 4 significant digits over long random strings.) This is also the fraction of by which the seed
database is reduced when minimizers are used as seeds rather than all k-mers, so that larger values
of w give larger space savings. If it is desired that every base be covered by a minimizer, then
choosing w = k gives the best space savings that satisfy these constraints. For example, in the case
of the genome assembly of Rattus norvegicus, we used k = w = 20, giving a space savings of about
a factor of 10, while suffering no detectable loss in quality of overlap detection.

When not using minimizers, if the RAM of one computer is too small to store the entire k-
mer database, the sequence data can be distributed in batches across a network, as was done at
Celera during the overlap determination phase of assembling the Human genome (Venter et al.
2001). However, bringing the appropriate seeds together has a cost that is quadratic in the number

6

of batches, so the distributed database fails the collection criterion. Since overlap determination
consumed the vast majority of CPU resources and real time during the draft assembly of the Human
genome, using minimizers would have sped up the process considerably.

The use of minimizers results in the ability to attack the largest existing genome sequence
assembly problems on a single desktop computer, when they could previously only be run on a
cluster or super-computer. For example, the 200-gigabyte k-mer database of the Rattus norvegicus

genome mentioned in the introduction is now a 20 gigabyte minimizer database. Although there
currently exist computers with 20 gigabytes of RAM, they are expensive. Another important
property of minimizers is that the list of minimizer triples (s, i, p) can be sorted by minimizer on disk,
with sufficiently good locality of reference that the sort process is not I/O bound. Furthermore, once
sorted, identical minimizers are conveniently placed side-by-side, satisfying the collection criterion
and facilitating easy running of the extend algorithm against all potential matches, again without
the seed-and-extend process being I/O bound. This allows us to compute the read overlaps for
Rattus norvegicus on a single desktop computer in about 3 days. By comparison, Celera took about
400 CPU days on a cluster (Venter et al. 2001). The speed of our procedure also permits us to do
high-quality, multi-read-comparison-based error correction (since the collection criterion holds) and
then repeat the entire string matching procedure on error-corrected strings, significantly improving
the quality of the overlap database and of the subsequent genome assembly (Roberts, Hayes, Ustun,
Hunt, Yorke, and Zimin 2003). We have also used minimizers successfully in assembling Drosophila

melanogaster (Roberts, Hunt, Yorke, Bolanos, and Delcher 2004).
Although in this paper we focus on k-mers as seeds, the idea could easily be extended to

seeds with gaps, significantly reducing the storage required by methods such as those used by
MEGABLAST (Zhang et al. 2000).

To test the reliability and speed of using minimizers, we used a faux dataset created by compu-
tationally shattering 100 megabases (i.e., 108 letters) of finished C. elegans genome sequence into
faux reads. There were a total of 1,065,846 reads with lengths distributed approximately normally
with a mean of 537 and a standard deviation of about 90, giving 5.7-fold coverage of the genome.
Quality values for the bases were taken from quality values for actual reads of the Human genome.
Base errors were then artificially inserted according to probabilities dictated by the quality values.
We then computed overlaps between reads using minimizers with various window sizes as seeds.
The results are in Figure 6. We first describe the “No Sym.” case, listed in the first five columns.
We see that with w = 1, k = 20, over 99.5% of the true overlaps can be found, but the number
of false positive (spurious) overlaps is also quite large. (The large number of false positives is due
to repeat regions in C. elegans, giving false matches that are locally indistinguishable from true
matches.) As w is increased to 20, the fraction of true overlaps found drops to about 97.5%, but
the number of false positives drops by a much larger factor. Comparing to the last two rows, we
see that using w = 20 is comparable to using all k-mers of size 28 or 30 in terms of Tratio, while
attaining a lower false positive rate. In the last three columns we have improved the Tratio to well
beyond 99.9% by adding a “Symmetrizer” step. Symmetrizer was introduced in (Roberts, Hunt,
Yorke, Bolanos, and Delcher 2004), and finds the vast majority of missing overlaps. It simply
notes that if read X plausibly overlaps reads Y and Z and the offsets of Y and Z relative to X
suggest that Y and Z overlap, then Y and Z are checked for overlap. As can be seen, applying
Symmetrizer after using minimizers with w = k = 20 finds virtually all missing overlaps, while
having a total runtime about half that of using w = 1, k = 30 and using about 1/10th the memory.
(With w = 20, the runtime is dominated by the extension part of the algorithm, which is why the
speedup is significantly less than a factor of 10.)

As with any method of choosing seeds, the parameters k and w that determine our minimizers
are subject to a trade-off between specificity (the proportion of seeds that are indicative of longer

7

No Sym. w/ Sym.

w k Tratio F/T Run time Tratio F/T Run time

1 20 99.528% 1.79 25:26 99.993% 2.61 35:58
3 20 99.379% 1.64 18:26 99.992% 2.41 27:48
8 20 98.931% 1.37 11:47 99.987% 2.06 18:45

20 20 97.467% 1.07 7:09 99.973% 1.66 12:26

1 28 97.404% 1.24 21:43
1 30 97.669% 1.30 22:49

Figure 6: Testing the speed and effectiveness of minimizers using a dataset for which all true
matches are known. The first column lists the window size w. Note that w = 1 means “use every
k-mer”. The second column lists the size of the k-mers used to seed matches. Next are two groups
of three columns, without and with “Symmetrizer” (explained in the text), respectively. Within
each group, the first column Tratio, is the percentage of true matches with at least 40 letters of
overlap that were found for the given value of m; the second column, F/T , is the “false to true
ratio”, i.e., the ratio of false positive matches to true positive matches; the third column lists the
run time to compute all matches in hours and minutes on a dual-processor Linux computer.

matches) and sensitivity (the proportion of the desired matches that are represented by a seed).
Increasing k increases the specificity and decreases the sensitivity. The results above indicate
that, not surprisingly, increasing w also decreases the sensitivity. They also indicate that (w, k)-
minimizers achieve similar sensitivity to using all (k + w/2)-mers. We conjecture that this is true
more generally, for the following reason. Recall that a (w, k)-minimizer occurs on average every
(w + 1)/2 letters along a string. If minimizers occurred exactly every (w + 1)/2 letters, then every
substring of length k +(w−1)/2 would contain a minimizer. Thus, if two strings have a (k +w/2)-
mer in common, then they are likely to have a (w, k)-minimizer in common. Whether the specificity
of (w, k)-minimizers is comparable to that of (k + w/2)-mers depends on how large k is relative to
the size of the string database, as we now discuss.

Consider a string database of length L. The expected frequency of a given base-b k-mer s is
every bk places (b = 4 for DNA, and b = 20 for proteins), for a grand total of about L/bk matches.
That is, we expect a given base-b k-mer s to occur L/bk times in a random string of length L. If
k is chosen large enough that L/bk � 1, then if s occurs twice in L, the match is unlikely to have
occurred at random. Assuming further that non-random matches tend to be long compared to k,
the specificity of k-mers is then close to 1, and increasing k further does not improve it significantly.
For example, in computing overlaps for reads from a mammalian-sized genome, we have L ≈ 1010

(corresponding to multiple coverage of a gigabase-sized genome), and b = 4. We choose k = 20 in
this case since L/bk ≈ 0.01. Furthermore, we store only those k-mers that actually appear in the
read database (rather than an index with all bk of them, most of which do not appear in the read
database). Using (w, k)-minimizers instead of all k-mers reduces the number of k-mers we store by
a factor of 2/(w + 1), as described above.

On the other hand, if k is chosen so that L/bk is greater than 1, then a typical k-mer will
occur multiple times in a random string of length L. Choosing such a small value of k will result
in low specificity, but may be necessary to achieve acceptable sensitivity when one is looking for
low-fidelity matches, such as those between the genomes of different species. In this case, the value
of k is limited by the expected size of exact matches within longer matches of the desired minimum
fidelity. For example, suppose that again L ≈ 1010 and b = 4, but that we want to use seeds of
at most 15 letters. Based on the discussion above, we might expect similar sensitivity from using

8

(10, 10)-minimizers as from using all 15-mers. However, the specificity of (10, 10)-minimizers will
be much worse. For k = 15, we have L/bk ≈ 10, while for k = 10, we have L/bk ≈ 10, 000. Even
though a given 10-mer may be a minimizer only a fraction of the times it appears in the string
database, using (10, 10)-minimizers will yield vastly more spurious seeds than using 15-mers. In
this case, since we expect most 15-mers to appear in the string database, it may be most efficient
to create a lookup table of every possible 15-mer, along with the list of places that that 15-mer
occurs. Thus, minimizers may not be useful in the case of searching for small matches in a large
database, or when the fidelity of long matches is low. On the other hand, if one is interested only in
finding longer, high-fidelity matches, then large k-mers, and thus minimizers, can be used to great
effect.

In summary, compared to using every k-mer, using minimizers as seeds for large-scale, high-
fidelity seed-and-extend string matching problems can significantly reduce storage requirements.
It can also significantly reduce CPU requirements by restricting the number of seeds that need to
be considered, and by satisfying the collection criterion. Finally, can achieve these gains without
significant loss in sensitivity.

Acknowledgements

This material is based on work supported by National Science Foundation Grants 0104087, 0312360,
and 0114792, as well as The National Institutes of Health grant 1R01HG0294501.

References

Altschul, S. et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

Altschul, S. et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database
search programs. Nucleic Acids Res. 25, 3389–3402.

Batzoglou, S. et al. (2002). ARACHNE: A whole genome shotgun assembler. Genome Re-

search 12, 177–189.

Ewing, B. and P. Green (1994). Phrap. Unpublished. http://www.genome.washington.edu or
http://www.phrap.org.

Lipman, D. and W. Pearson (1985). Rapid and sensitive protein similarity searches. Science 227,
1435–1441.

Myers, E., G. Sutton, et al. (2000). A Whole-Genome Assembly of Drosophila. Science 287,
2196–2204.

Ning, Z., A. J. Cox, and J. C. Mullikin (2001). SSAHA: A fast search method for large dna
databases. Genome Research 11, 1725–1729.

Pearson, W. and D. Lipman (1988). Improved tools for biological sequence comparison. Proc.

Natl. Acad. Sci. 85, 2444–2448.

Roberts, M., W. Hayes, C. Ustun, B. Hunt, J. Yorke, and A. Zimin (2003). Read extension and
correction using multi-comparison based overlaps. In preparation.

Roberts, M., B. Hunt, J. Yorke, R. Bolanos, and A. Delcher (2004). A preprocessor for shotgun
assembly of large genomes. Journal of Computational Biology 000, 1–2. Accepted.

Venter, J. C. et al. (2001). The Sequence of the Human Genome. Science 291, 1304–1351.

Zhang, Z. et al. (2000). A greedy algorithm for aligning dna sequences. J. Comp. Biol. 7, 203–214.

9

