RIGOROUS HIGH-DIMENSIONAL SHADOWING USING CONTAINMENT: THE GENERAL CASE

Wayne B. Hayes, Kenneth R. Jackson and Carmen Young
Corresponding Author:
Wayne B Hayes
Dept. of Computer Science
University of California, Irvine
Irvine, California 92697-3425

Abstract

A shadow is an exact solution to an iterated map that remains close to an approximate solution for a long time. An elegant geometric method for proving the existence of shadows is called containment, and it has been proven previously in two and three dimensions, and in some special cases in higher dimensions. This paper presents the general proof using tools from differential and algebraic topology and singular homology.

1. Introduction.

1.1. Background. An orbit of a continuous map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a finite or infinite sequence of points generated using

$$
\begin{equation*}
\mathbf{x}_{i+1}=\varphi\left(\mathbf{x}_{i}\right) \tag{1}
\end{equation*}
$$

Often one point, \mathbf{x}_{0}, is given, called the initial condition. Consider an approximation $\hat{\varphi}$ to φ with just one required property,

$$
\begin{equation*}
\|\hat{\varphi}(\mathbf{x})-\varphi(\mathbf{x})\|<\delta, \quad \mathbf{x} \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

An orbit of $\hat{\varphi}$ generated using

$$
\begin{equation*}
\mathbf{y}_{i+1}=\hat{\varphi}\left(\mathbf{y}_{i}\right) \tag{3}
\end{equation*}
$$

is called a δ-pseudo-orbit of φ and, from (2), has the property

$$
\left\|\mathbf{y}_{i+1}-\varphi\left(\mathbf{y}_{i}\right)\right\|<\delta \text { for all } i
$$

Pseudo-orbits are of interest to those studying computer-generated orbits because finite-precision arithmetic is used to compute them, with the consequence that an exact orbit and a pseudo-orbit starting at the same point can diverge exponentially away from each other. See for example [4]. Given a pseudo-orbit (3), the exact orbit (1) is a shadow of (3) if

$$
\left\|\mathbf{y}_{i}-\mathbf{x}_{i}\right\|<\varepsilon \text { for all } i .
$$

Shadowing was first discussed by [1] and [3], in relation to hyperbolic systems, in which space along an orbit can be uniformly separated into expanding and contracting subspaces. Let S and φ be the invariant set and the map of a hyperbolic system, respectively. In such systems, [1] proved that $\forall \varepsilon>0, \exists \delta>0$ such that

2000 Mathematics Subject Classification. Primary: 57R19, 65G20; Secondary: 57R50, 65L70 .
Key words and phrases. Nonlinear dynamical systems, shadowing, reliable simulation.
This research was supported by NSERC Canada.

Figure 1. Containment in 3D with 2 expanding directions and 1 contracting.
every infinite-length δ-pseudo orbit remaining in S is ε-shadowed by an exact trajectory in S. 3 proved that the same result holds if the map is required to be hyperbolic only along trajectories in the vicinity of the pseudo-orbit. 12 proved a similar theorem along the way towards using the theory of exponential dichotomies to prove Smale's Theorem ($[13,14])$.

Most systems of general interest, however, are not hyperbolic. The first studies of shadows for non-hyperbolic systems appear to be [2] and [7. [8] and [4] provide the first proof of the existence of a shadow for a two-dimensional non-hyperbolic system over a non-trivial length of time, using a method called containment. Here, by way of introduction, we outline a three-dimensional case that is proved in [10].

Let φ be a map which is not hyperbolic, but which displays pseudo-hyperbolicity [9] for a finite but non-trivial number of iterations. Let $\left\{\mathbf{y}_{i}\right\}_{i=a}^{b} \subset \mathbb{R}^{3}$ be a threedimensional δ-pseudo-orbit of φ for integers a and b. In this case the pseudo-orbit has 1 contracting direction and two expanding directions (Figure 1), and pseudohyperbolicity means that as i increases, orbits separated from each other by a small distance in the expanding subspace diverge on average (but not necessarily uniformly) away from each other, while orbits separated by a small distance in the contracting subspace approach each other on average. The three-dimensional containment process consists of building a parallelogram M_{i} around each point \mathbf{y}_{i} of the pseudo-orbit such that the first pair of expanding faces $F_{i}^{ \pm 1}$ are separated along one expanding direction (the x direction in Figure 1), the second pair of expanding faces $F_{i}^{ \pm 2}$ are separated along the other expanding direction (the y direction in Figure (1), and the one pair of contracting faces $F_{i}^{ \pm 3}$ are separated from each other along the contracting direction (the z direction in Figure 1). In order to prove the existence of a shadow, we require that $\varphi\left(M_{i}\right)$ maps over M_{i+1} so that φ flattens M_{i} into a thin slice, cutting M_{i+1} into 3 pieces, the middle piece of which contains a contiguous section of $\varphi\left(M_{i}\right)$ (as well as possibly some isolated pieces of $\varphi\left(M_{i}\right)$). Now, assume γ_{i} is a surface in M_{i} whose boundary connects and "wraps around" all of the expanding sides of M_{i}. Then there is a contiguous patch of $\varphi\left(\gamma_{i}\right) \cap M_{i+1} \equiv$ γ_{i+1} lying wholly in M_{i+1} whose boundary $\partial \gamma_{i+1}$ connects and "wraps around" the expanding sides of M_{i+1}. If this property continues for each step then, by induction, there is a $\gamma_{N} \neq \emptyset$ lying wholly within M_{N} whose boundary $\partial \gamma_{N}$ connects and wraps around the expanding sides of M_{N}. Then any point $\mathbf{x}_{N} \in \gamma_{N}$ can be traced backwards to a point $\mathbf{x}_{i} \in \gamma_{i} \subset M_{i}$ for $i=0,1, \ldots, N-1$, and the \mathbf{x}_{i} trajectory is
an exact orbit lying close the pseudo-orbit - i.e., a shadow. In fact, since \mathbf{x}_{N} can be any point in γ_{N}, this arguments demonstrates the existence of a 2-dimensional family of shadows. In general when there are k expanding directions, we will have a k-dimensional family of shadows. It is interesting to note that as viewed from "above" (ie., looking down the z-axis), the projection of γ_{i} onto the $x y$ plane would appear to "cover" M_{i} 's projection onto the $x y$ plane. It may be possible to prove theorems similar to those in this paper using such covering relations [15, 16].

This case, along with all other one-, two-, and three-dimensional cases, as well as some special cases in higher dimension, were proved in [10. The purpose of this paper is to present the general n-dimensional proof in which k directions are expanding, while $n-k$ directions are contracting.
1.2. Overview. The machinery that we use requires that the intersections of the manifolds $\varphi\left(\gamma_{i}\right) \cap M_{i+1}$ are transversal. Theorem 6 (Sard's Theorem) demonstrates that there exists γ_{0} such that for every $i>0, \varphi\left(\gamma_{i}\right)$ is transversal to M_{i+1}. In Section [2] we present the main result. Section 3 presents the background for Sard's Theorem, while Section 4 provides a brief background to singular homology and cohomology, and finally, the proof of our main result.
2. Main Result. Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism. Assume that φ displays pseudo-hyperbolicity such that there exist k directions which expand on average over time, which we will call the nominally expanding directions. Similarly, assume there are $(n-k)$ directions which contact on average over time, called the nominally contracting directions. None of these directions need to be orthogonal to each other, although we assume that the entire set of expanding and contracting directions spans \mathbb{R}^{n}. For each $i=0, \ldots, N$, let M_{i} be an n-cube in \mathbb{R}^{n}. For convenience assume that the faces of M_{i} are labeled so that the first $2 k$ faces $F_{i}^{ \pm j}, j=1, \ldots, k$, lie transverse to the nominal expanding directions of φ, and the remaining $2(n-k)$ faces $F_{i}^{ \pm j}, j=k+1, \ldots, n$, lie transverse to the nominal contracting directions of φ. We denote the union of a set of faces by listing multiple integers in the superscript. Thus the expanding faces of M_{i} are collectively denoted $\partial_{X} M_{i} \equiv F_{i}^{ \pm 1, \ldots, \pm k}$ and the contracting faces of M_{i} are denoted $\partial_{C} M_{i} \equiv F_{i}^{ \pm(k+1), \ldots, \pm n}$.

Let $\operatorname{Int}(A)$ denote the interior of the set A. Refer to Figure 2, We say that M_{i} and M_{i+1} satisfy the (n, k)-Inductive Containment Property (abbreviated (n, k)ICP), for φ if
(ICP1): $\varphi\left(\partial_{X} M_{i}\right) \cap M_{i+1}=\emptyset$ and, for all $j \in\{1, \ldots, k\}, \varphi\left(F_{i}^{-j}\right)$ and $\varphi\left(F_{i}^{+j}\right)$ lie on opposite sides of the infinite slab between the two hyperplanes containing F_{i+1}^{-j} and F_{i+1}^{+j}, respectively.
(ICP2): There is a parallelepiped $Q_{i+1} \subset \mathbb{R}^{n}$ with faces G_{i+1}^{j} parallel to the faces F_{i+1}^{j} of M_{i+1} for $j= \pm 1, \ldots, \pm n$ such that
i) $\varphi\left(M_{i}\right) \subset \operatorname{Int}\left(Q_{i+1}\right)$,
ii) $Q_{i+1} \cap \partial_{C} M_{i+1}=\emptyset$ and, for all $j \in\{k+1, \ldots, n\}, F_{i+1}^{-j}$ and F_{i+1}^{+j} lie on opposite sides of the infinite slab between the two hyperplanes containing G_{i+1}^{-j} and G_{i+1}^{+j}.
The conditions of the Inductive Containment Property can be rigorously verified computationally 9 .

Theorem 1 ((n,k)-Inductive Containment Theorem). Suppose that M_{i} and M_{i+1} satisfy $(n, k)-I C P$ for φ for all $i=0, \ldots, N-1$. Then there exists a sequence of

Figure 2. Schematic diagram of the Inductive Containment Property in 2 dimensions. The tall parallelogram is $Q_{i+1} \supset \varphi\left(M_{i}\right)$, the wider one is M_{i+1}. The vertical direction is expanding. The horizontal direction contracting.
non-empty k-manifolds $\gamma_{i} \subset M_{i}, i=0, \ldots, N$, such that

$$
\operatorname{Int}\left(\gamma_{i}\right) \subset \operatorname{Int}\left(M_{i}\right), \quad \partial \gamma_{i}=\gamma_{i} \cap \partial_{X} M_{i}, \quad \text { and } \quad \gamma_{i+1} \subset \varphi\left(\gamma_{i}\right)
$$

for all i.
We will prove this theorem in stages. For a cleaner exposition of the proof, we will translate all objects to a standardized frame in the vicinity of the origin, as follows. Let \square_{n} denote the standard unit cube in \mathbb{R}^{n},

$$
\square_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{j}\right| \leq 1 \text { for } j=1, \ldots, n\right\},
$$

and denote its faces by

$$
\begin{array}{ll}
E^{+j}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{j}=+1,\left|x_{l}\right| \leq 1 \text { for } l \neq j\right\}, & j=1, \ldots, n \\
E^{-j}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{j}=-1,\left|x_{l}\right| \leq 1 \text { for } l \neq j\right\}, & j=1, \ldots, n
\end{array}
$$

We introduce the Standardized (n, k)-Inductive Containment Property by transforming both M_{i} and M_{i+1} to \square_{n}, as follows. For each $i=0, \ldots, N$ there is an orientation-preserving diffeomorphism (i.e., change of coordinates) $\psi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that maps M_{i} to \square_{n}, and maps $F_{i}^{ \pm j}$ to $E^{ \pm j}$ for $j=1, \ldots, n$. Let $\mathcal{M}_{i}=\square_{n}$ for all i. Let $\phi_{i}=\psi_{i+1} \circ \varphi \circ \psi_{i}^{-1}$. If M_{i} and M_{i+1} satisfy (n, k)-ICP for φ, then by construction \mathcal{M}_{i} and \mathcal{M}_{i+1} satisfy (n, k)-ICP for ϕ_{i}, and we say that the Standardized (n, k)-ICP holds for ϕ_{i}. Note that it is easy to choose ψ_{i} so that the Standardized (n, k)-ICP holds for ϕ, such that there exists positive $\varepsilon<1$ such that (ICP2) holds with
$Q=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{i}\right| \leq 1 / \varepsilon\right.$ for $i=1, \ldots, k$ and $\left|x_{i}\right| \leq 1-\varepsilon$ for $\left.i=k+1, \ldots, n\right\}$.
For our purposes, the term manifold will refer to a smooth manifold with boundary and corners.

Definition 1. Suppose that $\Gamma \subset \square_{n}$ is a k-manifold with $\partial \Gamma \subset \partial_{X} \square_{n}$. We say that $\partial \Gamma$ wraps around $\partial_{X} \square_{n}$ if the homology class of $[\partial \Gamma]$ in $H_{k-1}\left(\partial_{X} \square_{n}\right)$ is not zero.

Remark. The manifolds γ_{i} used in Theorem 1 will have this wrap-around property. Without this property, it would be possible for a manifold γ_{i} to be "pushed out" of some box $M_{j}, j>i$, causing the intersection of γ_{j} and M_{j} to become empty.

Lemma 1. Let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism and assume that the standardized (n, k)-ICP holds for ϕ. Let $\Gamma \subset \square_{n}$ be a non-empty k-manifold with boundary $\partial \Gamma \subset \partial_{X} \square_{n}$, and suppose further that $\partial \Gamma$ wraps around $\partial_{X} \square_{n}$. Finally, suppose that $\phi(\Gamma)$ is transverse to $\partial_{X} \square_{n}$, and let $\Gamma^{\prime} \equiv \phi(\Gamma) \cap \square_{n}$. Then the following hold:
i) Γ^{\prime} is a non-empty k-manifold with boundary $\partial \Gamma^{\prime}=\Gamma^{\prime} \cap \partial \square_{n}$.
ii) $\partial \Gamma^{\prime} \subset \partial_{X} \square_{n}$.
iii) $\partial \Gamma^{\prime}$ wraps around $\partial_{X} \square_{n}$.

We will prove this lemma in Section 4.
Proof of Theorem 1. We will prove the theorem by induction. Let $\psi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a change of co-ordinates that maps M_{i} to \square_{n}, and maps $F_{i}^{ \pm j}$ to $E^{ \pm j}$ for $j=1, \ldots, n$. Let $\phi_{i}=\psi_{i+1} \circ \varphi \circ \psi_{i}^{-1}$. Then the Standardized (n, k)-ICP holds for each ϕ_{i}. Let \square_{k} denote the unit k-cube in \mathbb{R}^{n},

$$
\square_{k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 1 \text { for } 1 \leq i \leq k, x_{k+1}=\cdots=x_{n}=0\right\}
$$

This is a k-dimensional submanifold of \square_{n}, and its boundary

$$
\partial \square_{k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \square_{k}: x_{j}= \pm 1 \text { for some } j \in\{1, \ldots, k\}\right\},
$$

is contained in $\partial_{X} \square_{n}$. By Lemma 3 and Definition 6, the homology class $\left[\partial \square_{k}\right] \in$ $H_{k-1}\left(\partial_{X} \square_{n}\right)$ is 1. By Theorem 6 (Sard's Theorem), we can homotope \square_{k} relative to its boundary to a k-manifold Γ with $\partial \Gamma=\partial \square_{k}$ such that Γ intersects $\phi_{0}^{-1} \phi_{1}^{-1} \cdots \phi_{i}^{-1}\left(\partial_{X} \square_{n}\right)$ transversally for each $i=0, \ldots, N$. Thus $[\partial \Gamma]=\left[\partial \square_{k}\right] \neq 0$, and

$$
\begin{equation*}
\phi_{i} \phi_{i-1} \cdots \phi_{0}(\Gamma) \text { is transverse to } \partial_{X} \square_{n} \text { for all } i \text {. } \tag{4}
\end{equation*}
$$

We start the induction by taking $\Gamma_{0}=\Gamma$. Then Γ_{0} and ϕ_{0} satisfy the hypotheses of Lemma 1. Let $\Gamma_{1}=\phi_{0}\left(\Gamma_{0}\right) \cap \square_{n}$. Then Γ_{1} is a non-empty k-manifold with boundary $\partial \Gamma_{1} \subset \partial_{X} \square_{n}$, and $\left[\partial \Gamma_{1}\right] \neq 0$.

At the i-th step of the induction, we have a non-empty k-manifold $\Gamma_{i} \subset \square_{n}$ with $\partial \Gamma_{i} \subset \partial_{X} \square_{n}$ and $\left[\partial \Gamma_{i}\right] \neq 0$ in $H_{k-1}\left(\partial_{X} \square_{n}\right)$. Moreover $\Gamma_{i} \subset \phi_{i-1}\left(\Gamma_{i-1}\right) \subset \cdots \subset$ $\phi_{i-1} \phi_{i-2} \cdots \phi_{0}\left(\Gamma_{0}\right)$, which implies that $\phi_{i}\left(\Gamma_{i}\right) \subset \phi_{i} \cdots \phi_{0}\left(\Gamma_{0}\right)$. From (4), we see that $\phi_{i}\left(\Gamma_{i}\right)$ is transverse to $\partial_{X} \square_{n}$, so we can apply Lemma 1. If we set $\Gamma_{i+1}=\phi_{i}\left(\Gamma_{i}\right) \cap \square_{n}$, then Γ_{i+1} and ϕ_{i+1} satisfy the hypotheses of Lemma 1, and the induction continues.

By the N-th step of the induction, we have produced non-empty k-manifolds Γ_{i}, $i=0, \ldots, N$, with $\operatorname{Int}\left(\Gamma_{i}\right) \subset \operatorname{Int}\left(\square_{n}\right), \partial \Gamma_{i}=\Gamma_{i} \cap \partial_{X} \square_{n}$,

$$
\left[\partial \Gamma_{i}\right] \neq 0 \text { for all } i
$$

and

$$
\Gamma_{i+1} \subset \phi_{i}\left(\Gamma_{i}\right) \text { for all } i
$$

Let $\gamma_{i}=\psi_{i}^{-1}\left(\Gamma_{i}\right)$ for each $i=0, \ldots, N$. Then $\operatorname{Int}\left(\gamma_{i}\right) \subset \operatorname{Int}\left(M_{i}\right), \partial \gamma_{i}=\gamma_{i} \cap \partial_{X} M_{i}$, and

$$
\gamma_{i+1}=\psi_{i+1}^{-1}\left(\Gamma_{i+1}\right) \subset \psi_{i+1}^{-1}\left(\phi_{i}\left(\Gamma_{i}\right)\right)=\psi_{i+1}^{-1}\left(\psi_{i+1} \varphi \psi_{i}^{-1}\right)\left(\Gamma_{i}\right)=\varphi\left(\gamma_{i}\right)
$$

This completes the proof of Theorem 1 .

Corollary 1 (Shadowing Containment Theorem). Let $\left\{M_{i}\right\}_{i=0}^{N}$ be a sequence of n-dimensional parallelepipeds enclosing a pseudo-trajectory $\left\{\mathbf{y}_{i}\right\}_{i=0}^{N}$ such that $\mathbf{y}_{i} \in$ $M_{i}, i=0, \ldots, N$, and suppose that M_{i} and M_{i+1} satisfy $(n, k)-I C P$ for all $i=$ $0, \ldots, N-1$. Let ε be the maximum diameter of M_{i} over all i. Then there exists a sequence of k-dimensional manifolds $\left\{\gamma_{i} \subset M_{i}\right\}_{i=0}^{N}$ such that any point $\mathbf{x}_{j} \in \gamma_{j}, j=$ $0, \ldots, N$ admits an exact orbit $\left\{\mathbf{x}_{i}\right\}_{i=0}^{N}$ which is an ε-shadow of $\left\{\mathbf{y}_{i}\right\}_{i=0}^{N}$. That is, $\left\|\mathbf{x}_{i}-\mathbf{y}_{i}\right\| \leq \varepsilon$ for all $i=0, \ldots, N$.
Proof. By the Inductive Containment Theorem, there is a sequence of non-empty k manifolds $\gamma_{i} \subset M_{i}$ such that $\gamma_{i} \subset \operatorname{Int}\left(\varphi\left(\gamma_{i-1}\right)\right)$ for all i. Let \mathbf{x}_{N} be any point in γ_{N}. As φ is a diffeomorphism, there is a unique point $\mathbf{x}_{0} \in \gamma_{0}$ such that $\varphi^{N}\left(\mathbf{x}_{0}\right)=\mathbf{x}_{N}$. For each i we set $\mathbf{x}_{i}=\varphi^{i}\left(\mathbf{x}_{0}\right)$. Then $\mathbf{x}_{i+1}=\varphi\left(\mathbf{x}_{i}\right) \in M_{i+1}$ for all i and $\left\{\mathbf{x}_{i}\right\}_{i=0}^{N}$ is an ε-shadow of $\left\{\mathbf{y}_{i}\right\}_{i=0}^{N}$. Since this is true for all $\mathbf{x}_{N} \in \gamma_{N}, \gamma_{N}$ admits a k-dimensional family of shadows.
3. Sard's Theorem and Transversality. For the purpose of proving the Inductive Containment Theorem in arbitrary dimensions, we would like to determine under what conditions two objects in \mathbb{R}^{n} intersect in a "nice" way. It turns out that when the objects in question are smooth manifolds, then a good answer is provided by transversality theory. In this section we review some of the basic concepts from transversality theory that we need. [6] supply a more detailed introduction, together with some applications to geometry.
3.1. Manifolds. Let X be a smooth manifold of dimension k. That is, every point $x \in X$ has an open neighborhood V which is homeomorhic to an open set $U \subset \mathbb{R}^{k}$:

$$
\begin{equation*}
\theta: U \xrightarrow{\cong} V \subset X \tag{5}
\end{equation*}
$$

The triplet (θ, U, V) is sometimes referred to as a coordinate chart near x. If $\left(\theta_{1}, U_{1}, V_{1}\right),\left(\theta_{2}, U_{2}, V_{2}\right)$ are two coordinate charts (near points x_{1} and x_{2}, say) that overlap in the sense that $V_{1} \cap V_{2} \neq \emptyset$, then we further require that

$$
\begin{aligned}
& \quad \theta_{1}^{-1} \circ \theta_{2}: \theta_{2}^{-1}\left(V_{1} \cap V_{2}\right) \rightarrow \theta_{1}^{-1}\left(V_{1} \cap V_{2}\right) \\
& \text { and } \quad \theta_{2}^{-1} \circ \theta_{1}: \theta_{1}^{-1}\left(V_{1} \cap V_{2}\right) \rightarrow \theta_{2}^{-1}\left(V_{1} \cap V_{2}\right)
\end{aligned}
$$

be smooth, as maps between open sets in \mathbb{R}^{k}.
3.2. Tangent space. In the cases of interest to us, the manifold X sits in some higher-dimensional Euclidean space \mathbb{R}^{n}, so the coordinate map (5) is simply a smooth map from $U \subset \mathbb{R}^{k}$ to \mathbb{R}^{n}, with image equal to V. Thus the derivative of θ at a point $u \in U$ makes sense as a linear map from \mathbb{R}^{k} to \mathbb{R}^{n}, i.e., it is a real $n \times k$ matrix. We denote this derivative by $d \theta_{u}$.

Suppose (θ, U, V) is a coordinate chart near $x \in X$, and $\theta(u)=x$. We define the tangent space to X at x to be the image of $d \theta_{u}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$. (Equivalently, the tangent space is the linear span of the column vectors of $d \theta_{u}$.) This is a vector subspace of \mathbb{R}^{n} which we denote by $T_{x} X$. Geometrically,

$$
x+T_{x} X=\left\{x+v \mid v \in T_{x} X\right\}
$$

consists of all vectors starting at x that are tangent there to X. In other words, it is the best approximation of X near x by a linear subspace. One can easily check that if $\left(\theta^{\prime}, U^{\prime}, V^{\prime}\right)$ is another coordinate chart near x with $\theta^{\prime}\left(u^{\prime}\right)=x$, then Image $\left(d \theta_{u}\right)=\operatorname{Image}\left(d \theta_{u}^{\prime}\right)$ - that is, $T_{x} X$ is well-defined and independent of our choice of coordinate chart.
3.3. Smooth maps and differentials. If X^{k} and Y^{l} are smooth manifolds of respective dimensions k and l, then a continuous map $f: X \rightarrow Y$ is called smooth if, for every coordinate chart (θ, U, V) for X and $(\tilde{\theta}, \tilde{U}, \tilde{V})$ for Y, the restriction

$$
\left.\tilde{\theta}^{-1} \circ f \circ \theta\right|_{(f \circ \theta)^{-1}(\tilde{U})}
$$

is smooth when considered as a map defined in an open subset of \mathbb{R}^{k} with values in \mathbb{R}^{l}. If $X \subset \mathbb{R}^{m}$ and $Y \subset \mathbb{R}^{n}$ for some $m>k, n>l$, it is equivalent to say that $f: X \rightarrow Y$ is smooth if around any point $x \in X$ there is an open ball B_{x} and a smooth map $F: B_{x} \rightarrow \mathbb{R}^{n}$ such that the restriction of F to $X \cap B_{x}$ equals f :

$$
\left.F\right|_{X \cap B_{x}}=f
$$

If f is smooth and $f(x)=y$, then the derivative of f at x is a linear map

$$
d f_{x}: T_{x} X \rightarrow T_{y} Y
$$

To define the derivative, suppose that (θ, U, V) is a coordinate chart near x with $\theta(u)=x$, and $(\tilde{\theta}, \tilde{U}, \tilde{V})$ is a coordinate chart near y with $\tilde{\theta}(\tilde{u})=y$. Set $h=\tilde{\theta}^{-1} \circ f \circ \theta$ on $(f \circ \theta)^{-1}(\tilde{V})$ so that the diagram

commutes. Note in particular that $h(u)=\tilde{u}$. We then set

$$
d f_{x}(\nu)=d \tilde{\theta}_{\tilde{u}} \circ d h_{u} \circ\left(d \theta_{u}\right)^{-1}(\nu), \text { for } \nu \in \operatorname{Image}\left(d \theta_{u}\right)
$$

(If we think of the derivatives of $\tilde{\theta}, h$ and θ as matrices, then the latter composition is a product of matrices.) This clearly maps $T_{x} X=$ Image $\left(d \theta_{u}\right)$ into $T_{y} Y=\operatorname{Image}\left(d \tilde{\theta}_{\tilde{u}}\right)$. If $X \subset \mathbb{R}^{m}, Y \subset \mathbb{R}^{n}$ and f near x equals the restriction of $F: B_{x} \rightarrow \mathbb{R}^{n}$, then it is not hard to show that $d f_{x}$ equals the restriction of $d F_{x}$ to $T_{x} X \subset \mathbb{R}^{m}$.

If $x \in X$ and $d f_{x}=0$, that is, $d f_{x}(\nu)=0$ for all $\nu \in T_{x} X$, then x is called a critical point of f. If $y \in Y$ and there is some $x \in f^{-1}(y)$ such that $d f_{x}=0$, then y is called a critical value of f. If no such x exists for y, then y is called a regular value of f.
3.4. Transversality. The smooth map $f: X \rightarrow Y$ is transversal to the submanifold $Z \subset Y$ if

$$
\text { Image }\left(d f_{x}\right)+T_{f(x)}(Z)=T_{f(x)} Y
$$

for every point x in the preimage of Z.
Theorem 2 (Preimage Theorem). Let $f: X \rightarrow Y$ be a smooth map of manifolds. If f is transversal to a submanifold $Z \subset Y$, then $f^{-1}(Z)$ is a submanifold of X and the codimension of $f^{-1}(Z)$ in X equals the codimension of Z in Y.

Note: The codimension of Z in Y is codim $Z=\operatorname{dim} Y-\operatorname{dim} Z$.
Definition 2. Suppose $X \subset Y$. The inclusion map $i: X \rightarrow Y$ is defined by $i(x)=x$ for all $x \in X$.

When X and Z are both submanifolds of the same manifold Y, then a point $x \in X$ lies in the intersection $X \cap Z$ if and only if x lies in the preimage of Z under the inclusion map $i: X \hookrightarrow Y$. We say that X and Z intersect transversally in Y if

$$
T_{x} X+T_{x} Z=T_{x} Y
$$

for every $x \in X \cap Z$. Since the derivative $d i_{x}: T_{x} X \rightarrow T_{x} Y$ is simply the inclusion of $T_{x} X$ into $T_{x} Y$, the next result is a direct consequence of the Preimage Theorem.

Theorem 3. If the submanifolds X and Z intersect transversally in Y, then their intersection $X \cap Z$ is again a submanifold and

$$
\operatorname{codim}(X \cap Z)=\operatorname{codim} X+\operatorname{codim} Z
$$

Theorem 4 (Transversality Theorem, [6]). Let $F: X \times S \rightarrow Y$ be a smooth map of manifolds. Let $Z \subset Y$ be a smooth submanifold without boundary. If F is transverse to Z then for almost every $s \in S, F_{s}=F(\cdot, s)$ is transverse to Z.

The theorem follows from an application of Sard's theorem, which we now state. (See [6, Chap 2,§1].)

Theorem 5 (Sard's Theorem). For any smooth map of a manifold X (with boundary) into a boundaryless manifold Y, almost every point of Y is a regular value of $f: X \rightarrow Y$ (and of $\left.\partial f=\left.f\right|_{\partial X}: \partial X \rightarrow Y\right)$.

The idea behind the proof of Theorem 4 is this. By the Preimage theorem, $W=F^{-1}(Z)$ is a submanifold of $X \times S$. Let $\pi: X \times S \rightarrow S$ be the natural projection map, and consider its restriction to $W \subset X \times S$. By Sard's theorem, almost every value of $s \in S$ is a regular value of $\pi: W \rightarrow S$. Using the fact that F is transversal to Z, one can show that the regular values of $\left.\pi\right|_{W}$ correspond to the values of s for which F_{s} is transversal to Z. For details of the proof, we refer the reader to [6, Chap 2, §3].

Combining the Transversality theorem with the Preimage theorem, one can prove that given a submanifold $Z \subset Y$, any smooth map $X \rightarrow Y$ can be deformed by an arbitrarily small amount to a map that is transversal to Z. As a special case of this, we have the following.
Notation: Given an open set V, we write $U \subset \subset V$ to signify that there is a compact set K with $U \subset K \subset V$.

Theorem 6. Let \square_{k} denote the k-cube

$$
\square_{k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 1 \text { for } 1 \leq i \leq k, x_{k+1}=\cdots=x_{n}=0\right\}
$$

with boundary

$$
\partial \square_{k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \square_{k}: x_{i}= \pm 1 \text { for some } i \in\{1, \ldots, k\} .\right\} .
$$

Let Z_{1}, \ldots, Z_{L} be smooth submanifolds of \mathbb{R}^{n}, and suppose each has the property that $Z_{l} \cap \square_{k} \subset \subset \operatorname{int} \square_{k}$. Then we can homotope \square_{k} relative to its boundary to a k manifold Γ with $\partial \Gamma=\partial \square_{k}$, so that Γ intersects Z_{l} transversally for all $l=1, \ldots, L$.

Proof. There exists a compact set K such that $Z_{l} \cap \square_{k} \subset K \subset \operatorname{int} \square_{k}$ for all l. Take $\varepsilon: \square_{k} \rightarrow \mathbb{R}$ to be a smooth, compactly supported bump function with $\operatorname{spt}(\varepsilon) \subset \operatorname{int} \square_{k}$. We can assume that $K \subset\{x: \varepsilon(x) \neq 0\}$.

Let S denote the open unit ball in \mathbb{R}^{n} and let $F: \square_{k} \times S \rightarrow \mathbb{R}^{n}$ be the smooth map $F(x, s)=x+\varepsilon(x) \cdot s$. For any fixed point x where $\varepsilon(x) \neq 0$, the map $s \mapsto F(x, s)$ is a rescaling followed by translation of the ball S, hence is a submersion. If $Z \subset \mathbb{R}^{n}$
is a submanifold and $Z \cap \square_{k} \subset\{x: \varepsilon(x) \neq 0\}$, then it follows that F is transversal to Z. So by the transversality theorem of Guillemin-Pollack, the map $x \mapsto F(x, s)$ is transverse to Z for almost every $s \in S$.

By our hypotheses, $Z_{l} \cap \square_{k} \subset\{x: \varepsilon(x) \neq 0\}$ for every l. Thus for each l, there is a subset $\Omega_{l} \subset S$ of measure zero such that $F_{s}=F(\cdot, s)$ is transverse to Z_{l} for any $s \in S \backslash \Omega_{l}$. The union $\Omega=\Omega_{1} \cup \cdots \cup \Omega_{L}$ again has measure zero, and for any $s \in S \backslash \Omega, F_{s}$ is transverse to all the Z_{l}. Now the set $S \cap \square_{k}$ also has measure zero and for any $s \in S \backslash \square_{k}$,

$$
\Gamma_{s}=\left\{x+\varepsilon(x) \cdot s: x \in \square_{k}\right\}
$$

is a smooth submanifold of \mathbb{R}^{n} with boundary (and corners). Moreover, if $s \in$ $S \backslash\left(\Omega \cup \square_{k}\right)$, then saying that F_{s} is transverse to Z_{l} is equivalent to saying that Γ_{s} and Z_{l} intersect transversally.

Let us fix one such s and take $\Gamma=\Gamma_{s}$ to be our desired k-manifold. The homotopy from \square_{k} to Γ is given by

$$
h_{t}(x)=x+t \varepsilon(x) \cdot s, \quad t \in[0,1] .
$$

Clearly $h_{0}: \square_{k} \rightarrow \square_{k}$ is the identity map and h_{1} maps \square_{k} homeomorphically onto Γ. For any $x \in \partial \square_{k}$, we have $\varepsilon(x)=0$ because $\operatorname{spt}(\varepsilon) \subset \operatorname{int} \square_{k}$. Therefore $h_{t}(x)=x$ for all $x \in \partial \square_{k}$ and all $t \in[0,1]$, which is to say that the homotopy fixes the boundary and, in particular, $\partial \Gamma=\partial \square_{k}$.

4. Proof of Lemma 1 ,

4.1. Review of Singular Homology (with integer coefficients). For a quick introduction to singular homology (and cohomology), we refer the reader to Appendix A of [11]. More details can also be found in the graduate text by [5].

The basic objects of singular homology are equivalence classes of singular simplices in a predetermined topological space. These in turn are modeled on standard simplices in Euclidean space.
Definition 3. Let $K \geq 0$. The standard K-simplex is the convex set $\Delta^{K} \subset$ \mathbb{R}^{K+1}, consisting of all $(K+1)$-tuples $\left(y_{0}, \ldots, y_{K}\right)$ with

$$
y_{i} \geq 0 \quad, \quad y_{0}+y_{1}+\cdots+y_{K}=1
$$

Any continuous map σ from Δ^{K} to a topological space X is called a singular K-simplex in X.

Let $K \geq 0$ be an integer and let $C_{K}(X)$ be the free \mathbb{Z}-module obtained by taking one generator $[\sigma]$ for each singular K-simplex in X. We call $C_{K}(X)$ the K-th singular chain group of X. For $K<0, C_{K}(X)$ is defined to be zero.

To define the equivalence relation on $C_{K}(X)$, we need to introduce the following boundary operator.

Definition 4. Let $\sigma: \Delta^{K} \rightarrow X$ be a singular K-simplex in X. The i-th face of σ is the singular $(K-1)$-simplex

$$
\sigma \circ \lambda_{i}: \Delta^{K-1} \rightarrow X
$$

where the linear embedding $\lambda_{i}: \Delta^{K-1} \rightarrow \Delta^{K}$ is defined by

$$
\lambda_{i}\left(y_{0}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{K}\right)=\left(y_{0}, \ldots, y_{i-1}, 0, y_{i+1}, \ldots, y_{K}\right)
$$

The homomorphism

$$
\partial: C_{K}(X) \rightarrow C_{K-1}(X)
$$

given by

$$
\partial[\sigma]=\left[\sigma \circ \lambda_{0}\right]-\left[\sigma \circ \lambda_{1}\right]+-\cdots+(-1)^{K}\left[\sigma \circ \lambda_{K}\right]
$$

is called the boundary homomorphism.
It is an exercise in algebra to verify that

$$
\begin{equation*}
\partial \circ \partial=0 . \tag{6}
\end{equation*}
$$

Let $\mathcal{Z}_{K}(X)$ be the kernel of $\partial: C_{K}(X) \rightarrow C_{K-1}(X)$, and let $\mathcal{B}_{K}(X)$ be the image of $\partial: C_{K+1}(X) \rightarrow C_{K}(X)$. By (6), $\mathcal{B}_{K}(X) \subset \mathcal{Z}_{K}(X)$ so the quotient

$$
\begin{equation*}
H_{K}(X)=\mathcal{Z}_{K}(X) / \mathcal{B}_{K}(X) \tag{7}
\end{equation*}
$$

makes sense. We call $H_{K}(X)$ the K-th singular homology group of X, and an element of $H_{K}(X)$ is called a homology class.

Suppose $f: X \rightarrow Y$ is a continuous map. By composing with f, we get a map

$$
f \circ:\{K \text {-simplices in } X\} \rightarrow\{K \text {-simplices in } Y\}
$$

which maps σ to $f \circ \sigma$. One can show further that there is an "induced" map

$$
f_{*}: H_{K}(X) \rightarrow H_{K}(Y)
$$

See Appendix A of [11, or 5 for details.
Definition 5. We call $f_{*}: H_{K}(X) \rightarrow H_{K}(Y)$ the push forward map of f.
The following is a basic result in homology theory.
Proposition 1. Let $f_{1}, f_{2}: X \rightarrow Y$ be continuous maps and suppose that f_{1} is homotopic to f_{2}. Then the push-forward maps $\left(f_{1}\right)_{*}: H_{K}(X) \rightarrow H_{K}(Y)$ and $\left(f_{2}\right)_{*}: H_{K}(X) \rightarrow H_{K}(Y)$ are equal. That is, $\left(f_{1}\right)_{*}=\left(f_{2}\right)_{*}$ as maps from $H_{K}(X)$ to $H_{K}(Y)$.
Proposition 2. Let m be a positive integer and let S^{m} be the m-dimensional sphere. Then

$$
H_{i}\left(S^{m}\right) \cong \begin{cases}\mathbb{Z} & \text { if } i=0 \text { or } i=m \\ 0 & \text { otherwise } .\end{cases}
$$

Remark: in the case $m=1$, the boundary of S^{0} is the two points $\{-1,1\} \in \mathbb{R}$.
Lemma 2. $Q \backslash \square_{n}$ is homotopic to S^{k-1}.
Lemma 3. $\partial_{X} \square_{n}$ is homotopic to S^{k-1}.
Lemma 4. If ϕ satisfies the Standardized (n, k)-ICP then $\phi \mid \partial_{X} \square_{n}: \partial_{X} \square_{n} \rightarrow Q \backslash \square_{n}$ induces an isomorphism in homology, that is,

$$
\phi_{*}: H_{r}\left(\partial_{X} \square_{n}\right) \rightarrow H_{r}\left(Q \backslash \square_{n}\right)
$$

is an isomorphism for all r.
Proof of Lemma 2. By definition,

$$
\begin{gather*}
\square_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 1 \text { for all } i=1, \ldots, n\right\} \tag{8}\\
\square_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}:\left|x_{i}\right| \leq 1 \text { for all } i=1, \ldots, k\right\} \\
Q=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \quad\left|x_{i}\right| \leq 1+\varepsilon \text { for } i=1, \ldots, k,\right. \text { and } \tag{9}\\
\\
\\
\\
\left.\left|x_{i}\right| \leq 1-\varepsilon \text { for } i=k+1, \ldots, n\right\} .
\end{gather*}
$$

We identify \square_{k} with the cross section

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \square_{n}: x_{k+1}=\cdots=x_{n}=0\right\} .
$$

By (8) and (9),

$$
\begin{aligned}
Q \backslash \square_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\right. & \left|x_{i}\right| \leq 1+\varepsilon \text { for } i=1, \ldots, k \text { and } \\
& \left|x_{i}\right| \leq 1-\varepsilon \text { for } i=k+1, \ldots, n \text { and } \\
& \left.\left|x_{j}\right|>1 \text { for some } j\right\} .
\end{aligned}
$$

If $j \geq k+1$, then $\left|x_{j}\right| \leq 1-\varepsilon<1$; therefore $\left|x_{j}\right|>1$ is only possible when $1 \leq j \leq k$. Thus

$$
Q \backslash \square_{n}=\left\{\begin{array}{ll}
& \left|x_{i}\right| \leq 1+\varepsilon \text { for } i=1, \ldots, k \tag{10}\\
\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: & \left|x_{i}\right| \leq 1-\varepsilon \text { for } i=k+1, \ldots, n \\
& \left|x_{j}\right|>1 \text { for some } j, 1 \leq j \leq k
\end{array}\right\} .
$$

Next we define a retraction of $Q \backslash \square_{n}$ onto $\square_{k}(1+\varepsilon) \backslash \square_{k}$. For each $t \in[0,1]$, set $f_{t}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, t x_{k+1}, \ldots, t x_{n}\right)$. If $\left|x_{i}\right| \leq 1-\varepsilon$ then $\left|t x_{i}\right| \leq\left|x_{i}\right| \leq$ $1-\varepsilon$, so $f_{t}\left(Q \backslash \square_{n}\right) \subset Q \backslash \square_{n}$ for all t. Note also that f_{1} is the identity map and $f_{0}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)$ lies in the set

$$
\begin{aligned}
& \square_{k}(1+\varepsilon) \backslash \square_{k}=\left\{\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \quad: \quad\left|x_{i}\right| \leq 1+\varepsilon \text { for } i=1, \ldots, k\right. \text { and } \\
& \left.\quad\left|x_{j}\right|>1 \text { for some } j=1, \ldots, k\right\} .
\end{aligned}
$$

This proves that f_{0} is homotopic to the identity map and is a retraction. It follows that $Q \backslash \square_{n}$ is homotopic to $\square_{k}(1+\varepsilon) \backslash \square_{k}$.

On the other hand, we can show that $\square_{k}(1+\varepsilon) \backslash \square_{k}$ retracts onto $\partial \square_{k}$. For any $x=\left(x_{1}, \ldots, x_{n}\right)$, let $m(x)=\left\{\left|x_{i}\right|: 1 \leq i \leq n\right\}$. If $x \neq 0$ then $m(x) \neq 0$, so $p(x)=\frac{1}{m(x)} \cdot x$ is well-defined. In particular, p is defined on $\square_{k}(1+\varepsilon) \backslash \square_{k}$ and maps this set onto $\partial \square_{k}$. The function $p_{t}(x):=\left(\frac{1}{m(x)}\right)^{t} \cdot x$, for $t \in[0,1]$, gives a homotopy from $p_{0}=i d$ to $p=p_{1}$. This proves that p is a retraction.

In conclusion, $p \circ f_{0}$ maps $Q \backslash \square_{n}$ onto $\partial \square_{k}$ and is a homotopy equivalence. As $\partial \square_{k}$ is homotopy equivalent to S^{k-1}, the lemma is proved.

We will need a preferred generator for the proof of Lemma 4 below, so let us specify one now. By Proposition 2 and Lemma 2, $H_{k-1}\left(Q \backslash \square_{n}\right) \cong \mathbb{Z}$ has two possible generators. First, observe that $\partial \square_{k}$ has a natural decomposition as a formal sum of $(k-1)$-simplices, and that $\partial\left(\partial \square_{k}\right)=0$. It follows that $\partial \square_{k}$ represents an element in $\mathcal{Z}_{k-1}\left(\partial \square_{k}\right)$. In fact, the homology class represented by $\partial \square_{k}$ generates the group $H_{k-1}\left(\partial \square_{k}\right) \cong \mathbb{Z}$. We denote this class by $\left[\partial \square_{k}\right]$. Next let $i_{1}: \partial \square_{k} \hookrightarrow Q \backslash \square_{n}$ denote the natural inclusion. Note that i_{1} is a homotopy inverse to $p \circ f_{0}$.

Definition 6. The class $\left[i_{1}\right]=\left(i_{1}\right)_{*}\left[\partial \square_{k}\right]$ will be our preferred generator for $H_{k-1}\left(Q \backslash \square_{n}\right)$.
Proof of Lemma 3. By definition,

$$
\begin{equation*}
\partial_{X} \square_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \square_{n}:\left|x_{j}\right|=1 \text { for some } j=1, \ldots, k\right\} . \tag{11}
\end{equation*}
$$

For $t \in[0,1]$, define $g_{t}: \partial_{X} \square_{n} \rightarrow \partial_{X} \square_{n}$ by

$$
g_{t}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, t x_{k+1}, \ldots, t x_{n}\right)
$$

Note that if $\left|x_{i}\right| \leq 1$, then $\left|t x_{i}\right| \leq\left|x_{i}\right| \leq 1$, so indeed $g_{t}\left(\partial_{X} \square_{n}\right) \subset \partial_{X} \square_{n}$. As in the proof of Lemma 2, g_{1} is the identity map and $g_{0}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \in$ $\partial \square_{k}$, which proves that $g_{0} \simeq g_{1}$. Thus g_{0} is a retraction of $\partial_{X} \square_{n}$ onto $\partial \square_{k}$.

On the other hand, $\partial \square_{k} \simeq \partial D^{k}=S^{k-1}$, so we have proved

$$
\partial_{X} \square_{n} \simeq \partial \square_{k} \simeq S^{k-1}
$$

as required.

Remark. Let i_{2} denote the natural inclusion of $\partial \square_{k}$ into $\partial_{X} \square_{n}$, and note that i_{2} is a homotopy inverse to g_{0}. We will take $\left[i_{2}\right]=\left(i_{2}\right)_{*}\left[\partial \square_{k}\right]$ to be the preferred generator of $H_{k-1}\left(\partial_{X} \square_{n}\right) \cong \mathbb{Z}$.
Proof of Lemma 4. Let φ be a diffeomorphism satisfying (n, k)-ICP, and ϕ be the associated form of φ in standardized co-ordinates that satisfies the Standardized (n, k)-ICP. Then ϕ maps $\partial_{X} \square_{n}$ into the set $Q \backslash \square_{n}$. We claim that
i) $\left.\phi\right|_{\partial_{X} \square_{n}}$ is homotopic to $\left.h\right|_{\partial_{X} \square_{n}}$, where h is the "hyperbolic map" defined by

$$
\begin{equation*}
h\left(x_{1}, \ldots, x_{n}\right)=\left((1+\varepsilon) x_{1}, \ldots,(1+\varepsilon) x_{k},(1-\varepsilon) x_{k+1}, \ldots,(1-\varepsilon) x_{n}\right) ; \tag{12}
\end{equation*}
$$

ii) $\left.h\right|_{\partial_{X} \square_{n}}: \partial_{X} \square_{n} \rightarrow Q \backslash \square_{n}$ induces an isomorphism in homology.

We begin by proving (i). For each $j=1, \ldots, k$, let

$$
Q_{j+}=Q \cap\left\{x_{j}>+1\right\}, \quad Q_{j-}=Q \cap\left\{x_{j}<-1\right\} .
$$

Thus, for example, Q_{j+} consists of all points $\left(x_{1}, \ldots, x_{n}\right)$ such that $\left|x_{i}\right| \leq 1+\varepsilon$ for $1 \leq i \leq k,\left|x_{i}\right| \leq 1-\varepsilon$ for $k+1 \leq i \leq n$, and $x_{j}>+1$.

Each of these sets is a product of intervals; namely,

$$
\begin{gathered}
Q_{j+}=[-1-\varepsilon, 1+\varepsilon]^{k-1} \times(1,1+\varepsilon] \times[-1+\varepsilon, 1-\varepsilon]^{n-k} \\
Q_{j-}=[-1-\varepsilon, 1+\varepsilon]^{k-1} \times[-1-\varepsilon,-1) \times[-1+\varepsilon, 1-\varepsilon]^{n-k} .
\end{gathered}
$$

Therefore $Q_{j \pm}$ is fully contractible.
By the Standardized (n, k)-ICP, ϕ maps the set

$$
B_{j \pm}:=\partial_{X} \square_{n} \cap\left\{x_{j}= \pm 1\right\}
$$

into $Q_{j \pm}$. The hyperbolic map h defined by (12) also maps $B_{j \pm}$ into $Q_{j \pm}$. As $Q_{j \pm}$ is contractible, the two maps

$$
\left.\phi\right|_{B_{j \pm}}: B_{j \pm} \rightarrow Q_{j \pm} \text { and }\left.h\right|_{B_{j \pm}}: B_{j \pm} \rightarrow Q_{j \pm}
$$

must be homotopic. Let $H_{j \pm}: B_{j \pm} \times I \rightarrow Q_{j \pm}$ be a homotopy between them with $H_{j \pm}(\cdot, 0)=\phi$ and $H_{j \pm}(\cdot, 1)=h$.

For any $j^{\prime} \neq j, H_{j \pm}$ maps the "overlap" $\left(B_{j \pm} \cap B_{j^{\prime} \pm}\right) \times I$ into $Q_{j \pm} \cap Q_{j^{\prime} \pm}$. The same is true for $H_{j^{\prime} \pm}$. But the intersection of $Q_{j \pm}$ and $Q_{j^{\prime} \pm}$ is also a product of intervals, hence contractible. This implies that we can choose the homotopy maps $H_{j \pm}$ in such a way that they agree on overlaps; i.e., if $x \in B_{j \pm} \cap B_{j^{\prime} \pm}$ and $t \in I$, then $H_{j \pm}(x, t)=H_{j^{\prime} \pm}(x, t)$.

Now $\partial_{X} \square_{n}$ equals the union, over all $j=1, \ldots, k$, of $B_{j+} \cup B_{j-}$. Thus, given any $(x, t) \in \partial_{X} \square_{n} \times I$, we can find j such that $x \in B_{j+}$ or B_{j-}. We therefore construct a homotopy $H: \partial \Gamma \times I \rightarrow Q \backslash \square_{n}$ from $\phi=H(\cdot, 0)$ to $h=H(\cdot, 1)$ by patching together the various maps $H_{j \pm}$. To be precise, if $(x, t) \in \partial \Gamma \times I$, then choose $j \in\{1, \ldots, k\}$ such that x lies in B_{j+} or B_{j-}. Suppose for example that $x \in B_{j+}$. Then we define $H(x, t):=H_{j+}(x, t)$. If $x \in B_{j^{\prime} \pm}$ for some other $j^{\prime} \neq j$ in the set $\{1, \ldots, k\}$, then $H_{j^{\prime} \pm}(x, t)=H_{j+}(x, t)$ by the remarks of the preceding paragraph. Thus H is a well-defined map, and (i) is proved.

To prove (ii), we will show that h_{*} maps $\left[i_{2}\right]$ to $\left[i_{1}\right]$. Thus we need to show that $h_{*}\left(i_{2}\right)_{*}\left[\partial \square_{k}\right]=\left(i_{1}\right)_{*}\left[\partial \square_{k}\right]$. Since i_{1} and $p \circ f_{0}$ are homotopy inverses, it is equivalent to show that

$$
\begin{equation*}
\left(p \circ f_{0}\right)_{*} h_{*}\left(i_{2}\right)_{*}\left[\partial \square_{k}\right]=\left[\partial \square_{k}\right] . \tag{13}
\end{equation*}
$$

Now consider $p \circ f_{0} \circ h \circ i_{2}$, which maps $\partial \square_{k}$ to itself. It is simple to check that for any $\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \in \partial \square_{k}$,

$$
\begin{aligned}
& p \circ f_{0} \circ h \circ i_{2}\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \\
= & p \circ f_{0}\left((1+\varepsilon) x_{1}, \ldots,(1+\varepsilon) x_{k}, 0, \ldots, 0\right) \\
= & p\left((1+\varepsilon) x_{1}, \ldots,(1+\varepsilon) x_{k}, 0, \ldots, 0\right) \\
= & \frac{1}{1+\varepsilon} \cdot\left((1+\varepsilon) x_{1}, \ldots,(1+\varepsilon) x_{k}, 0, \ldots, 0\right) .
\end{aligned}
$$

Thus $\left.p \circ f_{0} \circ h \circ i_{2}\right|_{\partial \square_{k}}$ equals the identity map. But the identity map induces the identity map in homology, so we have proved (13).
Proof of Lemma 1. By transversality, $\Gamma^{\prime}=\phi(\Gamma) \cap \square_{n}$ is a k-manifold with boundary, and its boundary equals $\phi(\Gamma) \cap \partial \square_{n}$. To see that $\Gamma^{\prime} \neq \emptyset$, we use Lemma 4. For suppose that $\phi(\Gamma) \cap \square_{n}=\emptyset$. Then $\phi(\Gamma) \subset Q \backslash \square_{n}$ and $\partial(\phi(\Gamma))=\phi(\partial \Gamma)$, which is to say that $\phi(\partial \Gamma)$ is a boundary element in $Q \backslash \square_{n}$, i.e., it represents an element in $\mathcal{B}_{k-1}\left(Q \backslash \square_{n}\right)$. By the definition of singular homology (7), $[\phi(\partial \Gamma)]=0$ in $H_{k-1}\left(Q \backslash \square_{n}\right)$. On the other hand, $[\phi(\partial \Gamma)]=\phi_{*}[\partial \Gamma]$ because ϕ is a diffeomorphism, and $[\partial \Gamma] \neq 0$ by our wrap-around assumption. By Lemma 4 $\phi_{*}: H_{k-1}\left(\partial_{X} \square_{n}\right) \rightarrow$ $H_{k-1}\left(Q \backslash \square_{n}\right)$ is an isomorphism, meaning that $\phi_{*}[\partial \Gamma] \neq 0$, a contradiction. Thus our assumption on $\phi(\Gamma) \cap \square_{n}$ must have been false. We conclude that $\phi(\Gamma) \cap \square_{n}$ is non-empty. This proves (i).

By the Standardized (n, k)-ICP, $\phi(\Gamma) \subset Q$ and so $\phi(\Gamma) \cap \partial_{C} \square_{n}=\emptyset$. This proves (ii).

Let ι denote the inclusion $\partial_{X} \square_{n} \hookrightarrow Q \backslash \square_{n}$. We have

$$
\begin{equation*}
\iota \circ i_{2}=i_{1}, \tag{14}
\end{equation*}
$$

where $i_{1}: \partial \square_{k} \hookrightarrow Q \backslash \square_{n}$ and $i_{2}: \partial \square_{k} \hookrightarrow \partial_{X} \square_{n}$ denote, as before, the natural inclusion maps. Since $\left[i_{2}\right]$ generates $H_{k-1}\left(\partial_{X} \square_{n}\right) \cong \mathbb{Z}$, there are uniquely determined integers $d, d^{\prime} \in \mathbb{Z}$ such that

$$
[\partial \Gamma]=d \cdot\left[i_{2}\right] \quad \text { and } \quad\left[\partial \Gamma^{\prime}\right]=d^{\prime} \cdot\left[i_{2}\right] .
$$

Let $A=\phi(\Gamma) \backslash \operatorname{Int}\left(\square_{n}\right)$. By our transversality assumption, A is a k-manifold with boundary, and its boundary equals

$$
\begin{equation*}
\phi(\partial \Gamma)-\partial \Gamma^{\prime} . \tag{15}
\end{equation*}
$$

This is to say that ∂A is the disjoint union of $\phi(\partial \Gamma)$ and $\partial \Gamma^{\prime}$, and that $\partial \Gamma^{\prime}$ is included with its orientation reversed (hence the minus sign in (15)). By the Theorem of Whitehead [11], A is triangulable, hence represents a class $[A] \in C_{k}\left(Q \backslash \square_{n}\right)$ with the property that $\partial[A]=[\phi(\partial \Gamma)]-\left[\iota\left(\partial \Gamma^{\prime}\right)\right]$. By the definition of singular homology (7), we therefore have

$$
\begin{equation*}
[\phi(\partial \Gamma)]-\left[\iota\left(\partial \Gamma^{\prime}\right)\right]=0 \tag{16}
\end{equation*}
$$

in $H_{k-1}\left(Q \backslash \square_{n}\right)$.
Since ϕ is a diffeomorphism, $[\phi(\partial \Gamma)]=\phi_{*}[\partial \Gamma]$. From the proof of Lemma 4 we also know that $\phi \simeq h$ and $h_{*}\left[i_{2}\right]=\left[i_{1}\right]$. Therefore

$$
\begin{equation*}
[\phi(\partial \Gamma)]=\phi_{*}[\partial \Gamma]=h_{*} d \cdot\left[i_{2}\right]=d \cdot h_{*}\left[i_{2}\right]=d \cdot\left[i_{1}\right] \tag{17}
\end{equation*}
$$

On the other hand, by (14),

$$
\begin{equation*}
\left[\iota\left(\partial \Gamma^{\prime}\right)\right]=\iota_{*}\left[\partial \Gamma^{\prime}\right]=\iota_{*} d^{\prime} \cdot\left[i_{2}\right]=\iota_{*}\left(i_{2}\right)_{*} d^{\prime} \cdot\left[\partial \square_{k}\right]=\left(i_{1}\right)_{*} d^{\prime} \cdot\left[\partial \square_{k}\right]=d^{\prime} \cdot\left[i_{1}\right] . \tag{18}
\end{equation*}
$$

Combining (16), (17) and (18), we find that $d\left[i_{1}\right]=d^{\prime}\left[i_{1}\right]$. Since $\left[i_{1}\right]$ generates $H_{k-1}\left(Q \backslash \square_{n}\right)$, it follows that $d^{\prime}=d$. Thus $\left[\partial \Gamma^{\prime}\right]=[\partial \Gamma]$, and we are done.

Acknowledgements. This research was conducted while the first two authors were postdoctoral fellows at the Fields Institute for Research in Mathematical Sciences, located in Toronto, Canada. CY acknowledges the support of an NSERC Postdoctoral Fellowship. We thank Judy Kennedy and Jim Yorke for helpful discussions.

REFERENCES

[1] Anosov, D. V. (1967). Geodesic Flows and Closed Riemannian Manifolds with Negative Curvature. Proc. Steklov Inst. Math 90, 1.
[2] Beyn, W.-J. (1987). On Invariant Closed Curves for One-Step Methods. Numer. Math. 51, 103-122.
[3] Bowen, R. (1975). ω-Limit Sets for Axiom A Diffeomorphisms. Journal of Differential Equations 18, 333.
[4] Grebogi, C., S. M. Hammel, J. A. Yorke, and T. Sauer (1990). Shadowing of Physical Trajectories in Chaotic Dynamics: Containment and Refinement. Physical Review Letters 65(13), 1527-1530.
[5] Greenberg, H. (1981). Algebraic Topology: A First Course. Addison-Wesley.
[6] Guillemin, V. and A. Pollack (1974). Differential Topology. Prentice-Hall.
[7] Hammel, S. M., J. A. Yorke, and C. Grebogi (1987). Do Numerical Orbits of Chaotic Dynamical Processes Represent True Orbits? Journal of Complexity 3, 136-145.
[8] Hammel, S. M., J. A. Yorke, and C. Grebogi (1988). Numerical Orbits of Chaotic Dynamical Processes Represent True Orbits. Bull. Am. Math. Soc. 19, 465-470.
[9] Hayes, W. B. (2001). Rigorous shadowing of numerical solutions of ordinary differential equations by containment. Ph. D. thesis, Department of Computer Science, University of Toronto. Available on the web as http://www.cs.toronto.edu/NA/reports.html\#hayes-01-phd.
[10] Hayes, W. B. and K. R. Jackson (2003). Rigorous shadowing of numerical solutions of ordinary differential equations by containment. SIAM J. Numer. Anal. 41:5, 1948-1973.
[11] Milnor, J. W. and J. D. Stasheff (1974). Characteristic classes. Annals of Mathematics Studies (76).
[12] Palmer, K. J. (1988). Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points. In U. Kirchgraber and H. O. Walther (Eds.), Dynamics Reported, Volume 1. Wiley and Teubner.
[13] Smale, S. (1965). Diffeomorphisms with many periodic points. In S. Cairns (Ed.), Differential and Combinatorial Topology, pp. 63-80. Princeton Univ. Press.
[14] Smale, S. (1967). Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747-817.
[15] Zgliczynski, P. (1999). Sharkovskii's Theorem for multidimensional perturbations of onedimensional maps II. Topological Methods in Nonlinear Analysis 14, 169-182.
[16] Zgliczynski, P. and M. Gidea (2004). Covering relations for multidimensional dynamical systems I. J. of Diff. Equations 202, 33-58.

Received November 2004; revised June 2005.
E-mail address: wayne@ics.uci.edu

